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ABSTRACT 
 

Western juniper (Juniperus occidentalis spp. occidentalis) encroachment across broad 

expanses of the northern Great Basin has become a great concern to land managers and 

ecologists.  The detrimental and exponential expansion of western juniper has left many 

wondering the exact extent of the problem.  By using remote sensing and GIS technologies 

mapping vegetation communities is possible across broad, large-scale areas in sagebrush 

steppe juniper woodland landscapes.  Three advanced classification procedures were 

compared to map western juniper encroachment based on Potential Vegetation Types and 

Structural Stage attributes using a Landsat 7 Enhanced Thematic Mapper Plus (ETM +) 

satellite image.  The supervised classification methods utilized procedures based on both 

parametric and nonparametric statistics.  The nonparametric procedure out-performed the 

other parametric methods and achieved an overall map accuracy of 69% based on 32 classes.  

Mapping western juniper encroachment along a successional gradient is possible and can be 

beneficial in prioritizing areas for prescribed burning and other management practices.  In 

addition custom fuel models were created to cover the same extent as the classification map 

and allowed for fire-landscape pattern relationships to be addressed.  Using two fire 

simulation methods, fire frequency data were produced which allowed for a statistical 

comparison between the spatial pattern, or the arrangement of different vegetation types 

along a successional gradient, and fire frequency.  Results suggest that vegetation 

arrangement of early successional stages has little or no influence on fire frequency.  But as 

western juniper encroaches and site characteristics become dominated by later successional 

stages, the spatial arrangement of the landscape becomes an important factor in determining 

fire frequency.   
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INTRODUCTION 

 Western juniper (Juniperus occidentalis spp. occidentalis) encroachment across the 

landscape has become a major concern to land managers due to the effect it is having on 

changing landscape patterns and process (Wall et al. 2001).  Introduction of domestic 

livestock, fire suppression, climate change, and human disturbance have all been proposed 

for causing exponential expansion in the past 120 years (Burkhardt and Tisdale 1976, Shinn 

1980).  Important research has focused on the western juniper successional gradient, and the 

effects fire plays on controlling and manipulating the vegetation (Miller et al. 2000).  

Prescribed burning can be successfully used to reverse western juniper encroachment up to a 

threshold or successional boundary where fires become difficult to start and carry across the 

landscape, many times resulting in ineffective applications (Miller et al. 2000, Yanish 2002). 

 Creating maps based on vegetation seral stages and inventories of fine fuels over 

large remote areas would have been virtually impossible 30 years ago.  Modern technology, 

including remote sensing, GIS, and computer processing software allow users to create land 

classification maps based on desirable outputs.  Fairly successful results have been reported 

for discriminating different shrub species or different classes of tree species (Jackubauskas et 

al. 1998, Wolter et al. 1995).  With so many potential uses, a large amount of attention has 

been focused on research and the development of methods to most accurately produce 

vegetation maps (Bobbe et al. 2001).   Numerous vegetation indices, classification 

procedures, and accuracy measurements have been developed (Skidmore and Turner 1988, 

Kent et al. 1988).  With the increased potential in vegetation classification, the overall 

demand and broad scale utilization should continue to increase.   
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 Modern technology has also been the driving force behind our understanding of 

wildfires and landscape patterns at different scales (Albright and Meisner 1999).  From 

simple models not so many years ago, the development of fire predictability models has 

greatly increased (Albright and Meisner 1999).  Current models not only predict fire rates of 

spread and intensity, but also can include observed variables such as weather conditions, 

slope, aspect, elevation, and fuel moisture (Andrews and Queen 1999, Finney and Andrews 

1999).  GIS-layers and custom fuel models not only increase the ability to accurately predict 

fire behavior, but also create endless opportunities to study fire patterns across the landscape 

(Finney and Andrews 1999).  Numerous landscape level metrics have been developed to 

measure landscape fragmentation, patch density, or the human effects on landscape pattern 

(Ritters et al. 1995).  Important information can be derived from landscape metrics that may 

be helpful to explain important processes vital to a particular landscape. 

Although landscape metrics have been used to better understand many ecologically 

important issues including applications in fire, little work has been done to better understand 

how the spatial arrangement of vegetation across a landscape can be linked to fire behavior 

and the overall fire frequency.  Work that suggests a relationship exists include Miller and 

Urban (1999) who stated forest pattern influences aspects of the fire regime by controlling 

fuel interaction and connectivity.  Hargrove et al. (2000) found that under moderate fire 

conditions simulated fires were constrained by the spatial arrangement of the most flammable 

fuels and concluded under these conditions fire patterns were the result of the interaction 

between landscape pattern and fire dynamics.  Turner and Romme (1994) believe crown fire 

behavior is a function of time and landscape structure and when fuel moistures and wind are 

moderate and not extreme, landscape pattern constrained crown fire behavior.  When  
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conditions are extreme, landscape patterns have little influence.  With the development of 

GIS, fire prediction models such as FARSITE, and programs like FRAGSTATS, the ability 

to compare landscape metrics to fire frequency may lead to better understanding of how 

landscape patterns influence fire behavior and frequency. 

 The purpose of this study is to look at relationships between the spatial arrangement 

of the vegetation and resulting influence on fire frequency in southwestern Idaho.  A 

combination of field data and computer-generated models were used to better understand 

fire-landscape pattern relationships. 

The specific objectives for this study include: 

1) Classify a large remote area using fine-scale classes based on Potential Vegetation Type 

(PVT) and Structural Stage (SS).   

2) Develop a representative fuel description for important classes determined by the 

supervised classification. 

3) Quantify the relationships between vegetation arrangement and the resulting effects on fire 

frequency. 
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LITERATURE REVIEW 

SAGEBRUSH STEPPE/JUNIPER WOODLANDS 

 Western juniper, a common component in the northern Great Basin woodland 

community type has become an increasing concern to land managers, local residents, and 

ecologists alike (Bates et al. 2000, Miller et al. 2000, Miller and Rose 1995, Burkhardt and 

Tisdale 1969).  Prolific expansions across broad elevational boundaries, soil types, 

understory vegetation communities, and previously juniper free areas, have left many people 

wondering why this is occurring (Wall et al. 2001, Burkhardt and Tisdale 1969).  Such 

attention probably would not be given to western juniper except for the fact that there are 

many detrimental effects on previously diverse sagebrush steppe and aspen community types, 

and properly functioning riparian areas (Miller and Wigand 1994, Miller and Rose 1995).  

Western juniper is affecting watersheds as a whole (Miller and Rose 1995, Wall et al. 2001, 

Miller and Wigand 1994, Buckhouse and Mattison 1980).  A number of hypotheses have 

been created to try to determine the reasons western juniper has becoming so prevalent.  The 

main supported ideas include climate change, change in fire regime, introduction of domestic 

livestock, and changes made by human influences such as landscape fragmentation by 

development of roads and manmade structures (Shinn 1980, Soule` and Knapp 1999, Miller 

and Rose 1999, Burkhardt and Tisdale 1976, Miller and Wigand 1994).  Although varying 

levels of scientific research have supported these ideas, a combination of events seems most 

likely. 

Climate variability can have a large impact on a plants distribution and productivity.  

Since the arrival of western juniper into the northern Great Basin, the distribution and  
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numbers have varied greatly (Miller and Wigand 1994).  These large fluctuations can be 

attributed mostly to changes in temperature and precipitation patterns (Miller et al. 1999b).   

Historically western juniper was found on rock outcrops, scabland, fractured rock, and other 

rocky fire protected areas (Burkhardt and Tisdale 1969, Miller et al. 1999b, Burkhardt and 

Tisdale 1976).  Western juniper now occupies 3.2 million ha in varying stages across the 

northern Great Basin (Miller and Wigand 1994), and at least 162,000 ha can be found in 

Idaho alone (Burkhardt and Tisdale 1969).  The majority of the expansion has occurred in the 

past 120 years (Miller and Wigand 1994).  On Juniper Hill in California, 84% of existing 

western juniper on big sagebrush (Artemisia tridentata spp. wyomingensis) sites became 

established between 1890 and 1920 (Young and Evans 1981).  In central Oregon, Miller and 

Rose (1999) estimated juniper expansion rates in both low sagebrush (Artemisia arbuscula) 

and mountain big sagebrush (Artemisia tridentata spp. vaseyana) communities began in 1875 

to 1885 and peaked between 1905 and 1915. On the Owyhee Plateau Burkhardt and Tisdale 

(1969) reported juniper expansion began in the 1860’s, continued slowly until 1900 and 

increased the greatest in the 1930’s and 1940’s.  Favorable climate conditions occurring 

during this time period included mild wet winters and cool moist springs (Miller and Rose 

1999).  In comparing tree ring widths in central Oregon between 1700 and 1996, 70% of the 

years between 1875 and 1915 exceeded the long term average for growth (Miller and Rose 

1999).  Increased precipitation coincided with maximum juniper establishment for this time 

period and location (Miller and Rose 1999).  Historically restricted in distribution western 

juniper encroachment and expansion across vast regions has been unprecedented and can 

partially be explained by changing climate conditions. 
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Fire frequency plays a major role in controlling and suppressing western juniper 

encroachment (Miller and Rose 1999, Miller and Wigand 1994, Miller et al. 1999a).  Fire is 

also important in creating variable seral structure and diversity across the landscape, which 

can be vital to many wildlife species (Miller et al. 1999a, Miller and Wigand 1994).  

Historically fire frequencies that kept juniper at low levels in sagebrush steppe have been 

estimated at 12-15 years for mountain big sagebrush sites in central Oregon (Miller and Rose 

1999), and 30 to 40 years in similar community types in southwestern Idaho (Burkhardt and 

Tisdale 1976).  Longer fire frequencies on the order of 100 years have been estimated for low 

sagebrush sites (Miller and Rose 1999) due mostly to the lack of fine fuel accumulations and 

site potential (Bunting et al. 1999).  Western juniper has the ability to alter fire behavior by 

the effects the successional structure has on the surrounding vegetation composition.  Juniper 

less than 50 years of age has the highest probability of mortality when a stand is burned 

(Burkhardt and Tisdale 1976, Miller and Rose 1999).  The greatest mortality occurs in the 

seedling and sapling state (Burkhardt and Tisdale 1976) where thin bark and short stature 

make it susceptible to any fire (Miller and Rose 1999).  Western juniper also requires many 

years to reach maturity.  Areas with juniper that have not yet matured can be burned 

successfully without concerns of reestablishment from juniper seed reserves in the soil.  

Miller and Rose (1995) found that trees less than 50 years of age produced few cones, while 

75% of trees over the age of 50 produced heavy cone crops.    As juniper stands progress 

along a successional gradient, the understory vegetation composition begins to change 

(Bunting et al. 1999).  With this encroachment of juniper, once productive sagebrush stands 

can be reduced to sagebrush skeletons, surrounded by an increasing amount of bare ground 

(Miller et al. 2000, Miller and Wigand 1994).  With loss of sagebrush and graminoid fuels  
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and greater distance between continuous fuels, the ability to carry fire in later successional 

stages of western juniper is greatly reduced (Yanish 2002).   

 Human manipulation and policy have also had an immeasurable effect across the 

landscape.  Native cultures historically used broadcast burning across sections of the 

landscape for hunting, vegetation manipulation, and war, as observed by early explorers 

(Shinn 1980).  Introduction of domestic livestock reduced fine fuels across landscapes that 

had not been exposed to large herds of herbivores in the past (Shinn 1980).  Public 

perception of fire being undesirable and the main cause of forest and rangeland damage 

quickly lead to a national policy of fire suppression (Burkhardt and Tisdale 1976, Shinn 

1980).  Roads and man made structures restrict rates of spread when wildfires occur 

(Burkhardt and Tisdale 1976). 

 In a diverse fire-maintained system fine fuel reduction reduces the number of fires 

(Burkhardt and Tisdale 1976) and fire size on the landscape (Yanish 2002).  The major cause 

of fine fuel reduction in the northern Great Basin during the 1860’s to 1880’s was the 

introduction of livestock (Burkhardt and Tisdale 1969, Miller and Wigand 1994).  High 

stocking rates of both cattle and sheep quickly reduced the amount of fine fuels or grasses 

needed for fire spread (Burkhardt and Tisdale 1969).  Indirectly, domestic livestock have 

altered the fire regime by reducing fine fuels.  Livestock have directly caused juniper 

encroachment by seed dissemination; reducing or removing preferred forage species, and 

increasing safe sites for juniper establishment by increasing the shrub density (Burkhardt and 

Tisdale 1969).  Western juniper can more readily establish under a shrub or tree canopy 

compared to being out in open interspaces (Miller and Rose 1995, Burkhardt and Tisdale 

1976).  Less than 20% of juvenile juniper plants across 22 sagebrush-dominated sites were  
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found in the interspaces.  Juniper seedlings found beneath a sagebrush canopy grew faster 

than saplings growing in the interspaces (Miller and Rose 1995).  Burkhardt and Tisdale 

(1976) believe this occurs because shrubs create a microclimate which moderate 

environmental conditions like soil moisture, creating more favorable conditions.  Caldwell 

and Richards (1989) believe increased surface moisture can be related to hydraulic lift, or 

deep root water extracted during the night that is brought to the surface and released into the 

surface soil horizons to be used by the shallow root system during the day.  Evidence 

suggests that not only mountain big sagebrush benefit but desert wheatgrass (Agropyron 

desertorum) can take advantage of increased surface soil moisture.  With increasing numbers 

of safe sites, western juniper has the potential to colonize sites more rapidly over a much 

larger area.  

   All of the above factors have left a fire dependant landscape altered for more than a 

century.  Western juniper, an aggressive competitor, has taken advantage of these changes 

and has become more dominant on the landscape.  Land managers are faced with increased 

problems and shrinking windows of opportunity in which to apply prescribed fires to reverse 

the trend.  As juniper approach 50% of maximum potential canopy cover in mountain big 

sagebrush sites, the mountain sagebrush declines to 20% of the maximum canopy cover 

(Miller et al. 2000).  Projected times for western juniper to reach closed canopy and 

successional influence in mountain big sagebrush (Artemisia tridentata spp. vaseyana) / 

Idaho fescue (Festuca idahoensis) community types ranges from 25-70 years, and 80 years in 

aspen stands (Miller and Rose 1999, Young and Evans 1981).  

Solutions to the problem are possible and depend on the social and economic values 

of an ever-changing society.  Ecological guidelines have been developed by Eddleman  
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(1999) to better understand and question the short-term, long-term, and landscape-level 

consequences of restoration efforts.  Methods that have successfully removed juniper include 

mechanical treatments, prescribed fire, herbicide applications, and harvest for products such 

as fence post (Burkhardt and Tisdale 1969).  Each method has economic and ecological 

negatives and positives that must be considered.  But without human manipulation vast 

landscapes may become more homogeneous as late-seral closed canopy juniper woodlands 

become more dominant. 

Prescribed burning is a useful tool for juniper removal and reduction, and a beneficial 

way to reintroduce fire to the landscape (Wall et al. 2001, Bunting 1987).  The ability to 

properly choose sites is vitally important in successfully meeting vegetation manipulation 

objectives (Bunting 1987).  The ability to carry fire and remove juniper readily occurs during 

early phases of woodland initiation (Bunting 1987, Miller et al. 2000, Yanish 2002).  But as 

juniper begins to dominate the site, a threshold is crossed making a reversal to shrublands 

less likely (Miller et al. 2000).  Lack of fuels and inability to kill large dominant trees make 

successful application of prescribed fire difficult (Bunting 1987).  Yanish (2002) found 

mountain big sagebrush sites were more successfully burned during early- and early mid-

successional stages (Fig. 1).  Low sagebrush sites would most successfully burn during early- 

and mid- successional stages.  The length of time that mountain big sagebrush is within these 

limits is very short where as the length of time for low sagebrush is much longer.  

Clearly the encroachment of western juniper has many ecological consequences.  The 

understanding of the current juniper encroachment as well as the effects has been well 

documented (Wall et al. 2001, Miller et al. 2000).  Methods for removal have been meet with 

mixed results and lessons learned suggest the need to know the location and the extent of the  
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area affected which then can be prioritized to maximize successful removal.  Encroachment 

of western juniper is a great concern in the northern Great Basin and possible solutions need 

to be addressed. 

REMOTE SENSING 

 Modern technology and the invention of the computer have given a new perspective 

of how we manage or natural resources.  Remotely sensed data and improved software 

interpretation packages allow managers to characterize landscape at different scales.  Land 

classification maps are among the most useful and desired products for predicting current and 

future vegetation patterns or community types found across a given area (Knick et al. 1997, 

Clark et al. 2001).  The ability to accurately and efficiently predict plant community classes 

over extensive areas is the desire and challenge for most users (Clark et al. 2001).   

While spatial resolution (Jackubauskas et al. 1998), and map accuracies (Skidmore and 

Turner 1988) have both been past concerns, progress in methodology (Wolter et al. 1995), 

finer spatial resolution (Jackubauskas et al. 1998), and better accuracy assessment guidelines 

(Bobbe et al. 2001) has lead to acceptance of remote sensing to map vegetation classes. 

 The majority of the early work was used to map agricultural field differences by crops 

or growth stages, or in forestry applications to discriminate between key overstory species 

(Wolter et al. 1995), cover type, and to inventory timber (Franklin et al. 1986).  The two 

main methods to create a land classification map are supervised and unsupervised 

classifications.  An unsupervised classification allows the computer to determine unique 

classes within the image, and requires no prior knowledge of the study site.  While 

supervised classification use prior knowledge to define unique classes and uses the computer 

to classify the image (Jensen 1996).  For this study supervised classification techniques were  
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used due to the availability of ground training sites and evidence of higher overall accuracies 

(Heide 2002).   Heide (2002) concluded that utilizing ground collected training sites to create 

a classification map utilizing a supervised classification procedure results in an accuracy of 

77% compared to an unsupervised method that achieved an overall accuracy of 50%.  

Along with different classification methods, additional information can be gained by 

incorporating additional data layers, which can be composed of vegetation indices, textural 

information, band combinations, or ancillary data such as soils, slope and aspect, or Digital 

Elevation Models (DEM) (Kent et al. 1988, Cohen and Spies 1992, Jensen et al. 2001).  

Some of the common vegetation indices include the Normalized Difference Vegetation Index  

(NDVI) (Deering et al. 1975), the Moisture Stress Index (MSI) (Rock et al. 1986), and the 

Tassel Cap transformation, which can produce three useful layers including the Brightness 

Index, the Greenness Index, and the Wetness Index (Crist 1985, Cohen and Spies 1992, 

Huang et al. 2002).  Cohen and Spies (1992) found that the Wetness Index was the best in 

estimating structural attributes of Douglas-fir (Pseudotsuga menziesii) /Western Hemlock 

(Tsuga heterophylla) forest stands using Landsat data.  The wetness value corresponds to the 

degree of maturity in the forest due to the insensitivity of topographically induced 

illumination angle, which can be a great concern in complex mountainous regions (Cohen 

and Spies 1992).  Fiorella and Ripple (1993) found similar results for wetness in determining 

structural attributes for mixed conifer species in western Oregon.  The Wetness Index 

performed better than single bands and most band combinations.   

 When considering complex or simple vegetation patterns across the landscape the 

physiological or phenological activity at different times of the year can be used to distinguish 

among similar vegetation types (Jackubauskas et al. 1998, Clark et al. 2001).  By acquiring  
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imagery during different phenological stages, different plants can be distinguished from the 

surrounding vegetation due to a unique signature at a particular growth form.  In separating 

four distinct sagebrush communities, Jackubauskas et al. (1998) used NDVI values and 

compared June and August data (summer) with October images (fall).  It was determined that 

the greatest spectral difference occurred in August, after peak greenness in June, but before 

senescence of vegetation in October (Jackubauskas et al. 1998).  Clark et al. (2001) also had 

the greatest map accuracies when comparing and creating classification images for early 

August compared to early June.  Overall accuracy was 70.5% in August compared to 54.4% 

in early June when classifying intermountain plant communities in southwestern Idaho 

(Clark et al. 2001). 

Methods have been developed to classify unknown pixels for different types of data 

based on their statistical distribution.  Parametric and nonparametric classification procedures 

have both been successfully developed for use in remote sensing image classification.  The 

most common method employs parametric algorithms such as: minimum distance to mean, 

Euclidean distance, and parallel piped (Jensen 1996).  Clark et al. (2001) used a maximum 

likelihood classification procedure for nine vegetation classes and had overall accuracy of 

maps generated by Landsat at 60% and SPOT at 65.5% for the same area.  Jackubauskas et 

al. (1998) used a Euclidean distance algorithm to classify 4 sagebrush communities resulting 

in a 65% overall accuracy.  Kent et al. (1988) also used a maximum likelihood classification 

on classes ranging from old growth conifer, clear-cuts, regeneration, deciduous forest, rock 

outcrops and others, and found Landsat TM map accuracies in the range of 60 to 70%.  

Jensen et al. (2001) used a jackknife discriminant analysis classification procedure to classify 

4 grassland, 5 shrubland, and 6 woodlands classes based on PVT, and achieved accuracies  
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ranging from 54 to 77% for grassland classes, 62 to 100% for shrubland classes, and 70 to 

100% for woodlands.  A complete accuracy assessment was not completed due to sample 

size (Jensen et al. 2001). 

Nonparametric classification methods such as a nonparametric classifier developed 

by Skidmore and Turner (1988) and a nonparametric discriminant function developed by 

Knick et al. (1997) are used and sometimes result in higher accuracies using the same data 

set compared to some of the common parametric algorithms (Skidmore and Turner 1988, 

Heide 2002, Bunting et al. 2002b).  For example Skidmore and Turner (1988) classified an 

image into eight classes of different forest age based on structure and including a water and 

urban class to create a continuous map.  Using the nonparametric method the overall 

accuracy was 70% (Skidmore and Turner 1988).  Comparing this with an overall accuracy of 

56%, and 50% for a maximum likelihood and Euclidean distance procedures, respectively 

(Skidmore and Turner 1988).  Bunting et al. (2002b) found nonparametric statistical methods 

to be 5 to 10% more accurate compared to linear discriminant analysis and had an 87% 

overall accuracy for PVT and a 72% overall accuracy for the successional stages of western 

juniper within each PVT.  Heide (2002) also compared parametric and nonparametric 

methods to differentiate the amount of conifer encroachment into aspen stands with a total of 

12 classes being defined.  The parametric supervised classification based on Fisher’s 

Discriminant Analysis resulted in an overall accuracy of 63%.  A nonparametric supervised 

classification based on the same training data had an overall accuracy of 77% (Heide 2002).  

Compared to traditional parametric classification techniques, nonparametric techniques 

provide an increase in overall accuracy especially when dealing with projects focused on 

precise class separation. 
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Along with understanding the important differences between parametric and 

nonparametric classification techniques a balance between accuracy and precision must be 

reached and understood.  Even though the overall accuracy of a map may be high the 

precision or number of ecologically significant classes may be low.  On the other extreme a 

map may have many ecologically significant classes but have a low overall accuracy.  

Understanding the difference between these two definitions will make evaluation of maps 

and future efforts more useful in mapping the question being asked. Remote sensing 

technologies offer a solution in mapping large study areas to address concerns of western 

juniper encroachment.  The ability to balance accuracy and precision will be made by the 

analyst and mapping objectives.  Increasing accuracies can be achieved by utilizing 

additional ancillary layers and by selecting the appropriate spatial resolution and 

classification techniques.  A map with good accuracy and precision can have many 

applications. 

FUEL AND FIRE MODELING 

 For many years land managers have tried to understand and predict the behavior and 

pattern of wildland fire (Burgan and Rothermel 1984, Campbell et al. 1996).  Fuel models 

and fire modeling have increased in complexity over the years (Finney and Andrews 1999, 

Albright and Meisner 1999).  Computer programs have increased the potential to look at 

variable landscapes with different fuel conditions and increase the ability to predict rates of 

spread and intensity (Rothermel 1983), along with many other fire characteristics.  BEHAVE 

(BEHAVE fire behavior prediction and fuel modeling system) allows the user to develop 

individual site-specific models (Burgen and Rothermel 1984), or the ability to use broadly 

defined default models developed by Anderson (1982).  Although BEHAVE is very useful in  
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predicting many important fire characteristics, the non-spatial output makes looking at fire 

pattern across different fuel models, landscape patterns, weather conditions, and topographic 

variability, inefficient and impractical (Campbell et al. 1996).  Progress in the development 

of remote sensing, GIS, and computer power potential have lead to the development of 

complex computer programs that can capture fire behavior over time and space across 

complex landscapes (Albright and Meisner 1999).  FARSITE™ (Fire Area Simulator) is a 

fire behavior model that addressed many complex questions.  FARSITE utilizes GIS created 

layers to monitor fire effects across variable landscapes under changing environmental 

conditions (Andrews and Queen 2001, Finney and Andrews 1999, Finney 1998). 

 Most fire spread models are based on mathematical models (Rothermel 1972), and 

require numerical inputs to produce results.  Fuel parameters needed include: heat content, 

moisture of extinction, particle density, loading by size class for live and dead fuels, surface 

to volume ratio, and mean depth to fuels (Andrews and Queen 2001).  Methods for collecting 

fuel data, that are most commonly used, were developed by Brown (1974) and Brown et al. 

(1982).  Inventory of large woody debris can be based on weight, volume, and depth of 

downed woody material.  Dead twigs, branches, stems, and trucks of trees that have fallen, or 

are located on the ground, are considered downed woody material.  Diameter classes 

categorize woody materials.  Materials from 0-0.6 cm are called 1-hour fuel, 0.6-2.5 cm are 

called 10-hour fuel, and 2.5-7.6 cm are considered 100-hour fuel.  Detailed information on 

weights and volumes per area by fuel class can be calculated (Brown 1974).  Additional 

methods for inventory of fuels including duff, litter, herbaceous vegetation, shrubs, and small 

trees have been developed (Brown et al. 1982). 
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By collecting fuel data, custom fuel models can be created.  Yanish (2002) created 

custom fuel models along a western juniper successional gradient, in southwestern Idaho 

because the 13 models developed by Anderson (1982) used as standards in BEHAVE, did a 

poor job of accurately predicting fire behavior in a sagebrush steppe/juniper woodland 

system.  Using the NEWMDL in BEHAVE, fuel models can be created using field collected 

measurements (Burgen and Rothermel 1984).  Although BEHAVE has spatial limitations, 

newly created or the standard fuel models are still the basis for predicting rate or spread and 

intensity in more complex spatial and temporal models such as FARSITE (Albright and 

Meisner 1999, Finney and Andrews 1999).  Along with incorporating BEHAVE into 

FARSITE, a GIS-data layer based on fuels and vegetation is also required (Finney and 

Andrews 1999).  Campbell et al. (1996) used a GIS fuels layer created by an 

unsupervised/supervised procedure to create a GIS-based fire behavior prediction model.  

FARSITE applications are numerous and include three main types: re-creation of past fires, 

modeling active fires, and the simulation of fire across a known landscape under certain 

assumed conditions (Finney and Andrews 1999).  Yanish (2002) not only addressed fuel 

characteristics affects of fire along a successional gradient, but also looked at the role of 

herbivory in removing fine fuels and the consequences on fire behavior.  Other applications 

of FARSITE include tactical support on active fires, and prioritizing and locating fuel 

treatment areas (Finney and Andrews 1999).  FARSITE also produces maps of fire growth or 

perimeter positions and fire behavior patterns that are suitable for Arc View applications 

(Finney and Andrews 1999).   

 The development of custom fuel modeling procedures and methods has lead to the 

rapid expansion of fire behavior models.  These complex spatial and temporal models have  
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opened new doors to better understanding landscape level fire issues.  Caution must be taken 

in understanding the limitations and assumptions of these models before research is 

conducted and results are applied to management questions.  Utilizing custom fuel models 

and addition GIS layers FARSITE has the potential to accurately predict fire behavior from a 

landscape perspective. 

LANDSCAPE PRESPECTIVE 

 With an increase in the successful implementation of remote sensing and GIS 

integration, the ability to manage and study large remote areas has increased the number of 

areas studied at the landscape level (O’Neill et al. 1997, Turner 1990).  With an ever-

widening view, scientists have begun to try to link ecological function and process 

(Gustafson 1998) to spatial and temporal landscape patterns.  A landscape is a mosaic of  

patches of different spatial arrangement giving each landscape a unique pattern (Urban et al. 

1987).  Landscape pattern can be influenced by many variables including historical site 

evolution, disturbance regimes, human interaction, and current land use.  By understanding 

the complexity and variability of the landscape a greater understanding of the driving forces 

behind the system can be achieved and result in more effective management.   

 Many landscape indices have been developed that try to capture important aspects of 

landscape pattern (O’Neill et al. 1988) at different scales.  Important and vital information 

can be extracted from a landscape perspective by properly defining the grain and extent 

(Turner et al. 1993).  Grain is considered the finest level of spatial or temporal resolution 

within a data set (Turner et al. 1993, McGarigal and Marks 1995).  For example a 30x30-m 

pixel for a Landsat image would be the finest possible grain for that image.  Extent defines 

the size of the study area or the temporal time frame under review (Turner et al. 1993  
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McGarigal and Marks 1995).  Examples include 6th order catchments or the entire Owyhee 

Plateau physiographic region. 

 Along with understanding grain and extent there are three levels of metrics at which a 

landscape can be measured (McGarigal and Marks 1995).  Levels of metrics include patches, 

classes, and landscapes.  Since the purpose of this project was focused on comparing 

different landscapes, landscape-level metrics were utilized.   Landscape-level metrics include 

all patch types or classes over the entire extent of the landscape and can be beneficial in 

understanding properties of the patch mosaic (McGarigal 2002).  Currently many metrics 

exist and the ecological importances of some have not been shown.  However, many studies 

(Urban et al. 1987, O’Neill et al. 1997, Turner 1990) use a number of different metrics to 

measure change, pattern, and structure from a landscape perspective.  Many metrics 

measuring similar landscapes compute the same characteristics or produce redundant 

information making the number of current metrics and their ecological important difficult to 

understand.  Ritter et al. (1995) tested 55 different metrics and found that six univariate 

metrics could explain 87% of the variability of the landscape.  Eighty-five different maps 

from across the United States with a few broad rangeland and shrubland classes were used in 

the analysis.  Turner (1990) suggests using simple indices and measures can capture aspects 

of landscape pattern.  

 Numerous examples exist where different metrics have been tested on different types 

of landscapes resulting in a better understanding of the driving forces of that system (O’Neill 

et al. 1988, Keane et al. 1999, Turner et al. 1993).  Keane et al. (1999) utilized a fire 

succession model for a real landscape using fire modeling and forest successional modeling 

to test different metrics over variable time with different management strategies and climate  
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conditions.  With simulated maps composed of dominant tree species, above ground standing 

crop, leaf area index and net primary production (NPP) the following metrics were tested: 

patch density, edge density, evenness, contagion, and interspersion.  By comparing the 

metrics across all simulated maps, some general results could be found.  Changes in 

landscape pattern over time are more influenced by fire than climate alone in the simulations 

(Keane et al. 1999).  Future landscapes may be more diverse and patchy if fires are allowed 

to burn, resulting in uneven aged stands becoming unevenly distributed, resulting in a high 

edge to density number and lower contagion (Keane et al. 1999).  Chuvieco (1999) used 

Landsat remote sensing technologies and landscape principles to compare landscape indices 

on pre- and post-fire conditions.  Metrics tested include compactness, fractal dimension, 

number of patches, average patch size, shape, and diversity.  Results conclude that the mean 

patch size was nearly twice the mean pre-fire size.  Compactness was reduced resulting in 

more complexity in patch shape.  Diversity values were reduced after the fire and fractal 

dimension increased after the fire resulting from increased shape diversity.  Chuvieco (1999) 

concluded that compactness and fractal dimension provided an estimate of shape and 

heterogeneity as a result of fire.   

As mentioned previously, humans have altered the fire frequency and fire regime 

across much of the landscape.  Not only has this lead to fewer fires, but it has also lead to the 

change in spatial and temporal extent to which fires will burn in the future (Urban et al. 

1987).  Fire suppression and fuel accumulation may now burn larger areas under increasing 

intensity (Urban et al. 1987).  Contagion and fractal dimension metrics may be important in 

understanding human influences across the landscape (Gustafson 1998, Krummel et al. 

1987).  Contagion is a measure of clumpiness or the tendency of patch types to be spatially  
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aggregated (McGarigal 2002, Gustafson 1998).  For example this could be important in 

locating probable continuous seed source areas of a particular species after a fire.  Fractal 

dimension has been correlated to the degree of human manipulation of the landscape 

(O’Neill et al. 1988).  O’Neill et al. (1988) found that landscapes dominated by agriculture 

had simple polygons and low fractal dimensions and landscapes dominated by forests had 

complex shapes and high fractal dimension (O’Neill et al. 1988).  A landscape highly 

manipulated by man could be separated from a natural undisturbed landscape. 

Landscapes demonstrate important ecological patterns.  Many methods have been 

developed to measure patterns and link the results to ecological processes.  Many landscape 

metrics have been developed to test different aspects of landscape pattern.  By utilizing 

computer generated maps, fire prediction models, and landscape statistics the main goal of 

this research was to better understand the influence of the spatial arrangement of numerous 

successional classes to fire behavior characteristics such as fire frequency. 
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METHODS 
 
Study Site Description 
 
 The Owyhee Plateau is located in southwestern Idaho in Owyhee County.  The study 

area is defined by the Idaho boundary on the western edge, and an elevational boundary of 

1250 m on the north and eastern edge, and by the Owyhee River on the southern edge.  The 

Owyhee Plateau can be characterized by three small mountain ranges, the Silver City Range 

being furthest north, Juniper Mountain being furthest south and South Mountain in the 

middle (Fig. 2).  Steep canyons and complex terrain are interwoven with broad flat tables.  

Elevation for the study site ranges from 1250 to 2600 m.  

Average annual precipitation ranges from 250 to 560 mm (WRCC 2003) and falls 

primarily as late fall rain and winter snow, which can persist in the higher elevation until 

mid-summer.  Average temperatures range from -6.6 °C in December and 26.7 °C in July 

(WRCC 2003), with large variability due to elevational changes across the study site. 

  Soils and geology over the study site vary considerably in both age and complexity.  

The underlying pre-Tertiary granite basement rock exposed in the Owyhee Mountains is 

composed of quartz-diorite, quartz-monzonite, granodiorite, and is considered a part of the 

Idaho batholith (Harkness 1998).  Common soil series include the Enko series 

(Camborthids), Graylock series (Cryorthents), and Nazaton series (Cryoborolls), Poisoncreek 

series (Agrixerolls), and Takeuchi series (Haploxerolls), which are common to the Silver 

City Range.  The Paleozoic metamorphic rock of South Mountain is the oldest parent 

material of the area and can be described by a thick dark surface layer with weakly developed 

subsoil (Harkness 1998).  Common soil series include the Ola series (Haploxerolls) and the 

Povey series (Cryoborolls).  Juniper Mountain is a result of a basaltic eruption and is  
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described by a large area of ash-flow tuff and ignimbrite (Harkness 1998).  Soils series found 

on Juniper Mountain include the Avtable series (Haploxeralfs), Douglas series (Haplargids), 

Dranyon series (Cryoborolls), Gaib series (Argixerolls) and Nipandtuck series 

(Torriorthents), which were formed from silicic flow rock (Harkness 1998). 

 Common tree species found on the Owyhee Plateau include western juniper, curl-leaf 

mountain mahogany (Cercocarpus ledifolius), Douglas-fir, quaking aspen  

(Populus tremuloides), and a small component of subalpine fir (Abies lasiocarpa).  Common 

shrub species include mountain big sagebrush, low sagebrush, shinny-leaf ceanothus 

(Ceanothus veluntinus), antelope bitterbrush (Purshia tridentata), green rabbitbrush 

(Chrysothamnus viscidiflorus), mountain snowberry (Symphoricarpos oreophilus), 

bittercherry (Prunus emarginata), and chokecherry (Prunus virginiana).  Common grass and 

grass-like species include, bluebunch wheatgrass (Pseudoroegneria spicata), Idaho fescue, 

mountain brome (Bromus marignatus), Sandberg bluegrass (Poa secunda), Kentucky 

bluegrass (Poa pratensis), squirreltail (Elymus elymoides), Great Basin wildrye (Leymus 

cinereus), and elk sedge (Carex garberi).  Common forb species include western yarrow 

(Achillea millifolium), arrowleaf balsamroot (Balsamorhiza sagittata), sticky geranium 

(Geranium viscosisimum), mule’s ear (Wyethia amplexicaulis), buckwheat (Eriogonum spp.), 

paintbrush (Castelleja spp.), and lupine (Lupinus spp.).   

OBJECTIVE 1 

 Objective one was to develop a supervised classification for the Owyhee upland study 

area utilizing a Landsat 7 ETM + image to map western juniper encroachment.  The first step 

in this process was collecting field measurements called training sites.  Training sites were 

based on Potential Vegetation Type (PVT) or vegetation taxa based on groupings of habitat  
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types that have similar overstory composition, structure and environmental requirements and 

Structural Stage (SS) which are successional stages defined along a gradient ranging from: 

herbland, open and closed shrublands, initiation woodland, young woodland, young multi-

story, and old multi-story woodland (Bunting et al. 2002b).  Training sites were used to 

identify locations of known vegetation later in the process.  Some training sites were set aside 

as validation sites and used to assess overall map accuracy.  The next step was to reference 

the satellite image of the study area.  Geo-referencing is required to most accurately place the 

training sites on the image.  Next the numbers of bands and band combinations or vegetation 

indices were chosen.  Different bands correspond to different physical or on the ground 

measurements, while vegetation indices are useful in reducing topographic effects.  After all 

the layers have been combined, defining and marking known areas of each of the vegetation 

types was completed.   With the help of black and white aerial photographs, boundaries 

between different classes were defined.  When each vegetation class’s spectral signature was 

defined, classification was completed.  Different methods of classification have been 

developed over the years with each method having advantages and disadvantages based on 

the underlying principles of that method and the statistics of the data set.  The final and most 

important step in creating the classification map was a quantitative accuracy assessment.  The 

accuracy assessment was computed using the validation pixels with a cross validation 

procedure (Foody 2002).  An error matrix was completed for each of the classification 

techniques.  Once the classification was complete and a map was created decision rules were 

used to increase the overall quality of the map by restricting the distribution of certain classes 

based on aspect and elevational boundaries. 
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Preliminary Landscape Classification 

 Classification of common plant communities found on the Owyhee Plateau was based 

on PVT and SS (Table 1). Community classes were modified from the ICBEMP mid-scale 

classification analysis described by Quigley et al. (1996) and Hessburg et al. (1999), which 

take into account overstory composition, structure, and environmental requirements for large 

broad habitat types of the Columbia Basin (Bunting et al. 2002b).  Bunting et al. (2002a) 

described the 17 PVT’s used at the broad scale across the Columbia Basin.  These PVT’s 

were modified to a much finer scale using soil information and known presence or absence of 

western juniper on specific sites for the study area (Bunting et al. 2002b).  PVT’s were also 

used for the tree species Douglas-fir, subalpine fir, and aspen.  Aspen communities were 

considered as a PVT for the mapping purposes only with the understanding that these sites 

can and will eventually be replaced by a conifer species which would represent the sites 

actual PVT.    

 The main interest of this study was focused on PVT’s with the potential to develop 

into juniper woodlands.  PVT’s of focus include mountain big sagebrush, low sagebrush, 

bitterbrush, and curl-leaf mountain mahogany.  Three cover types based on the previously 

mentioned PVT’s were used to account for areas supporting western juniper.  Cover types 

developed include herbaceous vegetation, shrubland, and woodlands (Bunting et al. 2002b).  

A structural stage classification was also developed based on modifications from Hessburg et 

al. (1999) and used by Bunting et al (2002b).  Structural stages include; herbland, open and 

closed shrubland, initiation woodland, young multi-story woodland, and old multi-story 

woodlands, which were further modified for this study do to results presented by Bunting et 

al. (2002b).  A structural stage outline was also used for the forest PVT’s.  Structural stages  
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include sapling forest, pole forest, young multi-story forest, and old multi-story forest.  

Smaller components of the landscape also defined by PVT’s include mountain shrub, wet 

meadow, annuals, and rock.  Disturbance by mining and water classes were used to create a 

continuous map.  PVT and SS detailed descriptions can be seen in Appendix A. 

Training Sites 

 Training sites greater than 100x100 m were placed in the center of relatively large 

homogeneous areas with respect to PVT and SS, and were located using a Magellan GPS 

unit.  For each class determined from the PVT and SS classification at least 8-10 training 

sites were collected, providing enough plots for the training and validation data sets.  

Vegetation canopy by percent was estimated ocularly, and broken down into specific groups 

including: juniper, tall shrub, Douglas-fir, aspen, medium shrub, perennial and annual 

grasses, and perennial and annual forbs.  The six most abundant species based on percent 

canopy cover was also estimated.  At each site elevation, aspect, and slope was recorded.  At 

each site within a forest PVT the percent of trees above 2-m in height or below this height 

was ocularly measured.  During the 2002 summer field season 308 training plots were 

sampled and during the 2003 season 258 training sites were recorded.  Over 425 training 

plots were also available for the area and were collected between 1999-2001 and used by 

Bunting et al. (2002b).  All GPS point which had an accuracy of less than 3 m when the 

Wide Area Augmentation System (WAAS) was functional were down loaded to Microsoft© 

Excel 2000 and imported into Arc View (Version) 3.3© to create shape files.  

Satellite Image Processing 

 The Landsat 7 ETM + satellite image was purchased from USGS Earth Resource 

Observation System Data Center or (EROS).  The image was referenced to Path 42 Row 30  
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in the Worldwide Reference System (WRS), and was acquired during the first week of 

August 2002.  The image was geo-referenced to the UTM coordinate system, Zone 11 North, 

Spheroid Clark 1866, North American Datum 27 (NAD 27) and is represented by 30x30-m 

pixels.  Six of the eight bands were used in the classification procedure including bands one 

through five, and seven, which represents the visible, near infrared, and mid-infrared 

wavelength regions of the electromagnetic spectrum.  Band 6, the thermal band and the 

panchromatic band were not used due to the difference in spatial resolution.  The Data 

Preparation Module in ERDAS IMAGINE™ (Version) 8.6 was used to subset the image 

based on a 1250 m elevational boundary for the northern and eastern boundary.  The Owyhee 

River on the southern extent, and the Oregon-Idaho state line for the western boundary.  The 

Modeler Module in ERDAS IMAGINE was used to convert each pixel value to radiance 

values and then to exo-atmospheric reflectance values, which most accurately allows the data 

to be quantified. 

 Additional data layers were created in ERDAS IMAGINE Modeler Module which 

includes an NDVI layer, a MSI layer, and three Tassel Cap layers using coefficients for 

Landsat 7 ETM + developed by Huang et al. (2002) which were not normalized.  See Table 2 

for vegetation indices used and equation used to create them.  The ERDAS IMAGINE 

Interpreter Module was used to stack all layers into one image containing 11 layers used in 

the classification procedure.   

Supervised Classification 
 
 Supervised classifications are created using on ground knowledge to create unique 

signature measurements for each class of interest from the image and then are cross-validated 

using validation pixels in an error matrix.  For each class represented, at least 3 training sites  
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were used for classes with small importance (Putr R1, R3A, Water, and Abla) and 8 training 

sites for important classes (Artr, Arar, and Cele PVT’s) within the study area.  In total, the 

number of pixels per class varied from 10 to 199 depending on the number of training sites 

and size of the areas used to define each class.  As suggested by Congalton (1991) 50 pixels 

were used if possible to validate each class characterized by high variability.  Validation sites 

were created by randomly selecting 20% of the training sites within each PVT and SS and 

placed in an individual file apart from the training sites used in the classification.  See Table 

3 for a detailed breakdown of number of training and validation sites per class and the total 

number of pixels used in each class. 

 The remaining 80% of the training sites were used to refine the spectral signature for 

each class.  Groups of training sites based on PVT’s were projected on the Landsat image.  

Digital orthophoto quarter quadrangles or (DOQQ’s) were opened in a separate viewer and 

represent higher spatial resolution black and white aerial photographs.  DOQQ’s were used to 

cover the majority of the study area and saved in separate files based on one of the three  

mountain ranges.  Training sites were also projected on the DOQQ’s and were geometrically 

linked by ERDAS IMAGINE to more accurately define boundaries of each training site.  The 

region-growing tool in ERDAS IMAGINE was used to expand and define the training site 

boundaries based on similarities to adjacent pixels.  The boundaries in some instances were 

manually manipulated to change the size and shape of the region insuring that each training 

site represented only one class.  Each area of interest or (AOI) was saved as a separate file 

and was added to the signature editor in ERDAS IMAGINE.  For each class all training sites 

were compared for their spectral uniqueness.  Histograms and statistical analysis helped 

remove outlier-training sites and helped create unique class signatures.  The remaining  
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training site AOI’s for each class were reopened and saved as one AOI file.  Individual class 

AOI’s were also created for the validation sites and saved in a separate file.  All files were 

then exported into ASCII format for use in Excel and the SAS (Version) 8.02 statistical 

package.   

Nonparametric Discriminant Analysis 

 The DISCRIM procedure in SAS was used to perform k nearest neighbor 

nonparametric discriminant analysis.  The training set and validation set were imported into 

SAS and run as a cross validation procedure to determine the accuracy.  An adjustment to the 

number of classes was done at this time if separation appeared to be impossible or sample 

size was inadequate.  The number of pixels within the class of interest as well as what classes 

were being mixed was considered.  If classes were mixed between SS within the same PVT 

than the classes were combined.  If mixed pixels occurred across multiple PVT’s than the 

classes were not changed. The procedure was carried out again for the new number of 

classes.  Next the entire image was classified based on the training sites.  Mahalanobis 

distance in multi-dimensional space was used to assign the pixel values for every pixel in the 

study site based on the training data.  Seven nearest neighbors were used due to the lowest 

error rate in cross validation described by Heide (2002).  Seventh nearest neighbor was used 

to define the radius of a circle of a particular class based on a set point to that points seventh 

nearest neighbor to determine density within the circle (SAS 1999).  Utilizing a specific 

squared distance formula the values of r and k determine the irregularity in the density 

function with low r and k values producing jagged density estimates while large r and k 

values produce smooth density estimates (SAS 1999).  The output file contained values for  
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every pixel in the study area and was opened as a table in Arc View and used to create a 

continuous map. 

Parametric Discriminant Analysis 

 The DISCRIM procedure in SAS was used to develop two parametric classification 

techniques.  The first technique involved creating linear equations with coefficients for each 

class based on pooled covariance matrix statistics, which yields a linear function with the 

equations (SAS 1999).  A classification rule was developed to classify all unknown pixels 

within a class.  The second method used involved a classification criteria based on individual 

within group covariance matrix, which involved no pooling and yields a quadratic function 

(SAS 1999).  The validation set in both procedures was cross validated against the training 

data, which produced an error matrix and a corresponding accuracy assessment. 

Accuracy Assessment 

Validation data was used to assess the accuracy of the three classification methods 

described above.  An error matrix expresses the number of sample pixels assigned to a 

particular class relative to the actual on-ground verified class (Congalton 1991), and was 

created for each classification.  Overall accuracy, producer’s accuracy or error of omission, 

and user’s accuracy or error of commission were calculated for each matrix (Jensen 1996, 

Story and Congalton 1986). The overall accuracy measures how well the accuracy is for the 

entire map.  This is measured by adding all of the correctly classified pixels together and 

dividing by the total number of training pixels used in the classification (Congalton 2001).  

Producer’s accuracy is a measure of how well a certain area can be classified from the 

analyst’s perspective.  This is calculated by taking the number of correctly defined pixels in a 

class and dividing by the total number of pixels from that column (Congalton 2001).  User’s  
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accuracy measures how accurate the map in the field would be.  User’s accuracy is calculated 

by taking the number of correct pixels for a given class and dividing by the total number in 

that category or row (Story and Congalton 1986).  The error matrix was created in Microsoft 

Excel.  In addition a kappa statistic was produced for each classification.  The kappa statistic 

tests to determine whether the results produced in the error matrix are significantly better 

than random chance (Congalton 1991).  

Classification Refinement 

Numerous classification attempts were made to find the most desirable number of 

classes, training sites, and number of pixels used based on the criteria of most accurately 

mapping young juniper woodland classes.  Employing results by Heide (2002) and Bunting 

et al. (2002b), the nonparametric classification technique appeared to yield the highest 

overall accuracy and therefore was used in the initial classification setup.  The first attempt 

used 44 classes and 11,564 pixels and achieved and overall accuracy of 40% (Table 4).  From 

looking at the error matrix it quickly became apparent that a number of classes were being 

confused with very similar classes within the same PVT.  At this stage these classes were 

combined to improve the overall accuracies while maintaining a focus to most accurately 

map young juniper woodland classes across the mountain big sagebrush, low sagebrush, and 

bitterbrush PVT’s (Table 5).  The nonparametric classification was repeated for 34 classes 

using 11,689 pixels and achieved and overall accuracy of 55% (Table 6).  Next the size of 

AOI’s used for the mountain big sagebrush and low sagebrush PVT’s were reduced to 

determine if mixing of pixels was occurring because the size of the AOI boundary was too 

large.  As a result of this process the classes remained the same at 34 but the number of 

pixels was reduced to 5,674, which resulted in an overall accuracy of 69%.  The process of  
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refining the AOI’s for the other PVT-structural stage classes was repeated and the number of 

pixels was further reduced to 3,110 with 34 classes and achieved an overall accuracy of 76%.   

Although the accuracy was high at this point, it was determined that the high 

accuracy came at the expense of removing to many training sites.  If too many training sites 

are removed the classification will be based on only a few samples that may not cover the 

variability within a particular class.  To create a more accurate map with more training sites, 

the overall accuracy was reduced with more total pixels being utilized.  A better ratio was 

achieved between the total number of training pixels and the total number of validation pixels 

for each class falling close to 100 training pixels and 50 validation pixels suggested by 

Congalton (1991).  Two classes were also combined and reduced the final number of classes 

to 32 (Table 7).  

Decision Rules 

 Decision rules were used to restrict the distribution of particular classes based on 

known elevational boundaries and aspect characteristics.  Information acquired from the 

training sites about elevation and aspect as well as in the field knowledge and experience was 

combined to create decision rules.  Classes that were involved in the process include Abla, 

Psme F2, Psme F3, Psme F4, Brte, and Taas.  Additional decision rules were used to 

reclassify areas of known agriculturally active areas that include active crops or hay 

meadows.  Riparian area buffers were also used to create a riparian /broadleaf class where 

appropriate.  Using ARC grid and an AML file this process was possible.  A detailed 

instruction guide providing step-by-step instructions for the entire supervised classification 

including decision rule procedures can be found in Appendix B.  
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OBJECTIVE 2 

 The goal of objective two was to develop a representative fuel description for classes 

that correspond to the map created by the supervised classification.  This involved collecting 

fuel data plots at the same location as the training sites used to create the classification map.  

Collecting as many fuel plots within each class as possible, custom fuel models were created 

using the field collected data in BEHAVE (Version) 4.4.  The 15 custom fuel models created 

by Yanish (2002) were used as a building block to create a continuous fuels map of the study 

area. Three new custom fuel models were created along with adding addition plots to some of 

the models created by Yanish (2002) (Table 8).  With the completion of the new fuel models 

a file of all the custom fuel models was created for use in FARSITE (Version 4.04).  The 

map created in objective one was also imported into FARSITE and serves as the landscape 

vegetation map. 

Fuel Data Collection 

Fuel data measurements were based on methods developed by Brown et al. (1982).  

Modifications to the sample plot design were developed by Yanish (2002) and were followed 

during collection.  A double sampling technique using four 50x50-cm quadrats was used to 

measure the herbaceous biomass and litter component.  Each quadrat was examined and the 

one with the highest biomass was used as the standard to compared the other three quadrats 

against.  The remaining three quadrats were compared as a percentage value of the standard 

quadrat.  A 50x25-cm quadrat measuring litter was also taken from the quadrat with the 

highest biomass total.  The quadrat with the highest herbaceous biomass and largest litter 

component was clipped or collected, dried, and weighed.  Dead woody debris was estimated 

using a line transect using a planar intercept technique (Brown et al. 1982).  Shrub biomass  
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was measured using two 1-m radius plots and stem counts based on diameter classes to 

estimate biomass.  Tree densities were also estimated based on a 4-m plot or a 10-m plot if 

no trees were found within the original 4-m plot (Fig. 3).  Samples were collected across the 

study site based on cover type locations from the preliminary supervised classification and 

knowledge in the field.  All sites where grazing during the present year was apparent were 

not used. 

Fuel Data Analysis 
 
 Methods for fuel data analysis were developed by Yanish (2002) and were used here 

to allow utilization of the 15 custom fuel models created.  Sampling data was entered into 

Excel and used in SAS and BEHAVE.  Canonical discriminant analysis statistical methods 

were used because the components of the fuel model were weighted against each other and 

compared among cover types.  Components that were compared include herbaceous average, 

dead average, cover average, litter average, shrub weight, crown canopy, and down dead 

woody as described by Yanish (2002).  He used BEHAVE to predict flame length and rate of 

spread using the collected field data.  A variety of environmental and topographic conditions 

were compared to create the representative fuel models.  Low, medium, and high fuel 

moisture content were tested with a slope default of 30%, and wind speed ranging from 0-40 

kph at 8 kph intervals.  The custom fuel models created in BEHAVE were used as fuels input 

layer for FARSITE.  

OBJECTIVE 3 

Objective three was to determine the relationship between the vegetation spatial 

pattern and resulting fire frequency.  This was achieved by creating a fire frequency grid 

using two different methods with different advantages and disadvantages, and running  
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FRAGSTATS developed by McGarigal et al. (2002) to produce landscape metrics.  The 

outputs of these processes were analyzed using linear regression statistics. 

The models created in BEHAVE were incorporated into FARSITE.  An ASCII grid 

with 30-m resolution was produced for FARSITE using the supervised classification map.  

The grids used in FARSITE include elevation, slope, aspect, cover type, and crown cover.  In 

Method A FARSITE was used to create fire frequency grids in three watersheds by randomly 

generating 100 fires within each watershed boundary.  A flat landscape was used and weather 

conditions were set to mimic moderate fire conditions because extreme wildfire conditions 

will burn across all fuel types regardless of fuel distribution and natural fuel breaks (Turner 

and Romme 1994), and may cover up relevant fire patterns by burning equally across all fuel 

types.  In method B a minimum travel time method (Finney 2002) was used to create a fire 

frequency grid across an area that encompassed the three watersheds.  Slope, aspect, and 

elevational layers were utilized to create a realistic landscape and weather conditions were 

set to mimic wildfire conditions to test fire behavior under wildfire conditions.   

Landscape Metric Selection 
 

Nine landscape metrics were selected to compare the vegetation spatial arrangement 

with fire frequency.  Five basic groups of metrics were selected to measure a variety of 

landscape patterns.  Within each of these groups a metric or multiple metrics were selected to 

best represent the group as a whole.  Because little work has been completed to analyze the 

spatial arrangement of juniper and fire frequency, a variety of metrics were selected to 

determine which group type and individual metrics produced the best relationships.  Groups 

include: Area/Density/Edge, Shape, Isolation/Proximity, Contagion/Interspersion, and 

Diversity.  Group one consists of the metrics Patch Density, Edge Density, and Mean Area.   
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Group two used the metric Landscape Shape Index (LSI).  Group three is represented by the 

landscape metric of Euclidean Nearest Neighbor Distance.  Group four metrics include 

Contagion and the Interspersion and Juxtaposition Index (IJI).  Group five metrics include 

Simpson’s Diversity Index and Simpson’s Evenness Index.  Metrics were selected to cover a 

variety of groups with commonly used metrics selected from each group.  The ability to 

convey important information along with a past record of being ecologically relevant was 

also a determining factor in metric selection. 

Landscape Pattern Analysis 

Method A 

 Three HUC sixth order watersheds were used to evaluate the effects of landscape 

pattern on fire occurrence.  These watersheds include: Red Canyon, Smith Creek, and 

Current Creek (Fig. 4).  Due to the complex nature of fire behavior prediction and 

computational time in FARSITE, the slope, aspect, and elevational data layers were not used 

and in its place a flat landscape was developed.  Within each watershed four woodland PVT-

SS classes were compared, Artrv W1, Artrv W2, Artrv W4, and Artrv W5.   In each 

watershed 100 random points were generated and served as independent fire start locations.  

Fire parameters remained the same for each time step across all trial runs by using the same 

temperature, humidity, elevation, and wind speed. Wind direction was the only exception as 

a random direction was selected for each FARSITE run.  Wind direction was randomly 

selected to insure that the leeward side behind a stationary fire direction would be burned 

instead of producing an edge effect where the leeward side would not burn at all.  Without 

changing wind direction a large proportion of certain sections of the watersheds would be 

burned with high frequency while other areas would not be burned at all.  By changing wind  
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direction some of this problem was resolved.  All fires simulated moderate fire conditions 

and burned for six hours during the month of August.  Fuel moistures were set to mimicked 

moderate burning parameters making the assumption that burning under wildfire conditions 

would result in uniform fire behavior across all fuel types.  All fire outputs were saved as 

shape files then converted to grids to create the fire frequency layer for each watershed.  

  With the frequency grid of how many times each pixel burned, hypothetical 

relationships between fire occurrence and the vegetation patterns were tested.  Vegetation 

pattern was characterized by using ecologically significant landscape metrics.  Artrv W1,  

Artrv W2, Artrv W4, and Artrv W5, were used in the analysis to determine in which 

successional stage results would be significant and most strongly correlated.  Grids were 

created for each class by masking out all other classes and then were converted to shape files.  

The shape file was then assigned x and y coordinated to each pixel value which was then  

used to randomly select points.  Within each class and in each watershed 25 to 30 pixels were 

randomly selected making sure that the pixels were not located next to each other.  In Current  

Creek Artrv R3B and Artrv W1 classes were combined to provide enough random locations.  

Using the 25 to 30 pixels per class, a reference square of 15x15 pixels was centered over 

each random pixel.  Each of the reference areas were then clipped out of the vegetation layer 

by Arc View, saved as a grid, and run independently through FRAGSTATS to produce the 

landscape metrics.  Metrics that were analyzed include; Patch Density, Mean Area, Edge 

Density, Landscape Shape Index, Euclidean Nearest Neighbor Distance Distribution, 

Simpson’s Diversity Index, and Simpson’s Evenness Index, Contagion, and the Interspersion 

and Juxtaposition Index (McGarigal et al. 2002).  Each of these metrics was then compared 

to the fire frequency values from the center of each corresponding pixel and analyzed  
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statistically for each watershed.  Statistical analysis involved using SAS to produce linear 

regression equations to determine the relationship of landscape metrics and fire frequency.  

Method B 
 

In method B to develop a fire frequency grid, wildfire conditions were created across 

the simulated natural environment.  The fuel model layer, slope layer, aspect layer, elevation 

layer, along with weather and wind conditions were used to create a fire frequency grid using 

the fire growth minimum travel time method developed by Finney (2002) which is 

computationally more efficient than FARSITE.  The most important difference between the 

two methods was using this method the fire environment was kept constant.  Although the 

methods to measure fire spread are different, the results between the minimum travel time 

method and FARSITE are very similar (Finney 2002).  Random start locations totaling 

25,000 fires were used and produced a pixel-by-pixel probability of the number of times each 

pixel burned divided by the total number of fires across the landscape, which was then 

multiplied by 100 to create the fire frequency information.  The entire landscape developed 

by Yanish (2002) was used to keep edge effects outside the watershed boundaries of interest, 

as wind direction was held constant throughout the process.  Comparisons between the four 

successional stages utilized the same random points and same FRAGSTATS outputs used in 

method A.  The only difference in analysis came from using the fire frequency values from 

the minimum travel time grid.  Instead of having fire frequency values ranging from zero to 

17, pixel values for the minimum travel time method divided the number of times each pixel 

burned by 25,000, which was then multiplied by 100 to produce values ranging from 0 to 5.7. 
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RESULTS 

Accuracy of the Nonparametric Discriminant Classification 
 

An accuracy of 69% was achieved with 32 classes and 3,546 training pixels (Fig. 5).  

Although this cannot be said for all classes, the most prevalent PVT’s had higher numbers of 

training sites, validation sites, and pixels compared to some classes that represent only a 

small fraction of the study area.  The kappa statistic computed for the nonparametric 

classification was 68% (Fig. 5).  Of the 32 classes used in the nonparametric technique, 17 

classes had higher user’s accuracy and 18 classes had higher producer’s accuracy compared 

to the quadratic parametric technique.  Classes that achieved the highest overall accuracies 

include Water, Taas, and Mines.  Important vegetation classes that achieved high accuracies 

using the nonparametric approach include: Arar R1, Putr R3A, Artr W4, Potr F4, and Psme 

F4.  Classes that the nonparametric method had the most trouble classifying correctly 

include: Artr W1, Artr W2, Arar W1, Arar W4, Arar W4, and Arar W5.  See Fig. 6-11 for a 

detailed comparison between each of the methods user’s vs. producer’s accuracies based on 

PVT-structural stage classes.  Since this technique produced the highest overall accuracy and 

the majority of the higher user’s accuracy this technique was used to create the final 

vegetation map (Fig. 12). 

Accuracy of the Linear Parametric Discriminant Classification 

 An accuracy of 52% was achieved using 32 classes and 3,546 training pixels (Fig. 5).    

The kappa statistic computed for the linear parametric classification was 50% (Fig. 5).  One 

of the 32 classes had higher producer’s accuracies compared to the nonparametric method 

and two classes had higher user’s accuracies than the nonparametric method.  Two classes 

had the same results for producer’s accuracy and one class for user’s accuracy.  Classes with  
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the highest accuracies using the linear parametric technique include: Water, Mines, Taas, and 

Brte.  Important vegetation classes with high accuracy include: Putr R1, Putr R3A, Artr W4, 

Psme F2, and Psme F4.  Classes with user’s and producer’s accuracy below 40% using this 

method include: Artr R3B, Arar W1, Artr W2, Cele*4, and Mountain Shrub.  See Fig. 6-11 

for a detailed comparison between each of the methods user’s and producer’s accuracies 

based on PVT-structural stage classes. 

Accuracy of the Quadratic Parametric Discriminant Classification 
 

An accuracy of 64% was achieved using 32 classes and 3,546 training pixels (Fig. 5).  

The kappa statistic computed for the quadratic parametric classification was 62% (Fig. 5).  

Eleven of the 32 classes had higher producer’s accuracies compared to nonparametric results.  

Of the 32 classes of user’s accuracies again eleven classes were higher than the 

nonparametric technique.  Four classes achieve the same user’s accuracy regardless of 

technique, while three classes had the same producer’s accuracy regardless of the 

classification method.  Classes with the highest accuracies using the quadratic parametric 

technique include: Water, Taas, and Mines.  Important vegetation classes that achieved high 

accuracies using this method include: Putr R1, Putr R3A, Putr W2*7, Artr*2, and Artr W4.  

Classes with low accuracies using this technique include: Arar W1, Artr W1, Arar W2, and 

Arar W4.  See Fig. 6-11 for a detailed comparison between each of the methods user’s and 

producer’s accuracies based on PVT-structural stage classes.  

Decision Rules 

Congalton (2001) suggest visual inspection is one of five ways of assessing map 

accuracy.  With this in mind and due to the complex nature of the study area, additional 

refinement of the map was developed.  By understanding some of the plant communities’  
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tendencies including strengths and weaknesses in relationship to establishment patterns, 

decisions rules based on elevation, aspect, and in the field experience were used to create a 

better final product.  Brte was removed from Juniper Mountain due to observational 

experience and the severe mixing that occurred to known areas of Arar R1.  It was felt that 

this would create a more accurate map for this area.  Also, all of the Putr PVT-SS classes 

were removed from Juniper Mountain.  Again years of experience of exploring this area help 

make the decision that the Putr classes were mixed with the Artr classes known to be at these 

locations.  Similar mixing also occurred on South Mountain and the Silver City Range.  

Because the majority of the training sites came from these two areas and far less on the 

ground experience was present, these classes were not altered.  An elevational boundary was 

considered for Putr PVT’s, but would have provided little significant improvement.  

Elevational boundaries that were utilized included restricting Abla and Psme F2, F3, and F4 

above 1900 m, Brte below 1850 m, and Taas below 1500 m. 

  A perceived large increase in the overall map quality was achieved by using aspect 

rules.  Both Brte and Taas annual classes were restricted to south facing (140-250°) aspects.  

The forested classes including Abla, Psme F2, F3, F4 where limited to northern (250-60°) 

aspects.  This restricted the distribution of many classes, particularly Psme F3, which was 

over estimated.  In addition, classes that were known not to be located on a mountain range 

were removed automatically.  For example Abla was removed from South Mountain and 

Juniper Mountain while all the Psme PVT’s were removed from Juniper Mountain.  Tables 

of the decision rules can be found in Appendix C and D. 
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Fuel Model Comparisons 
 

The seven dependent variables including herbaceous average, dead average, cover 

average, litter average, shrub weight, crown canopy, and down dead woody were 

significantly different when compared among cover types (p-value <0.0001).  Canonical 

discriminant analysis was performed to test the effects of succession on the dependent 

variables.  The first five canonical correlations layers each had a p-value <0.0001.  The three 

most important variables in three layers with the highest amount of information were crown 

cover, herbaceous biomass, and shrub biomass.  The top three variables explain 90% of the 

variation in fuel loading due to the successional stages.  The first canonical model can 

distinguish successional stages from one another with (r2=0.71) with a p-value <0.0001.  

Detailed information about fuel distribution, fire behavior, and management implications 

along the successional gradient can be found in work done by Yanish (2002). 

Fire-Landscape Pattern Relationships 
 

Statistical analysis was compared across the four successional classes (Artrv W1, W2, 

W4, W5) within the three watersheds using both method A and B.  Vegetation distribution as 

well as fire frequency grids for methods A and B can be seen in Fig. 13-15.  A positive (+) or 

negative (--) trend, along with the p-value for each successional class and landscape metric 

can be seen in Tables 9-12.  Each landscape metric was evaluated for consistent trends and 

significant trends.  A consistent trend occurs when either all signs for a given metric are 

positive or negative across each watershed and method.  Significant trends were considered 

to be those with a p-value less than 0.1. 
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Artrv W1 

 Within the Artrv W1 class there were not any consistent trends or significant trends 

(Table 9).  There were seven significant individual metrics within Current creek including 

two in method A and five in method B.  Significant metrics in method A include Contagion 

(r2 = 0.155) and Simpson’s Evenness (r2 = 0.122).  Significant metrics in method B include 

Edge Density (r2 = 0.206), Landscape Shape Index (r2= 0.197), Contagion (r2 = 0.110), 

Simpson’s Diversity (r2 = 0.152) and Simpson’s Evenness (r2 = 0.161).  Red Canyon 

produced five significant results including two from method A and three from method B.  

Significant metrics in method A include Mean Area (r2 = 0.117), and Simpson’s Diversity  

(r2 = 0.104).  Significant results in method B include Patch Density (r2 = 0.178), Edge 

Density (r2 = 0.104), and Mean Area (r2 = 0.111).  There were no significant results for Artrv 

W1 within Smith Creek watershed.  For the Artrv W1 class method A produced four 

significant results while method B produced eight.   

Artrv W2 

 Within the Artrv W2 class seven consistent trends became apparent although none of 

the trends were significant (Table 10).  Positive trends include Patch Density, Edge Density, 

the Landscape Shape Index, and the Interspersion and Juxtaposition Index.  Negative trends 

include Mean Area, Nearest Neighbor, and Contagion.  Method A produced eight significant 

single results while method B produced seventeen.  Method A produced four of the eight 

significant results from Smith Creek.  Method B produced eight significant results from 

Current Creek and nine significant results from Red Canyon, with none coming from Smith 

Creek. 
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Artrv W4 

 Within the Artrv W4 class eight trends were found with four being significant trends 

(Table 11).  The four consistent trends include two positive trends (Simpson’s Diversity, 

Simpson’s Evenness) and two negative trends (Nearest Neighbor, Contagion).  Significant 

positive trends include Patch Density (Fig. 18), Edge Density, and the Landscape Shape 

Index (Fig. 19).  The single negative significant trend was the metric Mean Area.  Method A 

and B both produced twenty-two individual significant results.  Current Creek method A 

produced five significant results while method B produced seven.  Red Canyon method A 

produced nine significant results while method B produced eight.  Smith Creek method A 

produced eight significant results while method B produced seven.   

Artrv W5 

 Three outliers were removed from method A due to the fire frequency being much 

greater than any of the other fire frequency values, which drastically altered the results.  

Within the Artrv W5 class again eight trends were found with four being significant, 

although the trends were not located on the same metrics as in the Artrv W4 class (Table 12).  

The four consistent trends include three positive trends (Edge Density, the Landscape Shape 

Index, and the Interspersion and Juxtaposition Index) and one negative trend (Contagion).  

Positive significant trends include Patch Density (Fig. 18), Simpson’s Diversity (Fig. 19), 

and Simpson’s Evenness.  The sole negative significant trend was Mean Area.  Method A 

produced nineteen individual significant results while method B produced twenty-one.  

Current Creek method A produced four significant results while method B produced six.  

Both methods in Red Canyon produced eight significant results and both methods in Smith 

Creek produced seven significant results. 
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DISCUSSION 

 The nonparametric method was deemed superior due not only to having the best 

overall accuracy but also producing the most consistent results.  Classes that produced the 

highest accuracies had a number of traits in common.  These included sites dominated by a 

single species, such as the Brte, Taas, and the Potr F4 and Psme F4 classes, which were 

dominated by an overstory forest structure.  Trouble correctly identifying Abla suggests that 

like conifer species may be hard to differentiate when having the same or similar site 

characteristics.  Another common trait found in the Arar and Putr PVT when using the 

nonparametric method was a trend of higher accuracies in the early successional stages with 

deceased accuracies as succession advances.  The Artr PVT also follows this trend in early 

successional stages but differs when succession advances to the Artr W4 class.  This suggests 

that following disturbance, classes are more distinct and become more similar to other classes 

as succession advances and the amount of juniper increases.  These complex interactions are 

further complicated by the encroachment of juniper.  Although juniper encroaches many 

sites, nutrient and water availability differ, resulting in different establishment patterns and 

succession rates across different sites.  As succession advances to the Artr W4 class juniper 

encroachment has become so great that not only has the majority of the sagebrush been 

killed, but the majority of the site is dominated by a single species.  At this stage the spectral 

signature has drastically changed and appears more similar to sites with a forest overstory.  A 

drop in Artr W5 accuracies occur primarily due to the amount of juniper decreases and the 

amount of soil site variability greatly increases.   

Another reason why the nonparametric method is superior to the other methods is the 

ability to separate different shrub types whose spectral signature are similar.  Because the  
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nonparametric method has few restrictive rules about statistical distribution and underlying 

characteristics, greater flexibility and accuracies were achieved when dealing with difficult 

classes when compared to the parametric methods, which have many ridged data 

assumptions.  One would expect to be able to distinguish between Arar and Artr due to the 

difference in structure, size, and proportion, but it is more difficult to separate shrub 

communities with similar characteristics.  Artr PVT’s and Putr PVT’s are similar in many 

regards to structure and proportion.  Also many training sites had both species present and, 

depending on the amount of each, went into one class or the other.  The nonparametric 

method did the best in separating these three shrub species even though this was a large 

source of the misclassified pixels.  The nonparametric method was also the best in classifying 

the most difficult classes, CeleR5*3 and Cele*4.  Cele classes were very difficult to classify 

due to large site variability, large understory diversity, within-class variability, and similar 

spectral characteristics to many other classes.  These particular classes were very difficult to 

locate on the Landsat image when either juniper or Douglas-fir was present.  Another 

possible explanation would be that during the time of the year that the image was taken is the 

time period when Cele looks most similar to other classes.  By determining a time when Cele 

is physiologically distinct from other species another image acquired during that time could 

be used in class separation.  In the end the Cele PVT was reduced to only two classes, 

CeleR5*3 which has no conifer component, and Cele*4 which has conifers as a large 

component.  Although the nonparametric was not superior in all classes, this method 

produced the best accuracies in classes of most abundance and interest. 
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Parametric vs. Nonparametric Comparisons 
 
 Even though the difference between the quadratic parametric technique (64%) and the 

nonparametric technique (69%) was only about 5% in the overall accuracy, a large difference 

can be seen when comparing user’s vs. producer’s accuracies.  The nonparametric method 

produced fairly constant or similar results for both user’s and producer’s accuracies.  In 

contrast, the linear parametric method resulted in a user’s accuracy of about 20% for the 

forest PVT’s and for the Artr R3B and Cele*4 classes.  The producer’s accuracy using the 

linear parametric method was at least 20% higher and close to 100% for the Abla class.  The 

reason why this trend occurred maybe related to the classification technique used and the 

underlying statistical assumptions.  Knick et al. (1997) suggests that using nonparametric 

statistics are more appropriate because they provide a qualitative class separation rather than 

quantitative relationships, and by using nonparametric techniques incorrect assumptions 

about distribution of data will not influence variables for class separation.  Another concern 

with both of the parametric technique is that the user’s accuracies are so low.  This means 

that on the ground classification is very low and would not be beneficial to land managers for 

field applications. 

The results suggest that nonparametric discriminant analysis produce higher 

accuracies than linear parametric methods are similar to findings by Bunting et al. (2002b) 

and Heide (2002).  The 5% difference between the two methods falls within findings by 

Bunting et al. (2002b) that nonparametric methods produced 5-10% higher accuracies in 

structural stage separation.  Results of higher overall accuracies using advanced classification 

procedures compared to tradition techniques have been reported by Cortijo and Perez De La 

Blanca (1999), Maselli et al. (1992), Skidmore and Turner (1998) and Cortijo and De La  
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Blanca (1997).  Cortijo and Perez De La Blanca (1999) found that nonparametric approaches 

produced better results when dealing with complex images with training sites that have 

highly variable characteristics that commonly overlapped between classes.  With such fine 

scale classes a great deal of overlap occurred when classifying the Owyhee Uplands.  Maselli 

et al. (1992) showed a nonparametric method produced higher kappa values compared to 

maximum likelihood techniques although overall accuracies were not computed.  

Nonparametric Advantages and Disadvantages 

Advantages associated with nonparametric classifications include no prior knowledge 

about the statistical distribution of the data is required (Serpico et al. 1996).  No additional 

information is required to increase the overall map accuracies (Skidmore and Turner 1988), 

which was supported by our results.  Large spectral variations, with highly overlapping 

characteristics and images with high complexity have been more accurately classified using 

nonparametric classifications methods (Knick et al. 1997, Cortijo and Perez De La Blanca 

1999, Bunting et al. 2002b).  Disadvantages of using nonparametric classifiers include 

susceptibility to erroneous distributions of data not statistically representing the entire 

population because so few statistical assumptions are considered (Maselli et al. 1992).  Other 

drawbacks include, outliers can negatively influence results, and computational effort can be 

very complex (Cortijo and Perez De La Blanca 1997).  Results also have suggested that large 

numbers of training sites are required to accurately represent each class (Maselli et al. 1992), 

which is often costly and time consuming.  Lowell (1989) suggests that the nonparametric 

technique developed by Skidmore and Turner (1988) may in accurately estimate the amount 

of land in each cover type resulting in a need for improvement to the classification equation.  

Since nonparametric procedures have been less commonly used, far less research has been  



 48
 

conducted to determine the limitations of these techniques.  But at the same time if overall 

accuracies can be increased and enough training sites are utilized, nonparametric techniques 

have more advantages than disadvantages.  

Layers of Significance 
 

Landsat bands as well as vegetation indices were included in the classification due to 

the importance and proven value to other remote sensing projects (Bunting et al. 2002b, 

Heide 2002, Cohen and Spies 1992, Wolter et al. 1995).  To determine the importance of 

each layer statistically a stepwise discriminant analysis using backwards selection was 

completed in SAS.  This showed that the three Tassel Cap layers added little significant value 

to the classification and therefore were left out.  This suggests the values for these three 

layers may have been similar to the NDVI and MSI layers and therefore were producing 

redundant information.  Since the image was acquired during the late part of the summer in a 

semi-arid environment, ability to measure moisture and stress may have been more difficult 

when using the coefficients derived by Huang et al. (2002).  The Tassel Cap coefficients 

created by Huang et al. (2002) consist of five paired Landsat ETM + images from across the 

United States.  In each scene 2000 points were randomly selected and a principle component 

analysis was completed.  When the orthogonality of all six axes was preserved, the 

transformation was created (Huang et al. 2002).   Instead of using coefficients created from 

other images the NDVI and MSI were ratios of values from the actual Landsat scene.  

Another possible reason why the Tassel Cap values were found to be of little importance 

could be the range of values were much different than any of the other layers.  Possible a 

normalization equation such as the one used by Heide (2002) would have been beneficial.  

This option was not considered before the classification began. 
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Sources of Error 

There are many sources of errors that must be considered when using satellite 

imagery to create a vegetation classification which include, soil characteristics, phenological 

stages, terrain complexity, GPS units, and different people collecting field data.  During the 

2002 field season, while the image appears to be clear, the quality of the image may have 

been affected by smoke blown in from the large wildfires located in Oregon over much of the 

summer of 2002.  The spatial resolution of the image also presented a problem when trying 

to define so many classes at a fine scale.  Often many of the training sites were not used 

because a clear boundary between vegetation types was possible on the DOQQ’s but was not 

possible on the Landsat image.  Sampling training sites also presented a substantial 

challenge.  The landscape was complex and often did not present large continuous areas of a 

single class in which to locate training sites.  Often training sites where located on areas that 

on the ground appeared to be large enough but in reality due to many factors were far too 

small.  Small-sized aspen patches were found throughout much of the landscape and 

increased difficulty in locating large enough training sites for this class.  Identifying the 

structural stage a particular site belonged to based on juniper cover was often difficult.  

Another challenge occurred when dealing with Putr PVT’s.  Typically these sites consist of a 

mixture of both sagebrush and bitterbrush and determining which PVT the site belonged to 

was difficult.  Other difficult class distinctions occurred among young juniper woodland 

classes where the difference among classes could be the presence or absence of a few trees. 

 Another underlying problem when working on such a large study area was the 

difference between parent material and soil characteristics.  Silver City is very granitic with 

light colored soils where as Juniper Mountain is mostly composed of dark volcanic material.   
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Spectral signature differences could be easily seen when comparing the same class at 

different site locations.  Sites located on Juniper Mountain and parts of South Mountain were 

very similar but when compared to sites located on the Silver City Range large differences 

could be seen.  This was very evident in both Arar and Artr sagebrush classes as well as with 

classes that had high amounts of juniper and large amounts of bare ground.  Another 

challenge occurred when the same class was present over all the elevational ranges.  Artr 

R3B located at the top of mountains looked significantly different than did sites found down 

at lower elevations.  Much of these differences can be attributed to two things.  First the 

species composition shifted as elevation increased.  Although sagebrush cover remained 

similar, the amount of snowberry greatly increased.  Second the amount of annual 

precipitation differed greatly.  Clearly the higher elevation sites were wetter when the image 

was taken compared to the low elevation sites, which resulted in the same class having 

different sites with different phenological stages. 

The ability of the GPS unit to accurately depict the exact location was also a source of 

error.  Many GPS points did not fall directly where the locations were taken and presented 

some problems when dealing with small aspen training sites and areas where topographic 

variability was complex.  Different field workers collected data and a difference in how each 

observer classified training sites could be seen.  This was particularly evident in the R3B, 

W1, and W2 structural stage classes.  What one observer considered a W1 the other observer 

could classify as R3B or W2 and vise versa.  This presented a challenge when looking at 

training sites on the maps and making sure the AOI’s went into the correct class.  If this 

could not be determined they were not used. 
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Landscape Scale 
 

Issues related to scale will always need to be considered when using satellite imagery 

to classify a particular site.  In this case all products produced have a spatial resolution of 

30x30-m pixels.  Although this may seem more than adequate when dealing with an entire 

landscape 30-m pixel resolution has many limitations when looking at questions from a much 

finer scale.  For example, the landscape is far more fragmented and complex than 30-m 

pixels can display.  The heterogeneity of this landscape can be very complex and only 

partially predictable.  By focusing on the landscape at 30-m resolution some of this 

heterogeneity will be lost.  In many cases areas could be classified at 5x5-m pixels or less 

and still not be very accurate.  This also translated in how the fuel models must be used.  The 

fuel models may be very accurate in predicting fire behavior and fire characteristic across the 

entire landscape or a single watershed but are not very accurate when looking at fine scale 

fire pattern issues.  Fire-landscape pattern relationships were also confined to this scale.  The 

loss of some of the heterogeneity due to mixed pixels or incorrectly classified pixels can and 

probably did have an influence on the fire-landscape pattern results. 

Fire-Landscape Patterns 
 
 Although the significance and the predictive power of the fire-landscape pattern 

results are not very robust, simple trends and relationships become more strongly developed 

as juniper becomes more dominate across the landscape.  Even though sagebrush steppe with 

small amounts of juniper have the majority of the fuels and fire potential the overall spatial 

arrangement of the vegetation across the landscape does not heavily influence fire frequency 

until the landscape is characterized by closed canopy or old growth juniper woodlands.  This 

suggests that the spatial arrangement of communities dominated by sagebrush steppe has  
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little or no influence on fire frequency regardless of high fuel loads and the potential for large 

fires.  As juniper begin to dominate the landscape the relationship of fuel loading, continuity, 

and fire becomes greater, which reduces fire potential, making the spatial arrangement of the 

vegetation more important.  The ability to demonstrate general trends in fire-landscape 

pattern relationships is directly correlated with the encroachment of juniper woodlands and 

the resulting successional development over time. 

 Since Artrv W1 is still dominated by sagebrush vegetation and the presence of juniper 

has only a small influence on altering landscape fire characteristics, the abundance of this 

class has little affect on fire-landscape pattern relationships.  Even though none of the trends 

within the Artrv W2 class are significant the trends clearly indicate the positive and negative 

trends that become significant in later successional stages.  This suggests that the abundance 

and distribution of this class is important and demonstrates that with a knowledge of the 

successional advancement of this class, that in time, results will be similar to those found in 

the Artrv W4 and W5 classes.  Another interesting note is that the majority of the significant 

results for the Artrv W2 class come from method B.  This suggests two things.  Method B 

may be a superior method in testing fire-landscape pattern relationships, which can be seen 

across each of the successional stages.  Second, the total amount and distribution of Artrv 

W4 and Artrv W5 may influence the patterns across the landscape when looking at classes 

with small amounts of juniper.  Both Current Creek and Red Canyon have large percentages 

of the watershed dominated by late succesional stages of juniper (W4 and W5).  Smith Creek 

on the other hand had roughly half of watershed dominated by early successional classes and 

the other half dominated by later successional classes.  This difference may help explain why  
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the results in method B for Current Creek and Red Canyon were more conclusive than in 

Smith Creek.        

Shifting from sagebrush-dominated classes to classes dominated by juniper increased 

the number of consistent and significant trends.  Patch Density showed a positive significant 

trend in both Artrv W4 and Artrv W5.  This demonstrates that fire occurrence increases as 

Patch Density increases on the landscape.  Since fires rarely burn through large areas of old 

growth juniper due to lack of fuels, fire size would remain small allowing for increased patch 

numbers at the start of each successive burn.  As juniper encroachment continues and moves 

to later successional stages a cycle begins to emerge among fire frequencies, fire size or 

patch density, and the amount of juniper present on the landscape.  Even as fire frequency 

increases, the spatial arrangement of the Artrv W4 and Artrv W5 classes restricts fire size.  

As fire size is reduced and remains small, the natural and most successful controller of 

western juniper, fire, will become a non-factor across the landscape resulting in the increase 

in area and extend of juniper across the landscape.  Edge Density increases with Patch 

Density and also has a positive relationship under these conditions.  After a consistent trend 

in Artrv W2 significant trends were found in both Artrv W4 and Artrv W5 for Edge Density.  

When fire size is limited by landscapes dominated by juniper then more patches result in 

high edge densities. 

 Again the Landscape Shape Index metric followed this positive trend in the Artrv W2 

and Artrv W5 classes and becomes significant in the Artrv W4 class.  Using the same logic, 

more fire, more patches, more edge, the landscape shape or disaggregating of patches across 

the landscape should increase.  Over time a homogenous landscape dominated by juniper  
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with high fire frequency would result in the landscape becoming more heterogonous and 

complex thus increasing the Landscape Shape Index metric value.  Along these same lines of 

thought, the negative trend of Mean Area, which was present in the Artrv W2 and significant 

in the Artrv W4 and Artrv W5 class, would be expected.  As the homogeneous landscape 

becomes more frequently burned, thus increasing Patch Density and Edge Density, the 

landscape would become increasingly fragmented with different successional stages over 

time.  Fire size would remain small resulting in more patches with smaller area or total mean 

area. 

 Simpson’s Diversity and Simpson’s Evenness both produced a positive trend in the 

Artrv W4 class and a positive significant trend in the Artrv W5 class.  Simpson’s Diversity 

measures the probability that any two patches selected would be different, thus having higher 

diversity (McGarigal and Marks 1995).  This metric did not become significant until the 

landscape arrangement limited the size of all fires regardless of fire frequency.  With an 

increased in the number of fires being very small in extent, small patches would be created, 

which over time, would follow multiple successional pathways resulting in many patch types 

with a high amount of diversity.  Taking this trend a step further the overall evenness of the 

landscape should also increase as fire frequency increases which can be measured by the 

Simpson’s Evenness metric.  Simpson’s Evenness suggests that when fire frequency 

increases within areas dominated by old growth juniper the resulting distribution of patch 

types are close to equal, which implies greater landscape evenness.  

 Although the next set of metrics address similar questions, results never became 

significant trends.  The Contagion metric produced a consistent trend across Artrv W2, W4, 

and W5.  The Interspersion and Juxtaposition Index on the other hand showed a consistent  
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trend in the Artrv W2 and W5 classes but not in the Artrv W4 class.  Although neither had 

many significant results the trend directions agree with the predicted outcome.  Contagion, a 

measure of aggregation or clumpiness shows a negative trend.  This would be expected, as  

fire frequency increases patches would become more disconnected and fragmented, resulting 

in a lower Contagion value.  On the other hand the Interspersion and Juxtaposition Index 

metric measures the extent to which types are interspersed with higher valued being more 

interspersed and lower values representing areas were patch types are poorly interspersed 

(McGarigal and Marks 199).  Thus random fires across a landscape would produce many 

patches and as fire frequency increased, over time interspersion of different patch types 

would increase, as is the case for the positive trend for the Interspersion and Juxtaposition 

Index within the Artrv W5 class.  Nearest Neighbor is the final metric to discuss which 

produced a negative consistent trend within the Artrv W2, Artrv W4, and almost Artrv W1 

class.  The negative trend suggests that increasing fire frequency decreases the distance of 

one type to its nearest neighbor. 

Comparisons Between Method A and B 

 Although the results between method A and B may seem similar, in actuality they are 

not, due to a number of differences.  Problems with method A include changing fuel 

moistures which start out constant but due to how FARSITE was developed, change over 

time, and wind direction which had to be randomly selected to create the fire frequency grid.  

Method B produced more relevant results across all classes and in most watersheds.  

Although results from Method A may have been higher in some cases the significance of the 

results must be viewed with caution.  Method B results are more realistic and relevant due to  
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how the fire frequency grids were created in each method.  Method B used slope, aspect, and 

elevation layers to create the frequency grid were as method A was based on a flat landscape.   

Although the p-values and r2 values are very similar between the two methods the results 

from method B are much more realist when compared to an actual landscape.  Another  

difference between the two methods was the fire conditions used to create the fire frequency 

grids.  Along with the proportion of older successional stages located within the Current 

Creek and Red Canyon watersheds, the wildfire weather conditions used in method B may 

explain the large increase in significant results.  Because of the high amount of older classes, 

the limited number of fires, and moderate fire conditions used in method A, apparent patterns 

did not become present until higher number of fires and wildfire conditions were used.   

Sources of Concern 

When modeling fire behavior the results are only as good as the layer inputs and the 

numerous other variables involved.  The input layers created by Yanish (2002) allowed 

greater understanding far beyond any standard fuel models for juniper woodland systems.  

Yet at the same time the complex requirements of FARSITE provide a challenge when 

looking at fire-landscape pattern relationships.  First and foremost FARSITE continuously 

computes values based on environmental changes.  The goal of the fire-landscape pattern 

process was to create as close to the same fire conditions as possible.  Areas where this was 

not possible within FARSITE include changes in fuel moisture, shading, aspect, elevation, 

and slope.  By manipulating the DEM ASCII file and creating a flat landscape the slope, 

aspect, and elevational variables were kept constant throughout all runs.  Another challenge 

occurred when dealing with wind directions.  By having all fires started within a particular 

watershed wind directions could not be held constant.  Constant wind conditions resulted in a  
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portion of the watershed practically being unaffected by fire which causes severe edge 

effects.  Another problem that became apparent was the spatial arrangement of the different 

fuel models across the landscape.  Within the Red Canyon watershed the majority of the 

upper area was dominated by Artrv W5 fuel type, which has low flammability and is very 

difficult to burn.  On the other hand the lower section of the watershed is dominated by Artrv 

R3B or Artrv W1, which is highly flammable and burns easily under most conditions.  In 

initial testing each half of the watershed was burned with 50 fires.   The lower half had fire 

frequencies from zero to fifteen and produced a nice coverage across the area.  The upper 

half was dominated by old growth juniper.  In this section the fire frequency ranged from 

zero to four and only covered a small percentage of the area.  Because the fuel characteristics 

were distinctively different, fire frequency was highly variable across different sections of 

the landscape.  This was also a concern in the Smith Creek and Current Creek watersheds 

and more than likely influence the results. 

  Another problem that hindered analysis was selecting the appropriate fire conditions 

and number of fires burned per watershed.  Initially known wildfire conditions were used.  

After many failed attempts fire conditions were reduced to moderate levels by changing the 

fuel moistures, and resulting patterns became apparent in the Red Canyon watershed.  Hopes 

were high that similar results could be reproduced in the other two watersheds but were not 

nearly as successful.  This in part can be attributed to the fire frequency grids, which was 

dependant on the number of fires per watershed.  What may have been the optimal number of 

fires in Red Canyon watershed may not have been for the other two study areas.  Within the 

Smith Creek watershed, the larger fire size and resulting distribution resulted in a higher fire 

frequency across a larger proportion of the watershed.   The Current Creek watershed posed  
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different challenges.  Instead of burning a large portion of the watershed, a large amount of 

the study area burned very little.  This can be related to the fact that old growth juniper fuel  

types or very rocky areas where fire spread is limited dominate a high percentage of the 

watershed.  This may have had an influence on the results for these watersheds.   

Final Thoughts 

 Although some consistent trends and significant trends were found within the Artrv 

W2, W4, and W5 classes the overall strength of the relationships were expected to be greater.  

Clearly method B produced a better fire frequency grid, which was created to mimic wildfire 

conditions.  Due to time constraints method B was not tested under moderate fire conditions, 

which may have influenced the strength of the results.  It also has become apparent that the 

percentage of each class and location and proximity to similar classes can have a great 

influence on the results when method A was used.    By burning 25,000 fires in method B 

this problem was reduced.  Another consideration on why relationships within the sagebrush 

classes were not present may stem from the size of the square used to run the landscape 

metrics on.  Because the size of fires started within the sagebrush communities tend to be 

significantly larger than those started in the old growth the scale at which the fire-landscape 

patterns may be present could easily be different.  Possibly if a square size of 25x25 or 50x50 

pixels was used in the analysis the Artrv W1 and W2 perceived fire-landscape pattern 

relationships would be more apparent.  Another possible idea to reduce the possibility of 

selecting one random pixel surrounded by classes on the opposite fire behavior extreme, and 

thus altering the results, would be to stratify the watershed based on a certain class and then 

select random points within these stratified area.   
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CONCLUSIONS 
 

Although western juniper encroachment has gone unnoticed by many for a long time, 

the environmental changes and consequences are becoming increasingly apparent.  

Considerable recent research has focused on age structure and life history (Miller and Rose 

1995, 1999), and development of methods of juniper reduction (Bunting 1987, Eddleman 

1999).  In order to mange juniper encroachment understanding the distribution of western 

juniper successional stages within a landscape is required.  With such a large species range, 

covering multiple states, accurately mapping juniper encroachment would not be possible 

without the use of remote sensing technologies.  Although there are many valid concerns and 

problems with using remote sensing data, this is the most efficient solution when mapping a 

problem that is located across such a large landscape.   

 In attempts to achieve the highest overall map accuracy three different classification 

procedures were tested.  The method that produced the best overall accuracy (69%) and most 

consistent results was the nonparametric discriminant approach.  Second was the parametric 

quadratic discriminant method with an overall accuracy of 64%, followed by the parametric 

linear discriminant method with an overall accuracy of 52%.  Although early successional 

classes and classes dominated by a single species achieved the highest overall accuracies, we 

were able to successfully map juniper encroachment along a successional gradient.  Overall 

accuracies are lower than findings by Bunting et al. (2002b) due mostly to the addition of 

more PVT’s and PVT-structural stage classes, increased study area size, and greater soil and 

site differences within the study area. 

 NDVI and MSI improved the overall accuracy.  The three Tassel Cap layers; 

brightness, greenness, and wetness did not improve the classification results.  These ancillary  
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layers probably provided the same information as NDVI and MSI, or a problem could have 

resulted when the value range was different than the other layers, which may have been 

resolved by normalized the data in some fashion.  Aspect and elevational boundary rules 

were very important in increasing the overall quality of the map.  By using field-collected 

data as well as on the ground knowledge and experience, the overall product was improved.  

With a quality map land managers will have the opportunity to prioritize locations where 

controlled fire will be most effective both from an ecological and economical perspective. 

 Although the results from the fire-landscape pattern analysis were not strongly 

predictive, important trends and relationships between landscape configuration and fire do 

exist.  Method B clearly produced more consistent results across all successional classes 

compared to method A.  Wildfire conditions used in method B compared to moderate fire 

conditions used in method A can partially explain this.  Differences in how the fire frequency 

grids were created in method A and B suggest utilizing slope, aspect, and elevation in 

method B are important factors in fire occurrence and results from method B may have 

greater interpretive value than results from method A which used a flat landscape.  

Variability across the watersheds in regards to the amount of late successional classes and the 

distribution across each watershed also affected the results.  This suggests that the spatial 

arrangement of late successional classes such as Artrv W4, and Artrv W5 influence the fire 

frequency potential across both moderate and wildfire fire conditions.  Last and most 

importantly, the spatial arrangement and amount of western juniper does influence fire 

behavior suggesting that along with other commonly studied fire variables such as fuel 

moisture and weather conditions, arrangement of the different patch types is an important 

component when predicting fire potential in sagebrush steppe/ juniper woodland systems.  
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Table 1. Potential Vegetation Type and Structural Stage attributes based on cover types 
(Bunting et al. 2002b). 
PVT (Potential Vegetation Type) SS (Structural Stage) 
Shrubland 
Arar (Low sagebrush) 
Artrv (Mountain big sagebrush) 
Artrw (Basin big sagebrush) 
Putr (Bitterbrush) 
Cele (Mountain mahogany) 
 

 
R1, R3A, R3B 
R1, R3A, R3B 
R1, R3A, R3B 
R1, R3A, R3B 
R5A, R5B, R7 

Woodland 
Arar (Low sagebrush) 
Artrv (Mountain big sagebrush) 
Artrw (Basin big sagebrush) 
Putr (Bitterbrush) 
Cele (Mountain mahogany) 

 
W1, W2, W4, W5 
W1, W2, W4, W5 
W1, W2, W4, W5 
W1, W2, W4, W5 
W1, W2, W4, W5 

 
Forest  
Psme (Douglas-fir) 
Potr (Quaking aspen) 
Abla (Subalpine fir) 

 
 
F2, F3, F4, F5 
F2, F3, F4, F5 
 

 
Other 
Rock 
Meadow 
Mountain Shrub (Bittercherry, 
chokecherry, shinny-leaf ceanothus) 
Brte (Cheatgrass) 
Taas (Medusahead) 
Mines (Disturbance) 
Water 

 
 
W4, W5 
R2 
R6 

R1-Open herbland 
R3A-Open low-med shrubland <10% 
shrub 
R3B- Open low-med shrubland 10-
67% shrub 
R5A-Open tall shrubland <10% shrub, 
<5% trees 
R5B-Open tall shrubland 10-67% 
shrub, <5% trees 
R7-Multi-strata tall shrubland <67% 
shrub, 5-10% trees 

F2- Sapling forest 
F3- Pole forest 
F4- Young multi-story forest 
F5- Old multi-story forest 
 
R2- Closed herbland 
R6- Closed tall shrubland 

W1-Woodland initiation 
W2-Young woodland 
W4-Mixed-aged woodland 
W5-Mature juniper woodland 
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Table 2.  Vegetation indices used in the classification and how each was derived.  

Vegetation Indices Equation 
NDVI Bandtm4 - Bandtm3 ÷ Bandtm4 + Bandtm3 
MSI Bandtm5 ÷ Bandtm4 
Tassel Cap Brightness 0.3561tm1 + 0.3972tm2 + 0.3904tm3 + 0.6966tm4 + 0.2286tm5 + 0.1596tm7 
Tassel Cap Greenness - 0.3344tm1 - 0.3544tm2 - 0.4556tm3 + 0.6966tm4 - 0.0242tm5 - 0.2630tm7 
Tassel Cap Wetness 0.2626tm1 + 0.2141tm2 + 0.0926tm3 + 0.0656tm4 - 0.7629tm5 - 0.5388tm7 
 
 
Table 3.  Summary of the number of training sites, validation sites, and the total 
number of pixel used for each class. 
Class name Training sites Training pixels Validation sites Validation pixels 

ABLA 5 10 2 7 
ARARR1 5 68 2 50 

ARARR3*9 18 200 7 64 
ARARW1 10 97 4 58 
ARARW2 9 179 7 54 
ARARW4 13 131 7 50 
ARARW5 15 112 3 109 

ARTRR1*1 9 166 4 70 
ARTRR3B 15 170 6 139 
ARTRT*2 15 105 3 50 
ARTRW1 9 148 7 56 
ARTRW2 9 94 8 108 
ARTRW4 12 182 7 59 
ARTRW5 12 154 7 74 

BRTE 6 46 2 7 
CELE*4 20 105 13 118 

CELER5*3 12 41 6 24 
MINES 4 88 2 145 

MNTSHRUB 8 121 5 61 
POTRF4 11 87 7 85 
PSMEF2 6 76 2 54 
PSMEF3 5 69 2 29 
PSMEF4 15 113 5 104 
PUTRR1 3 88 3 55 

PUTRR3A 3 55 1 14 
PUTRR3B*5 15 199 7 106 
PUTRW1*6 9 90 4 24 
PUTRW2*7 20 112 7 91 
ROCKW*8 10 171 4 82 

TAAS 8 120 2 56 
WATER 4 100 2 100 

WETMEADOW 6 49 1 3 
TOTAL 321 3546 149 2106 
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Table 4.   Forty-four PVT-structural stage classes used in first classification attempt. 

ABLA ARTRR1 ARTRW5 MINES PUTR-2W2 ROCKW5 
ARARR1 ARTRR3A BRTE MNTSHRUB PUTRR1 TAAS 

ARARR3A ARTRR3B CELER5A POTRF4 PUTRR3A WATER 
ARARR3B ARTRTW1 CELER5B PSMEF2 PUTRR3B WETMEADOW 
ARARW1 ARTRTW2 CELER7 PSMEF3 PUTRW1  
ARARW2 ARTRW1 CELEW2 PSMEF4 PUTRW2  
ARARW4 ARTRW2 CELEW4 PUTR-2R3B PUTRW4  
ARARW5 ARTRW4 CELEW5 PUTR-2W1 ROCKW4  

 
 
Table 5.  PVT-structural stage classes combined to create the final thirty-two classes. 

ARTRR1*1 ARTRR1, ARTRR3A 
ARTRT*2 ARTRTW1, ARTRTW2 
CELER5*3 CELER5A, CELER5B 

CELE*4 CELER7, CELEW2, CELEW4, CELEW5 
PUTRR3B*5 PUTR-2R3B, PUTRR3B 
PUTRW1*6 PUTR-2W1, PUTRW1 
PUTRW2*7 PUTR-2W2, PUTRW2, PUTRW4 

ROCK*8 ROCKW4, ROCKW5 
ARARR3*9 ARARR3A, ARARR3B 

 
 
Table 6.  Thirty-four PVT-structural stage classes used in secondary classification 
attempts. 

ABLA ARARW4 ARTRW2 MINES PUTRR1 ROCKW5 
ARARR1 ARARW5 ARTRW4 MNTSHRUB PUTRR3A TAAS 

ARARR3A ARTRR1*1 ARTRW5 POTRF4 PUTRR3B*5 WATER 
ARARR3B ARTRR3B BRTE PSMEF2 PUTRW1*6 WETMEADOW 
ARARW1 ARTRT*2 CELE*4 PSMEF3 PUTRW2*7  
ARARW2 ARTRW1 CELER5*3 PSMEF4 ROCKW4  
 
 
Table 7.  Thirty-two PVT-structural stage classes used in the final classification. 

ABLA ARARW5 ARTRW4 MNTSHRUB PUTRR3A WATER 
ARARR1 ARTRR1*1 ARTRW5 POTRF4 PUTRR3B*5 WETMEADOW 

ARARR3*9 ARTRR3B BRTE PSMEF2 PUTRW1*6  
ARARW1 ARTRT*2 CELE*4 PSMEF3 PUTRW2*7  
ARARW2 ARTRW1 CELER5*3 PSMEF4 ROCK*8  
ARARW4 ARTRW2 MINES PUTRR1 TAAS  
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Table 9.  Positive and negative trends and significance of each landscape metric for 
Artrv W1 using method A and B within each of the three watersheds. 
 Current Creek Red Canyon Smith Creek 
Metric Method A Method B Method A Method B Method A Method B 
Patch 
Density 

-- 
0.6508 

+ 
0.1199 

-- 
0.2181 

+ 
0.0253 

-- 
0.6175 

-- 
0.6572 

Edge 
Density 

+ 
0.2702 

+ 
0.0118 

-- 
0.2269 

+ 
0.0942 

-- 
0.4364 

-- 
0.8953 

LSI 
 

+ 
0.2266 

+ 
0.0141 

-- 
0.2265 

+ 
0.1002 

-- 
0.4565 

-- 
0.9583 

Mean Area + 
0.4869 

-- 
0.3493 

+ 
0.0749 

-- 
0.0835 

+ 
0.3895 

+ 
0.5045 

Nearest 
Neighbor 

-- 
0.2872 

-- 
0.4870 

-- 
0.1576 

-- 
0.1686 

+ 
0.5782 

-- 
0.3336 

Contagion 
 

-- 
0.0315 

-- 
0.0733 

+ 
0.5302 

-- 
0.3256 

-- 
0.8691 

-- 
0.7307 

IJI 
 

+ 
0.8005 

-- 
0.7961 

-- 
0.7191 

+ 
0.5002 

+ 
0.6487 

+ 
0.8350 

Simpson’s 
Diversity 

+ 
0.1905 

+ 
0.0329 

-- 
0.0938 

+ 
0.8390 

-- 
0.2991 

-- 
0.4212 

Simpson’s 
Evenness 

+ 
0.0586 

+ 
0.0278 

-- 
0.1826 

+ 
0.8369 

-- 
0.4800 

-- 
0.7297 

Bold text indicates significant results with a p-value <0.1. 
 
 
Table 10.  Positive and negative trends and significance of each landscape metric for 
Artrv W2 using method A and B within each of the three watersheds. 
 Current Creek Red Canyon Smith Creek 
Metric Method A Method B Method A Method B Method A Method B 
Patch 
Density 

+ 
0.8121 

+ 
0.0063 

+ 
0.5202 

+ 
0.0024 

+ 
0.1448 

+ 
0.8560 

Edge 
Density 

+ 
0.3327 

+ 
0.0001 

+ 
0.4693 

+ 
0.0213 

+ 
0.2155 

+ 
0.4423 

LSI 
 

+ 
0.3557 

+ 
0.0001 

+ 
0.4687 

+ 
0.0219 

+ 
0.2155 

+ 
0.4423 

Mean Area -- 
0.6441 

-- 
0.0028 

-- 
0.5690 

-- 
0.0058 

-- 
0.1328 

-- 
0.7128 

Nearest 
Neighbor 

-- 
0.2703 

-- 
0.0577 

-- 
0.0413 

-- 
0.0859 

-- 
0.0433 

-- 
0.2751 

Contagion 
 

-- 
0.2362 

-- 
0.0129 

-- 
0.2829 

-- 
0.0294 

-- 
0.0286 

-- 
0.5946 

IJI 
 

+ 
0.7810 

+ 
0.5927 

+ 
0.3232 

+ 
0.0203 

+ 
0.0122 

+ 
0.5839 

Simpson’s 
Diversity 

+ 
0.0659 

+ 
0.0222 

+ 
0.5005 

+ 
0.0080 

+ 
0.0276 

-- 
0.8642 

Simpson’s 
Evenness 

+ 
0.0916 

+ 
0.0266 

+ 
0.4332 

+ 
0.0119 

+ 
0.0179 

-- 
0.9934 

Bold text indicates significant results with a p-value <0.1, bold metric indicates the same sign (+or--) across 
each watershed and method. 
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Table 11.  Positive and negative trends and significance of each landscape metric for 
Artrv W4 using method A and B within each of the three watersheds. 
 Current Creek Red Canyon Smith Creek 
Metric Method A Method B Method A Method B Method A Method B 
Patch 
Density 

+ 
0.0069 

+ 
<0.0001 

+ 
0.0218 

+ 
0.0080 

+ 
<0.0001 

+ 
0.0001 

Edge 
Density 

+ 
0.0218 

+ 
0.0002 

+ 
0.0997 

+ 
0.0105 

+ 
<0.0001 

+ 
0.0005 

LSI 
 

+ 
0.0242 

+ 
0.0002 

+ 
0.0997 

+ 
0.0105 

+ 
<0.0001 

+ 
0.0006 

Mean Area -- 
0.0230 

-- 
0.0004 

-- 
0.0664 

-- 
0.0184 

-- 
<0.0001 

-- 
0.0007 

Nearest 
Neighbor 

-- 
0.7660 

-- 
0.1508 

-- 
0.0814 

-- 
0.0387 

-- 
0.3173 

-- 
0.0766 

Contagion 
 

-- 
0.6135 

-- 
0.0951 

-- 
0.0512 

-- 
0.0251 

-- 
0.0034 

-- 
0.0099 

IJI 
 

-- 
0.6818 

-- 
0.7982 

+ 
0.0578 

+ 
0.1136 

+ 
0.0440 

+ 
0.0848 

Simpson’s 
Diversity 

+ 
0.0285 

+ 
0.0036 

+ 
0.0341 

+ 
0.0173 

+ 
0.0090 

+ 
0.2675 

Simpson’s 
Evenness 

+ 
0.1460 

+ 
0.0225 

+ 
0.0548 

+ 
0.0353 

+ 
0.0315 

+ 
0.2351 

Bold text indicates significant results with a p-value <0.1, bold metric indicates the same sign (+or--) across each watershed 
and method. 
 
 
Table 12.  Positive and negative trends and significance of each landscape metric for 
Artrv W5 using method A and B within each of the three watersheds. 
 Current Creek Red Canyon Smith Creek 
Metric Method A Method B Method A Method B Method A Method B 
Patch 
Density 

+ 
0.0415 

+ 
0.0003 

+ 
0.0002 

+ 
0.0057 

+ 
0.0039 

+ 
0.0104 

Edge 
Density 

+ 
0.2991 

+ 
0.0014 

+ 
0.0042 

+ 
0.0472 

+ 
0.0266 

+ 
0.0096 

LSI 
 

+ 
0.3029 

+ 
0.0018 

+ 
0.0042 

+ 
0.0490 

+ 
0.0227 

+ 
0.0096 

Mean Area -- 
0.0533 

-- 
0.0016 

-- 
0.0006 

-- 
0.0079 

-- 
0.0237 

-- 
0.0138 

Nearest 
Neighbor 

+ 
0.9094 

-- 
0.8601 

+ 
0.8590 

-- 
0.2338 

-- 
0.7228 

-- 
0.7164 

Contagion 
 

-- 
0.2926 

-- 
0.1051 

-- 
0.0031 

-- 
0.0251 

-- 
0.0652 

-- 
0.0205 

IJI 
 

+ 
0.2093 

+ 
0.5624 

+ 
0.0082 

+ 
0.0203 

+ 
0.2448 

+ 
0.1570 

Simpson’s 
Diversity 

+ 
0.0087 

+ 
0.0308 

+ 
0.0015 

+ 
0.0169 

+ 
0.0029 

+ 
0.0015 

Simpson’s 
Evenness 

+ 
0.0426 

+ 
0.0873 

+ 
0.0045 

+ 
0.0269 

+ 
0.0081 

+ 
0.0024 

Bold text indicates significant results with a p-value <0.1, bold metric indicates the same sign (+or--) across 
each watershed and method. 
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Fig. 2.  Owyhee Plateau study area and locations of the Silver City Range, South 
Mountain, and Juniper Mountain. 
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Fig. 3.  Fuel measurement plot design diagram Yanish (2002). 
 
 

 
 
Fig. 4.  The three HUC 6th order watersheds used in objective 3 including Current 
Creek, Smith Creek, and Red Canyon. 
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Fig. 5.  Overall accuracy and kappa statistic for each of the three classification methods. 
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Fig. 6.  Low sagebrush Potential Vegetation Type User’s vs. Producer’s accuracy 
comparison for each classification method. 
 
 
 
 
 
 
 



 78
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ARTRR1*1 ARTRR3B ARTRT*2 ARTRW1 ARTRW2 ARTRW4 ARTRW5

C
or

re
ct

ly
 c

la
ss

ifi
ed

 (%
)

0

20

40

60

80

100

NP-User's
PQ-User's
PL-User's
NP-Producer's
QP-Producer's
PL-Producer's

Fig. 7.  Big sagebrush Potential Vegetation Type User’s vs. Producer’s accuracy 
comparison for each classification method. 
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Fig. 8.  Bitterbrush Potential Vegetation Type User’s vs. Producer’s accuracy 
comparison for each classification method. 
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Fig. 9.  Forest Potential Vegetation Types User’s vs. Producer’s accuracy comparison 
for each classification method. 
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Fig. 10.  Curl-leaf mountain mahogany Potential Vegetation Type, annuals, rock, and 
wet meadow classes User’s vs. Producer’s accuracy comparison for each classification 
method. 
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Fig. 11.  Water and mine classes User’s vs. Producer’s accuracy comparison for each 
classification method. 
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Fig 12.  Final Nonparametric classification map. 
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Fig. 13. Vegetation maps of the three watersheds used to compare landscape 
arrangement to fire frequency in objective 3. 
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Fig. 14.  Fire frequency maps of the three watersheds used in objective 3 created by 
method A using 100 fires. 
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Fig. 15.  Fire frequency maps of the three watersheds used in objective 3 created by 
method B using 25,000 fires. 
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Fig. 16.   Artrv W4 significant trend for the landscape metric Patch Density across each 
watershed using both fire frequency methods. 
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Fig. 17.  Artrv W4 significant trend for the landscape metric Landscape Shape Index 
across each watershed using both fire frequency methods. 
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Fig. 18.  Artrv W5 significant trend for the landscape metric Patch Density across each 
watershed using both fire frequency methods. 
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Fig. 19.  Artrv W5 significant trend for the landscape metric Simpson’s Diversity across 
each watershed using both fire frequency methods. 
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Appendix A.  Owyhee Plateau cover types/ structural stage descriptions (Adapted from 
Hessburg et al. 1999, Bunting et al. 2002b). 
 
WOODLAND 
 
Artemisia arbuscula sere (Arar) 
 
R1 Open herbland:  Shrub cover <5%, herbaceous cover <67%. 
 
R3 Open low-med shrubland:  Canopy of low (<50cm) shrubs with canopy coverage
  <67%, tree coverage <2%.   Sometimes very open stands of large  mature juniper 
 trees are present.   
 

R3A Open low-med shrubland:  Canopy of low (<50 cm) and/or medium 50- 
  200 cm shrubs with canopy coverage <10%, juniper tree coverage <2%. 

 
R3B  Open low-med shrubland:  Canopy of low (50 cm) and/or medium 50- 

  200 cm shrubs with a canopy coverage 10-67%, juniper tree coverage  
  <2%.   
 
W1 Woodland initiation:  Juniper canopy (<3%) of usually young, sometimes mid 
 aged junipers present.  Juniper is only having minor effects on competition and 
 environment of the site and the sagebrush community is intact directly under 
 juniper trees. 
 
W2 Young woodland:  Canopy (3-8%) of young and mid aged junipers present. 
  Juniper is beginning to have an effect on the interspaced environment of the site.  
 Sagebrush steppe species are declining and sagebrush skeletons present.  However,
 low sagebrush still remains in interspaces.   
 
W4 Mixed-aged woodland:  Canopy (>8%) of young and mid aged junipers present.  
 Usually a few mature juniper present.  Sagebrush skeletons often present in 
 understory.  However, low sagebrush still common in interspaces.   
 
W5 Mature juniper woodland:  Overstory canopy >8% compose of primarily 
 mature individuals (flat topped trees and Letharia vulpina usually present).  Trees 
 may not necessarily be large in size.  Sagebrush usually present in openings except 
 in the most dense stands of juniper.   
 
Artemisia tridentata vaseyana sere (Artrv) 
 
R1 Open herbland:  Shrub cover <5%, herbaceous cover <67%. 
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R3 Open low-med shrubland:  Canopy of low (<50 cm) and/or medium 50-200 cm 
 shrubs with canopy coverage of <67%, tree coverage <2%.   
 

R3A Open low-med shrubland:  Canopy of low (<50 cm) and/or medium 50-200 
cm shrubs with canopy coverage <10%, juniper tree coverage <2%. 

 
R3B   Open low-med shrubland:  Canopy of low (50 cm) and/or medium 50-200 
 cm shrubs with a canopy coverage 10-67%, juniper tree coverage <2%.   

 
W1 Woodland initiation:  Canopy (<5%) of usually young, sometimes mid aged, 
 junipers present.  Juniper is having only minor effects on competition and 
 environment of the site and the sagebrush community is intact except directly 
 under juniper trees.   
 
W2 Young woodland:  Canopy (5-10%) of young and mid aged junipers present.  
 Juniper is beginning to have an effect on the environment of the site.  Sagebrush 
 steppe species declining and sagebrush skeletons often present.   
 
W4 Mixed-aged woodland:  Canopy (>10%) of young and mid aged junipers  present.  
 Few or no mature junipers present with sagebrush skeletons often numerous in 
 understory.   
 
W5 Mature juniper woodland:  Overstory canopy >15% composed of primarily 
 mature individuals (flat topped trees and Letharia vulpina usually present).  Few  
 sagebrush remain except in larger openings.  Some stands are completely dominated 
 by old mature trees.  Other stands may have open canopy of mature trees and a co-
 dominant layer of various aged mid-aged juniper.   
 
Cercocarpus ledifolius sere (Cele) 
 
R1 Open herbland:  Shrub cover <5%, herbaceous cover <67%. 
 
R3 Open low-med shrubland:  Canopy of low (<50 cm) and/or medium 50-200 cm 

shrubs with canopy coverage of <67%, tree coverage <2%. (See Artemisia tridentata 
vaseyana sere).  

 
R5 Open tall shrubland:  Canopy of tall (>2m) shrubs with <67% coverage.  
 Juniper tree coverage <5%, usually composed of young to mid aged individuals.   
 
 R5A Open tall shrubland:  Canopy of tall (>2m) shrubs with <10% coverage.  
  Trees coverage <5%, usually composed of young to mid aged individuals. 
  
 R5B Open tall shrubland:  Canopy of tall (>2m) shrubs with 10-67% coverage.  

 Tree coverage <5%, usually composed of young to mid aged individuals. 
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R7 Multi-strata tall shrubland:  Canopy of tall (>2m) shrubs with <67% coverage.  
  Juniper and Douglas-fir 5-10 % usually composed of young, mid and mature 
 aged individuals.   
 
W1 Woodland initiation:  Canopy (<5%) of usually young, sometimes mid aged, 
 junipers present.  Juniper is having only minor effects on competition and 
 environment of the site and the sagebrush / mountain mahogany community is intact 
 expect directly under juniper trees.   
 
W2 Young woodland:  Canopy (5-10%) of young and mid aged junipers present.  
 Juniper is beginning to have an effect on the environment of the site.  Sagebrush / 
 mountain mahogany community species declining and sagebrush skeletons often 
 present.   
 
W4 Mixed-aged woodland:  Canopy (>10%) of young and mid aged junipers   
 present.  Few or no mature junipers present with sagebrush skeletons often numerous 
 in the understory.   
 
W5  Mature juniper woodland:  Overstory canopy >15% composed of primarily 
 nature individuals (flat topped trees and Letharia vulpina usually present).  Few 
 sagebrush remain except in large openings.   
 
Purshia tridentata sere (Putr) 
 
R1 Open herbland:  Shrub cover <5%, herbaceous cover <67%. 
 
R3 Open low-med shrubland:  Canopy of low (<50 cm) and/or medium 50-200 cm 
 shrubs with canopy coverage of <67%, tree coverage <2%.   
 
 R3A Open low-med shrubland:  Canopy of low (<50 cm) and/or medium 50- 
  200 cm shrubs with canopy coverage <10%, juniper tree coverage <2%. 
 
 R3B  Open low-med shrubland:  Canopy of low (50 cm) and/or medium 50- 
  200 cm shrubs with a canopy coverage 10-67%, juniper tree coverage  
  <2%.   
 
W1 Woodland initiation:  Canopy (<5%) of usually young, sometimes mid aged,  
 junipers present.  Juniper is having only minor effects on competition and 
 environment of the site and the sagebrush / bitterbrush community is intact except 
 directly under juniper trees.   
 
W2 Young woodland:  Canopy (5-10%) of young and mid aged junipers present.  
 Juniper is beginning to have an effect of the environment of the site with sagebrush / 
 bitterbrush steppe species declining and sagebrush skeletons often present.   
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W4 Mixed-aged woodland:  Canopy (>10%) of young and mid aged junipers  present.  
 Few or no mature junipers present with sagebrush / bitterbrush skeletons often 
 numerous in understory.   
 
W5 Mature juniper woodland:  Overstory canopy >15% composed of primarily mature 

individuals (flat topped trees and Letharia vulpina usually present).  Few sagebrush / 
bitterbrush plants remain except in larger openings.   

 
FOREST 
 
Populus tremuloides sere (Potr) 
 
F2 Sapling forest:  Seedlings and saplings ≥ 10% canopy cover with poles, small, and 
 medium trees ≤ 80% canopy cover.   Sites characterized by one canopy stratum (may 
 be broken or continuous), minimum shrubs present in the understory, and grass and 
 forbs present. 
 
F3 Pole forest:  Seedlings and saplings < 10% canopy cover, poles, and small trees 
  > 70% canopy cover.  Stands are continuously closed canopy of poles and small 
 trees with shrubs, grasses and forbs present. 
 
F4 Young-multistory forest:  Large trees < 30% canopy cover, seedlings and 
 saplings present, pole, small and medium trees ≤ 60% canopy cover.  Site 
 characterized by a broken overstory canopy with diverse horizontal and vertical 
 distribution of trees and tree sizes. 
 
F5 Old-multistory forest:  Large trees ≥ 30% canopy cover with seedlings and 
 samplings, poles, small trees, and medium trees ≤ 20% canopy cover.  Stands are 
 typically multi-strata stands with diverse horizontal and vertical distribution of trees 
 and tree sizes. 
 
Pseudotsuga menziesii sere (Psme) 
 
F2 Sapling forest:  Canopy of low (<50 cm) and/or medium 50-200 cm shrubs 
 with a canopy of < 67%, tree coverage 3-8%.  Seedling and saplings make up the tree 
 component. 
 
F3 Pole forest:  Canopy of low (<50 cm) and/or medium 50-200 cm shrubs with a 
 canopy cover of < 85%, tree coverage 8-20%.  Seedlings, samplings, and small 
 trees make up the tree component. 
 
F4 Young-multistory forest:  Large trees < 30% canopy cover, seedlings and 
 saplings present, pole, small and medium trees ≤ 60% canopy cover.  Site 
 characterized by a broken overstory canopy with diverse horizontal and vertical 
 distribution of trees and tree sizes. 
 



 93
 
 
F5 Old-multistory forest:  Large trees ≥ 30% canopy cover with seedlings and 
 samplings, poles, small trees, and medium trees ≤ 20% canopy cover.  Stands are 
 typically multi-strata stands with diverse horizontal and vertical distribution of trees 
 and tree sizes. 
 
Abies lasicarpa sere (Abla) 
 
 Mixed-aged forest:  Site dominated by subalpine fir. 
 
OTHER COVER TYPES 

Rock 
 
W4 Rock mixed aged woodland:  Canopy (>15%) composed of mostly mid aged 
 juniper with mature individuals also sometimes present.  Limited shrub component 
 with sites dominated by a sparse understory consisting of mostly grasses and forbs.  
 Site dominated by bare ground.   
 
W5 Rock mature woodland:  Canopy (<15%) composed of primarily mature  juniper 
 (flat topped trees and Letharia vulpina usually present).  Limited shrub component 
 with sites dominated by a sparse understory of mostly grasses and forbs.  Sites 
 dominated by bare ground.   
 
Wet Meadow (Wet Meadow) 
 
R2 Closed herbland:  Herbaceous coverage >67%. 
 
Mountain Shrub (Mnt. Shrub) 
 
R6  Closed tall shrub:  Canopy of tall (>2m) shrubs with >67% coverage.  Juniper  
 coverage <5%, usually composed of young to mid aged individuals. 
 
Bromus tectorum (Brte) 
 

Closed annual herbland:  Herbaceous coverage >67% dominated by cheatgrass 
 forming thick dense mats.  
  
Taeniatherum caput-medusae (Taas) 
 

Closed annual herbland:  Herbaceous coverage >67% dominated by medusahead 
 forming thick dense mats. 
 
Active Agriculture 
Mines  
Water 
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Appendix B.  Procedures for the supervised classification. 
 
I. Required Software 
 
II. Preprocessing of the Image 

a.) Conversion to at satellite reflectance 
b.) Reprojection of the image 
c.) Subsetting the image 
d.) Creating additional ancillary layers (NDVI, MSI, Tassel Cap) 
e.) Layer stack 

 
III. DOQQ’s 

a.) Instructions for DOQQ application 
 
IV. Training Sites 

a.) Training site instructions 
b.) Shape file creation 

 
V. Supervised Classification 
 a.) Classification setup 
 b.) Signature editor 
 c.) AOI merge 
 d.)  SAS test to create error matrix 
 e.) Study area division 
 f.) Final SAS classification 
 g.) Grid creation 
 h.) Decision rules 
 
VI. Additional Resources (Located on CD) 
 -Training site data sheet 
 -Training site excel template 
 -Error matrix template 
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I.  REQUIRED SOFTWARE  
 
Software that was utilized in this process can be seen in Appendix E. 
 
IIA. CONVERSION TO AT SATELLITE REFLECTANCE  

 
Conversion from digital numbers (DN) to at satellite reflectance was done in ERDAS 
IMAGINE using the Modeler, Model Maker function.  Because each Landsat image will 
have different values that must be entered into the Modeler only a figure of the models will 
be provided, see Appendix F.  A website by Irish (2000) will also be provided in the 
reference section, which will provides additional insight in to the thought process along with 
chapter descriptions on conversion to radiance (11.3.1) and conversion from radiance to 
reflectance (11.3.2).  See Appendix G for and example of a sample Landsat header file that 
provides the location of parameters such as: LMIN, LMAX, and ESUN values required in the 
model.  
 
IIB.  REPROJECTION OF THE IMAGE  
 
Reprojection on the raw Landsat image can be done by a variety of programs.  This example 
shows how this process can be done in ERDAS IMAGINE.  To reproject an image click on 
Data Prep followed by Reproject Image.  From this window the input file needs to be 
entered along with an output file name.  Under categories (or desired map projection) select 
UTM Clarke 1886 NAD 27 north, and under Projection select UTM Zone 11.  See Appendix 
H.  Select Units to be meters.  Select Ignore Zero in Stats.  Select the Re-sampling Method 
that is appropriate to the desired application.  Nearest neighbor was used for this project.  
Select Rigorous Transformation or Polynomial Approximation depending on appropriate 
method for the application.  More detailed information about Resample Methods, Rigorous 
Transformation, and Polynomial Approximation can be found by clicking on the Help button 
at the bottom of the window.  Once all the settings have been selected click Okay.  
 
IIC.  SUBSETTING THE IMAGE  
 
ERDAS IMAGINE was used to subset the image that has been converted to reflectance to 
the actual study area.  The study area was defined by the Idaho boundary along the west side.  
The Owyhee River on the southern extent and elevation boundary along the east and northern 
extent.  The elevational boundary was created by using a DEM or digital elevational model.  
The DEM was reclassified to have a contour interval of 1250-m.  In IMAGINE the Landsat 
image was opened in one viewer along with the Idaho boundary shape file to define the 
western boundary.  In another viewer the DEM was added along with the Idaho boundary 
shape file.  Using the AOI Tool by clicking on the AOI title then Tools the polygon box 
below the pointer was used to create the study area.  By looking at the DEM fairly rough 
study boundaries where created on the Landsat image.  By double clicking when the 
boundary has been defined an AOI was created.  After a few attempts the project boundary 
was created and the AOI was saved.  To save and AOI go to File, Save, AOI Layer As. 
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Next a subset of the entire Landsat image can be created based on the saved AOI.  To do this 
select Interpreter on the main IMAGINE window, then Utilities, followed by Subset.  The 
input image is the entire Landsat file and the output file can be any new name.  Click on the 
four corners circle, check the Ignore zeros box and click on the AOI button at the bottom.  
Select the AOI file circle and locate the AOI created above.  When all the regions have been 
defined the Okay button can be selected. 
 
IID.  CREATING ADDITIONAL ANCILLARY LAYERS (NDVI, MSI, TASSEL 
CAP)  
 
After the image has been subset to the project boundary additional layers can be created that 
can help in the classification.  Any number or combination of these layers can be created 
based on past research or the research question.  We used the NDVI, MSI, and Tassel Cap 
layers. 
 
In IMAGINE click on the Interpreter button on the top tool bar.  Next click on the Spectral 
Enhancement button.  Next click on the Indices button.  From here the image converted to 
reflectance can be entered in to the input file and a new output file name needs to be added 
such as NDVI or something else.  The sensor will be Landsat TM and the output file will be 
floating single.  Either the NDVI function, or MSI,  which in IMAGINE is called the ferrous 
minerals, can be selected from the function list.  Click on Okay to complete.  Do this for any 
indices of interest that can be created from the list. 
 
To create the tassel cap layers the defaults selection under spectral enhancement was not used 
because it was designed for the Landsat TM5 sensor.  A custom model was used to create the 
layers based on Landsat 7 ETM + coefficients.  Click on the Modeler button on the top of 
the tool bar just like when the raw image was converted to reflectance.  Next click on Model 
Maker.  Refer to Appendix I for a graphical representation of the model.  The coefficients 
for the Landsat 7 ETM+ image were taken from a paper by Huang et al. (2002) who used 5-
paired images to create the coefficients.  Make sure that the number of bands in the image 
corresponds to the number of bands of coefficients.  Make sure that it is also a floating single 
file.  Click on Okay to complete.  The coefficients for all six layers were used and acquired 
from the paper by Huang et al. (2002). 
 
IIE.  LAYER STACK 
 
Once all the layers have been created they need to be stacked together to form one image 
with multiple layers.  For example 11 layers where used for this classification with the 
following order, which can be seen in Appendix J. 
 
To create the layer stack click on the Interpreter button.  Then click on the Utilities button 
followed by the Layer Stack button.  Add the reflectance image first and add the six layers 
required.  Next add the Tassel cap image to the input file and add the first three layers.  Next 
input the NDVI layer followed by the MSI layer.  Give the new image a name in the output  
 
 



 97
 
 
file and make sure that the output data type is floating single.  Click Okay.  This will be the 
image used in the classification process. 
 
IIIA.  INSTRUCTIONS FOR DOQQ APPLICATION   
 
DOQQ’s can be downloaded free of charge for the entire Owyhee study area from the 
following web site.(http://www.insideidaho.org/). 
 
Once at the website click on Geodata title bar on the left and click on find data.  Next under 
grouping double click on scale.  The very first entry in the set of boxes should have the name 
Digital Orthophoto Quarter-Quads.  Double click on the download button and the areas 
across the state that have DOQQ’s will come up.  From here to located individual DOQQ’s 
by name select the Quarter-Quad Info button and select a square.  The zoom in and out 
buttons can also be used to help locate a DOQQ within a given area.  Once the DOQQ of 
interest has been located click the download button and click on the correct DOQQ.  Save to 
a folder or on a CD. 
 
Once all the DOQQ’s have been downloaded they must be unzipped.  Open the file from my 
computer and double click on each.  Using WinZip extract each of the DOQQ files into 
another folder just for DOQQ’s such as doq’s_2003.  One all of the DOQQ’s have been 
extracted the must be converted to correct file format. 
 
Open the folder designated for DOQQ’s.  Open a word pad file to create an AML header file, 
which will be used to format the DOQQ’s.   It should include the following info. 
 
/** w c:/aroth/doq_2003 (location where DOQQ’s area and will be reformatted to) 
/** &r runaml (&r is the command used to run the process followed by the file name) 
 
&r makhead hurrupcr_24kqq_usgs_doqq062198ne.nes bil new nad27 0 0 
&r makhead hurrupcr_24kqq_usgs_doqq062198nw.nws bil new nad27 0 0 
&r makhead hurrupcr_24kqq_usgs_doqq062198se.ses bil new nad27 0 0 
 
Next copy and paste the new DOQQ names into the new file where the bold print is located 
above.  Once this is complete resave the file.  Once the file has been saved make sure the file 
has the file extension .aml not (.txt) and is saved in the same location as the DOQQ’s. 
 
Next open Arc workstation in ArcGIS.  Locate the working directory were the DOQQ’s files 
are located.  Next type in the correct drive and file name where the DOQQ’s are located also 
making sure a copy of the AML is in the same folder. 
 
Arc:  w c:\aroth\doq_2003 (working directory) 
 
Hit enter.  It will state WARNING:  New location is not a workspace. 
Arc: 
 
 

http://www.insideidaho.org/
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Next type in 
Arc:  &r runaml  (the command and file name). Then hit enter.  The program should then 
convert the DOQQ’s to the correct file type which will have the DOQQ name followed by 
.bil 
 
indimead_24kqq_usgs_doqq071898se.bil 
 
Next to view the DOQQ's in IMAGINE so that more than one can be opened at the same 
time the correct projection and units must be specified.  To do this open IMAGINE.  Open 
each DOQQ individual in the view by finding the appropriate file type called Arc/Info & 
Space Imaging BIL.  Click on the Id button, which is the third from the left in the view 
window.  Or click on utility and then Layer info.   
 
Next click on Edit, Change Map Model. And set Units to Meters and Projection to UTM.  
Click Okay and then yes.  Next click on Edit, Add/Change Projection.  Projection Type 
should be UTM.  Spheroid Name should be Clarke 1866.  Datum Name NAD 27.  UTM zone 
11 and  North.  Click Okay and yes.  This must be done for all of the DOQQ’s if more than 
one DOQQ’s is to be viewed in the same view or used to create a view file or to be linked to 
the Landsat image.  To create a view file open each DOQQ one at a time making sure to 
uncheck Clear Display under Raster Options when opening the .bil files.  Then once all the 
DOQQ’s are in the view go to File, Save, View  and save the file with a .vue file extension.  
Then by opening the view file the next time all the DOQQ’s will come up together. 
 
IVA.  TRAINING SITE INSTRUCTIONS   
 
Depending on the objective or vegetation type of interest the size of the ideal training site 
will vary.  For example the smallest training site that was taken in Pixley Basin was an aspen 
patch, which was about 10x10-m.  These smaller aspen patches will be used to determine the 
probability of locating much smaller aspen patches with higher resolution images.  For all 
other PVT and aspen stands involved in the main project the ideal training site would be 
100x100-m with continuous homogeneous vegetation.  Depending on the PVT and SS many 
or very few may fit this size requirement.  In some cases the training site were placed in areas 
smaller than the 100x100-m standard. 
 
The first step is to determine what PVT and SS the possible site would fall within based on 
ocular estimates of the dominant shrub and tree species based on the PVT and SS guide.  
Next located the central area of the training site.  Record the date.  Determine a plot 
numbering system.  Create and record a unique value for each GPS Unit used in creating 
training sites.  With the GPS unit, obtain a good averaged reading for that location and record 
it in UTM coordinates.  Also record the elevation on the data sheet.  If the GPS coordinate 
can be saved on the unit it is often a good idea to have saved values in multiple places.  
Using a compass record the aspect based on degrees from true north.  Using a clinometer 
record the slope of the training site.  Generally the direction in which water would travel 
down the slope where the observer is standing is used as the aspect of the entire training site 
if the terrain is complex.  If pictures are taken the photo number can also be recorded. 
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The life form composition is used to create an ocular estimate of canopy cover based on 
important species and groups of species.  For the training site to qualify for a particular PVT 
and SS the percentages must fall within the ranges given on the guide.  See PVT and SS 
guide in Appendix A.  All species falling into a particular category will be added together to 
get an overall estimate. 
 
The Tree structure section of the data sheet will only be used on PVT’s that include Aspen, 
Douglas-fir, and anywhere aspen is mixed with Douglas-fir or western juniper.  This is 
important in tracking canopy structural trends, and can also indicate the size distribution of 
encroaching conifers into aspen stands.  Upper canopy surface is any canopy of a particular 
species above 2-m and is also measured ocularly.  The lower canopy surface is estimated by 
the amount of tree canopy below 2-m. 
 
The Comments section is used to write down important comments about the plot. 
 
IVB.  SHAPE FILE CREATION   
 
After returning from the field all of the information from the training sites needs to be 
entered into Excel.  A worksheet with the appropriate headings is included in the attached 
files.  Only the information needed for the classification was used in the shape file data table.  
A separated Excel file was created with the following columns; TSN, NUMBER, PVT, SS, 
X COORD, Y COORD, YEAR, CODE, RANDOM, TRAINING, and VALIDATION.  
TSN stands for training site number and was used to keep track of how many sites each class 
represented.  NUMBER was the actually number recorded on the paper-training site.  PVT is 
the Potential Vegetation Type for that particular site.  SS is the Structural Stage of each site.  
X COORD is the x coordinate or easting taken from the GPS unit.  Y COORD is the y 
coordinate or northing taken from the GPS unit.  YEAR was used to keep track of the year in 
which the training sites were collected.  CODE was used to keep track of the data sets 
collected by different people or at a different time so that it would be easy to go back to the  
appropriate data set if needed.  RANDOM represent the set of randomly generated numbers 
to be used to determine which training sites were going to be used as training sites or 
validation.  The rand function in Excel was used to create the numbers first in a row and then 
the entire row was copied and pasted using paste special, value command so that the random 
number remained the same and did not change.  TRAINING represents all the sites within 
each PVT and SS that were used to train the computer.  VALIDATION represents the sites 
that were set aside and not used to create the classification but were used to create and 
accuracy assessment for the classification.  For each PVT and SS class 20% of the total 
number of training sites were set aside for validation.  The lowest numbers created by the 
random numbers were used to create the validation set.  For example Wet Meadow class has 
10 training sites in which 8 were used as training sites and 2 were used as validation data.  
The next class, Mountain Shrub, had 14 total training sites in which 11 were used as training 
sites and 3 were designated validation.  This was repeated for each class making sure that at 
least 20% of each sampled class were reserved for validation.  Once this is complete save the 
file as a DBF 4 (dbase IV) (*.dbf), or (.txt) file.   
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Next open Arc View 3.3 Click on Table, then on the Add button.  Open the dbf file just 
created in Excel.  A similar table should open with all of the same values as the Excel 
spreadsheet. 
 
Open a view set to the correct properties.  Highlight the view box, which will bring the view 
box over the top of the table.  Next go to View and then down to Add Event Theme.  Make 
sure the correct table title is in the Table box.  For the x box make sure that the X COORD is 
inserted and for the Y box the Y COORD.  Click Okay and all of the points should now be in 
the view.  Next covert the dbf file to a permanent shape file.  Make the theme active then go 
to Theme, Convert to shape file and save the file.   
 
The next step is to take the shape file containing all of the points and break it down into 
shape files based on training sites and validation sites.  Creating folders to save shape files 
for both training sites and validation points is a good idea.  Next highlight the shape file with 
all the points and open the table.  Highlight each of the training sites for a particular class by 
clicking on each site and holding down the shift key.  When all the points have been 
highlighted activate the view window again and save as a shape file as described above.  
Next do the same steps for the validation set.  This must be done for each and every class 
based on PVT and SS attributes.  Once this is complete the shape files are ready to be used in 
ERDAS IMAGINE. 
 
VA.  CLASSIFICATION SETUP  
 
Open IMAGINE.  Open the stacked image in one viewer and open a second viewer, which 
will be used for viewing the DOQQ’s.  The DOQQ were divided into the three mountain 
ranges do to the size of the study area and the size of the DOQQ files.  The process can be 
started with any of the classes, but following the alphabetical order may make things the 
easiest.  In the view with the image the shape files need to be laid on top of the image so that 
they can readily be seen.  To open a shape file click on the folder and navigate to where the 
shape files are located.  In Files of Type:  select Shape file (*.shp) and click Okay.  This will 
put the points on the image.  To better view the shape files by PVT, SS, or any of the other 
column titles Click on VECTOR then View properties.  Click on the Attributes box and 
then select any of the column names from the drop down box.  Next click on the box next to 
the small circle.  This will open the Symbol Chooser.  The size of the circle can be changed 
as well as the color.  Click apply, and then Okay.  Click Apply again and then close.  
Opening the same shape file on the viewer with the DOQQ’s should result in the points being 
the same color and size as the view with the image.   
 
Once both views have the shape file present they can be linked.  This is done by right 
clicking on either of the viewers and selecting geo. link/unlink.  This will allow the 
movement in one viewer to be followed in the other viewer automatically.  The seeding tool 
or tools to capture the area that will be used to define a particular class can be opened by 
clicking on AOI in the view with the Landsat image, and then Tools.   
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The region-growing tool was used to locate the boundaries on the Landsat image.  The 
region-growing tool is the magnifying glass with the x in the center.  Region growing  
properties can be altered by changing the spectral Euclidean Distance or the number of pixels 
depending on how the boundary looks after the first attempt.  This tool has the magnifying 
glass within a box.  Increasing the spectral Euclidean Distance will make a larger boundary.  
The boundaries can also be manipulated by the mouse to fit the boundary defined by the user.  
Once the boundary is properly defined the values from those pixels must be entered into the 
signature editor.  The total number of pixels can also be restricted or enhanced with this tool.  
Most AOI’s created were restricted to 40 pixels or less. 
 
To open a signature editor click on the Classifier button on the top tool bar and then on the 
Signature Editor.  After a training site area has been defined click on the button in the 
signature editor that has + sing with a down to the right arrow, which will add the signature 
for that site.  For each site enter the unique signature into two signature editors.  The first one 
should be saved to include all signatures for all classes.  The second will be used to remove 
and combine any classes that are spectrally similar or very different.  Also for each individual 
area defined on the image or AOI, each file must be saved.  To do this click on File, Save, 
AOI Layer as. 
 
This must be done for each individual location and saved as a unique name for each class. 
Therefore, if there are 10 training sites for the ABLA class 10 signatures should be entered 
into the first signature editor and 10 individually AOI should be saved to mark the location of 
the boundaries of each area. Make sure only the active AOI is saved as an individual file.  A 
separate signature editor should be created for the training site data set and the validation site 
data set. 
 
VB.  SIGNATURE EDITOR   

 
Once all the training site AOI’s and unique signature values have been entered for both the 
training sites and validations set, statistical analysis to create a unique signature for each 
class as a whole can begin.  The required tools can be found on the Signature Editor tool bar.  
The two most useful are mean plots and histograms.  Buttons for each of these tools are  
located on the signature editor tool bar and can also be accessed by clicking on View and 
then selecting the wanted tool.  The mean plot button looks like a bent string or lightning bolt 
and the histogram button looks like a graph.  The mean plot function is useful in looking at 
the signature for a single training site or group of training sites over each band layer.  This 
can be useful in separating out outlier training sites.  The histogram option is useful in 
looking at the statistical distribution of a single or group of training sites based on each band 
or data layer.  To view all bands select All Selected signatures and All Bands.  Select 
multiple training sites by right clicking and holding the mouse button down.  To skip a 
selection hold down the shift key and click on the training sites that you want to include.  
Remove outlier classes by right clicking on the training site number and selecting delete. 
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VC.  AOI MERGE  

 
Once the outlier training sites have been removed the single AOI for each class must be 
saved as a single file.  To do this, open the AOI for a particular class one at a time.  When all 
AOI’s for the class have been opened they can be saved as a single file in the view by going  
to File, Save, AOI Layer as.  Save each class as the same unique name.  Make sure to clear 
away all the AOI’s for the last class before beginning a new class.  Do this first for all the 
training sites and then again for all of the validation sites. 
 
PIXEL CONVERSION 
 
Once this has been completed for each class the pixel values for each band must be converted 
to an ASCII file to be used by SAS for classification purposes.  To do this select Utilities on 
the main ERDAS IMAGINE tool bar.  Next select Convert pixels to ASCII.  Then enter the 
image file in the input file box and click on Okay.  Then click on the AOI circle.  Enter the 
AOI file for a particular class.  Next enter the same name as the AOI file and save the ASCII 
file in a new folder. 
 
DATA ORGANIZATION 

Next open up Excel and open the newly created file using the space-delimited format.  
Remove the top three rows and label each row with the appropriate class name.  Name the 
top row Cover which will be next to the X column.  Save the file in Excel format and keep 
the same name.  When all classes are completed create a single file with all the classes 
combined.  See Appendix K  below for an example of what the final file should look like 
noting only five bands are shown.  Once this is completed for all the training sites repeat the 
process creating a separate file for the validation set.   
 
VD.  SAS TEST AND ERROR MATRIX CREATION   
 
The error matrix can be created before the entire image has to be classified.  To do this 
import both the training site Excel spreadsheet and the validation site spreadsheet into SAS.  
Enter the script below into the command box and run.  Export the output table, which in this 
case is called cvout, into an Excel compatible format.  Important statistical values in the error 
matrix include the maps overall accuracy, the producer’s accuracy, the user’s accuracy, and  
the kappa statistic.  The PROC step disc determines which layers add significance to the 
classification or which layers are non-significant and are then excluded and not used in the 
classification 
 
Nonparametric discriminant analysis SAS code 
 
PROC DISCRIM DATA=train method=npar k=7 CROSSVALIDATE  
testdata=validate testout=nonP; 
ods select ClassifiedCrossVal ; 
ods output ClassifiedCrossVal = cvout ; 
CLASSES cover; 
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VAR B1 -- B11; 
RUN; 
PROC stepdisc DATA=train method=backward; 
CLASSES cover; 
VAR b1 -- b11; 
RUN; 
 
 Quadratic Parametric discriminant analysis SAS code 
 
PROC DISCRIM DATA=train method=normal POOL=no CROSSVALIDATE 
testdata=validate testout=parvalidation; 
ods select ClassifiedCrossVal ; 
ods output ClassifiedCrossVal = cvout ; 
CLASSES cover; 
VAR B1 -- B11; 
RUN; 
PROC stepdisc DATA=train method=backward; 
CLASSES cover; 
VAR b1 -- b11; 
RUN; 
 
Data – train = training site file 
Testdata- validate = validation file 
Cvout = cross validation file to export into Excel 
VAR b1—b11 represents bands used in the classification 
 
Once the cvout file has been exported out of SAS and into Excel the error matrix can be 
created.  Either use the Excel template provided, or create a new matrix based on the 
following definitions or the example in Appendix L.  The overall accuracy is computed by 
dividing the total correct (sum of the major diagonals) by the total number of pixels in the 
error matrix (Jensen 1996).  The producer’s accuracy is a measure important to the analyst in 
determining how well a certain area can be classified.  The error of omission is calculated by 
taking correct pixels in a column and dividing it by the total number of pixels for the column.   
The statistics indicates the probability of a reference pixel being correctly classified (Jensen 
1996).  The user’s accuracy measures the probability that a pixel classified on the map 
actually represents the category on the ground.  The total number of correct pixels in a row is 
divided by the total number of pixels that were actually classified in the row, which results in 
the commission error (Jensen 1996). 
 
The kappa statistic incorporated off-diagonal elements to produce a measure that determines 
if the results presented in the error matrix are significantly better than a random test, or to 
compare two similar matrices to determine if they are significantly different (Jensen 1996).  
The formula for the kappa statistic can be found below, and a template for calculating the 
kappa statistics can be found in the attached Excel template. 
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Kappa Statistic 
 
                r            r 
            Ν∑xii ─ ∑(xi+ • x+i) 
K hat =    i=1      i=1              ▫              
                         r 
           N^2 ─∑(xi+ • x+i) 
                        i=1 
 
Where r is the number of rows in the matrix, xii is the number of observations in row i and 
column i, and xi+ and x+i are the marginal totals for row i and column i, respectively, and N 
is the total number of observations (Jensen 1996).  Once the final number of classes and 
satisfaction of the error matrix has been reached the study area next needs to be classified. 
 
VE.  STUDY AREA DIVISION   
 
Depending on the size of the study area the image will need to be cut into smaller pieces to 
be able to be imported into SAS.  For the study area the image was divided into 9 horizontal 
boxes with approximately the same amount of study area in each.  Overlapping is required 
and will not affect the end result.  In Arc View the image was opened as an image file.  
Boxes were then created and placed over the image until the entire image was covered.  All 
the boxes were saved as a shape file that could be used in IMAGINE.  In IMAGINE open the 
shape file with the boxes covering the image.  Highlight one box at a time, which will make 
the box turn yellow.  Click on the AOI title and then click on Copy section to AOI.  The 
selected box should now have dotted lines.   Click on the box again so that an AOI box is 
displayed around the boundary of the box.  Next go File – Save- AOI layer as …  and save 
the AOI in a file with a separate name.  Do this for each of the boxes making sure to keep 
track of the box and corresponding AOI file. 
 
Next we need to clip the image to the size of the AOI.  To do this click on DATA PREP 
from the main title bar of IMAGINE.  Then click on Subset Image.   The input file name is 
the name of the whole Landsat image that you have been using.  The output image name 
should correspond to the name of the AOI file that you will use to clip out the image.  For 
example, Box1.  Clip on the AOI button at the bottom of the window.  Then click on AOI 
file, and open the appropriate file for example Box 1.  Everything else in the window should 
stay as the defaults except check Ignore zeros in the stats and make sure that the number of 
layer corresponds to the number of layers in the original image. Click Okay and repeat for 
each of the AOI created in the previous steps. 
 
Next we need to convert the box sections of the image into a grid.  This is a required step to 
convert the image pixel values to a table format that can be read and analyzed in SAS.  This 
can be done by clicking on the Import button on the IMAGINE main key.  Click on Export.  
The type is a GRID.  Media is file.  The input file is the file created in the previous step.  The 
output file name can be the same name or a different one.  Click on Okay.  Another window 
will open and click on Okay again.  This completes the work needed in IMAGINE. 
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Now open Arc.  Type in w space and then the drive and folder where the grids can be found.  
For example. 
Arc:  w c:\aroth 
 
Then type in lg 
 
It then should define a workspace based on the folders used above.  It will also give the 
available grid names.  Multiple grids will be present for each band or layer that you had in 
the image.  In this case 11 grids were created for each section or box of the study area.  Type 
in grid and hit enter. 
 
Now type in the name of the file plus a period and txt.  Then space = space sample 
parenthesis followed by the name of each grid with a comma and space in between each and 
ending with a parenthesis.  See example below. A txt file will be created combining each of 
the eleven layers in a tab-delimited file that can then be exported into SAS for analysis.  Do 
this for each section of the study area. 
 
Grid:  Fun.txt = sample (box1_l1, box1_l1, box1_l2, box1_3, box1_l4, box1_l5, box1_l6, 
box1_l7, box1_l8, box1_l9, box1_l10, box1_l11) 
 
VF.  SAS CLASSIFICATION  
 
Next each box of the study area needs to be classified.  Open SAS.  File to Import.  Selected 
the file format (.txt), the very last option at the bottom, and select next.  Open the file just 
created in ArcGIS with the appropriate txt ending.  Click Next.  Within the workspace name 
the file the same as the name in the SAS code.  Click on Next then Finish. 
 
Next make sure that the headings are the same for the file just imported and the training site 
file used to classify the image.  To do this open the imported file in SAS by clicking on 
Library then Work and then on the file with the name just imported.  Often the band layers in 
the Excel file will have to be changed to match the other file.  Do this to the training site data 
sheet in Excel before importing the file into SAS. 
 
When the titles match import the Excel file in the same way as the (.txt) file making sure to 
select the Excel option on the first page.  When both files have been imported the command 
statement can then be added to the editor.  The script should look similar to the one used to  
create the error matrix with a few exceptions.  The main difference is instead of using the 
validation data set, the area or section to be classified is used in the testdata line, and instead 
of creating an error matrix, the actual classified area is created in the testout command. 
 
After the program has run which may take some time, the file needs to be exported so that it 
can be imported into Arc View.  Click on the Explorer tab on the right site of the left column 
at the bottom.  Locate the file name used in the testout line, for example class 1.  Right click 
on the file and export.  Click next.  Then select the txt format again.  Save to a folder on a 
computer with ample hard drive space. 
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Nonparametric discriminant analysis SAS code 
 
PROC DISCRIM DATA=train method=npar k=7 CROSSVALIDATE  
testdata=box1 testout=class1; 
CLASSES cover; 
VAR B1 -- B11; 
RUN; 
 
Quadratic parametric discriminant analysis SAS code 
 
PROC DISCRIM DATA=train method=normal POOL=no CROSSVALIDATE 
testdata=box5 testout=class5; 
CLASSES cover; 
VAR B1 -- B11; 
RUN; 
 
VG.  GRID CREATION   
 
Once a section or the entire image has been classified the export output data need to be 
imported into Arc View.  Open Arc View, click on the table icon and then click on add.  Find 
the file just created and click Okay.  With a view open click on View and then on Add new 
Event theme.  For the table selected to file that you just opened.  For the x field select the x 
and for the y field select y.  Click Okay.  When the shape file comes up go to select theme 
convert to grid.  Save all grids in the same place.  Output grid extent should be the same as 
the shape file.  Output grid size should be 30-m and the cell size will depend on the size of 
the box.  Select Okay.  Then selected the title at the very bottom, which corresponds to the 
class name.  Repeat for each of the others. 
 
Next the grids need to be merged together in ARC Grid.  First create a zero grid by 
reclassifying a grid of the entire study area so that all values are equal to zero.  Next make 
sure to set the Analysis properties so that all the required fields have the zero grid as the main 
theme.  This will remove the noise that is outside the study area.  To do this we must first 
remove everything outside the study area that is not need as well and create the proper code 
so that each section of the study area has the same class value.  To do this open one of the 
grids with all 32 classes represented.  Export this table as a dbf to be viewed in Excel.  In 
Excel open the file and remove the count column.  Change the column name value to code.  
Save the new file and open it in Arc view.  This will serve as the master look up table for 
cover classes.  Open the tables in each of the classified grids one at a time.  Join the S-value  
so that the new code column is located in the classified grid table.  Once this is complete 
highlight the view box click on Analysis and Map Calculator.  Click on the title with the 
corresponding grid followed by the word code.  Click on evaluate and save the new grid with 
a unique name.  Once all of the grids have been evaluated the next step is to combine them 
all into one grid.  To do this open up Arc.  Define the working directory and locate the grids.  
Type in Grid and hit enter.  Next type in setwindow zero grid hit enter.  Then type in setmask 
zero grid hit enter.  Then type in setcell 30 and enter.  Next define the output grid name 
followed by a space equals sign then another space.  Then type in merge followed by the  
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name of each grid followed by a comma and a space.  Make sure there are parentheses 
around the first grid name and the last grid name. 
 
setwindow zerogrid 
setmask zerogrid 
setcell 30 
 
grandgrid = merge(class1, class2, class3, class4, class5) 
 
VH.  DECISION RULES  
 
Different decision rules were applied to the three mountain ranges of the study area.  The 
study area was divided into three sections, one for Silver City Range, one for South 
mountain, and one for Juniper mountain.  Using ArcView 3.3, watershed boundaries based 
on a watershed boundary layer were selected for each of the mountain ranges and resulted in 
the creation of unique shape files for each area.  Within each shape file table a new string 
field was added and called zone.  Then click on Field calculator and selected the mountain 
range that corresponds to that shape file.  When this was completed for each of the three 
shape files the Geoproccessing Wizard was used to merge the three mountain ranges into 
one shape file.  Next set the Analysis Properties to the zero grid so that only the actual area of 
the study site would be used.  Then convert the shape file into a grid based on the zone name.  
Hit enter. 
 
In word pad an AML file was create to be used in ARC.  A sample of both elevational 
boundaries and aspect boundaries can be found below, and a list of each aspect rule can be 
seen in Appendix C and elevation rules in Appendix D. 
 
setcell 30 
setwindow zerogrid 
setmask zerogrid 
 
This is required at the top of each AML file. 
 
Elevational Boundary Sample 
 
/*If Brte is greater than 1850 m classify as Artr R1* 
 
DOCELL 
if (final_32 == 10 & dem_04 > 1850) temp = 3 
else temp = 0 
 
END 
 
brte2_no = setnull(temp == 0, 3) 
kill temp 
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All of Class 10, which is BRTE above 1850 meters, was reclassified to represent Artr R1 or 
Class 3.  brte2_no is the new grid file created that will then be merged into the final grid. 
 
Aspect Boundary Sample 
 
 
/*IF PsmeF4 250- 60 remain Psme F4, if Psme F4 59-249 classify as Artr W4 
 
DOCELL 
if (final_32 == 31 & aspect > 60 & aspect < 250) temp = 2 
else temp = 0 
END 
 
artrw4_no = setnull(temp == 0, 2) 
kill temp 
 
All of Class 31 which is Psme F4 with and aspect greater than 60 and less than 250 was 
converted into class 2 or Artr W4. 
 
In ARC locate the workspace where all the grids are located.  Then enter &r and the file 
name to be run such as &r veg_fix_asp.  After all of the grids are created for each decision 
rule they can be merged into the original grid one at a time using the same process described 
in creating the study area layer stack 
 
RIPARIAN BUFFER 
 
Riparian buffers were created by first creating a 30 meter buffer around the steam shape file 
in ArcView 3.3 using the Spatial Analysis extension for the entire Owyhee area.  This was 
done by selecting Analysis, Find Distance.  After this was created the classes that were 
determined to closely represent riparian areas were masked out to be converted into the 
Riparian/ Broadleaf class.  The classes that were selected include Wet Meadow and 
Mountain Shrub.  Using the Analysis Map Query function these classes were removed from 
the entire map by creating a mask.  The mask was then evaluated using the riparian buffer 
layer created above, again using the Map Query function.  After the evaluation process the 
map query can then be reclassified to represent a new class number.  Go to Analysis, 
Reclassify and reclassify the new classes into a new class not represented by the 32-class 
classification.  Next use either ARC Grid or the Transform Grid Merge function, which 
can be found on the Transform Grids extension in ArcView 3.3 to combine the newly created 
layers. 
 
Step 1:  (Asp_elev_test = 9.AsGrid) or (Asp_elev_test = 11.AsGrid) 
 
Asp_elev_test = map grid, 9 = class 9 = Mountain Shrub, 11 = class 11= Wet meadow 
 
Step 2:  Distance_steam ≤ 40 and map Query = 1 
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Distance_stream = stream buffer layer, ≤ 40 = extent size used to create riparian buffer 
boundaries 
 
An active agriculture class was also created for a portion of the Reynolds’s Creek area. A 
shape file was created around the know areas and pixels classified as wet meadow or 
mountain shrub were reclassified to be come active agriculture.  The same process of 
creating a mask was used as described above.  Once the query is reclassified to represent a 
new value another merge can be used to create a final map with the addition of Riparian 
broadleaf class and an active agriculture class.  In the classification Riparian became class 33 
and active agriculture became class 34. 
 
 
VI.  Additional Resources (Located on CD) 
 
1).  Training site data sheet 
2).  Training site excel template 
3).  Error matrix template 
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Appendix C.  Aspect boundary decision rules. 
If Abla is found between 61 - 269 classify as Psme F4 
If Psme F4 is found between 59 - 249 classify as Artr W4 
If Psme F3 is found between 59 - 249 classify as Artr W2 
If Psme F2 is found between 59 - 249 classify as Artr W1 
If Brte is found between 251 - 139 classify as Artr R1 
If Taas is found between 241 - 139 classify as Artr R1 
 
 
Appendix D.  Elevation boundary decision rules. 
If Taas is greater than 1500 meters classify as Brte 
If Brte is greater than 1850 m classify as Artr R1 
If Abla is less than 1900 m then classify as Psme F4 (Silver City only) 
If Abla is found on South Mountain Classify as Psme F4 
If Abla is found on Juniper Mountain classify as Artr W4 
If Psme F4 is found on Juniper Mountain classify as Artr W4 
If Psme F3 is found on Juniper Mountain classify as Artr W2 
If Psme F2 is found on Juniper Mountain classify as Artr W1 
If Psme F3 is less than 1900 m classify as Artr W2 on South Mountain and Silver City 
If Psme F2 is less than 1900 m classify as Artr W1 on South Mountain and Silver City 
 
 
Appendix E.  List of software used to create the supervised classification. 
ERDAS IMAGINE 8.6 
ArcView 3.3 
ArcGIS 8.3 
SAS 8.02 
Microsoft Excel 
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Appendix F.  Radiance and reflectance model used to convert the raw Landsat image  
to exo-atmospheric reflectance. 
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Appendix G.  Example header file from a Landsat image where gains, biases, sun 
elevation angle, and sun azimuth angle can be found.       
 
 
REQ ID =080001128003800002   LOC =042/0270000       ACQUISITION DATE =20002707  
SATELLITE =LANDSAT7   SENSOR =ETM+       SENSOR MODE =NORMAL LOOK ANGLE =  0.00 
                        LOCATION =                  ACQUISITION DATE =          
SATELLITE =           SENSOR =           SENSOR MODE =       LOOK ANGLE =       
                        LOCATION =                  ACQUISITION DATE =          
SATELLITE =           SENSOR =           SENSOR MODE =       LOOK ANGLE =       
                        LOCATION =                  ACQUISITION DATE =          
SATELLITE =           SENSOR =           SENSOR MODE =       LOOK ANGLE =       
PRODUCT TYPE =MAP ORIENTED       PRODUCT SIZE =FULL SCENE                       
TYPE OF PROCESSING =SYSTEMATIC  RESAMPLING =NN                                  
 
 
VOLUME #/# IN SET =01/01 PIXELS PER LINE = 7944 LINES PER BAND = 7548/ 7548     
START LINE # =    1 BLOCKING FACTOR = 1 REC SIZE  =     7944 PIXEL SIZE = 28.50 
OUTPUT BITS PER PIXEL = 8 ACQUIRED BITS PER PIXEL = 8                           
BANDS PRESENT =123457                                                           
FILENAME =L71042027_02720000727_B10.FSTFILENAME =L71042027_02720000727_B20.FST  
FILENAME =L71042027_02720000727_B30.FSTFILENAME =L71042027_02720000727_B40.FST  
FILENAME =L71042027_02720000727_B50.FSTFILENAME =L72042027_02720000727_B70.FST  
 
 REV         L7A 
GAINS AND BIASES IN ASCENDING BAND NUMBER ORDER                                 
      -6.199996948242188        0.775686264038086                               
      -6.399993896484375        0.795686244964600                               
      -5.000000000000000        0.619215667247772                               
      -5.100006103515625        0.965490221977234                               
      -0.999998092651367        0.125725477933884                               
      -0.350000381469727        0.043725494295359                               
       0.000000000000000        0.000000000000000                               
       0.000000000000000        0.000000000000000 
 
GEOMETRIC DATA MAP PROJECTION =UTM  ELLIPSOID =WGS84              DATUM =WGS84  
USGS PROJECTION PARAMETERS =  6378137.000000000000000  6356752.314140000400000  
       0.000000000000000        0.000000000000000        0.000000000000000      
       0.000000000000000        0.000000000000000        0.000000000000000      
       0.000000000000000        0.000000000000000        0.000000000000000      
       0.000000000000000        0.000000000000000        0.000000000000000     
     
  0.000000000000000 USGS MAP ZONE =    11                                  
UL = 1171144.2282W 482505.0796N    485526.000   5362788.000                     
UR = 1140816.6566W 482257.4822N    711901.500   5362788.000                     
LR = 1141427.2905W 462658.4359N    711901.500   5147698.500                     
LL = 1171118.8558W 462857.7258N    485526.000   5147698.500                     
CENTER = 1154059.4768W 472731.1163N    599250.745   5256973.937  3991  3714     
OFFSET =     0 ORIENTATION ANGLE =  0.00                                        
SUN ELEVATION ANGLE =57.2 SUN AZIMUTH ANGLE =141.7                              
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Appendix H.  Geo-reference information needed to project the Landsat image. 
Projection: UTM  
Units: Meters 
Zone: 11 
Spheroid: Clark 1866 
Datum: Nad 27 
 
 
Appendix I.  Tassel Cap model used to create the greenness, wetness, and brightness 
layers used in the final classification image.                                                   
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Appendix J.  Landsat band layers and vegetation indices used to create the  
final stacked image. 
Layer Band and Indices Used 
Layer 1  TM Band1 
Layer 2 TM Band2 
Layer 3 TM Band3 
Layer 4 TM Band4 
Layer 5 TM Band5 
Layer 6 TM Band7 
Layer 7 Tassel Cap 1 
Layer 8 Tassel Cap 2 
Layer 9 Tassel Cap 3 
Layer 10 NDVI 
Layer 11 MSI 
 
 
Appendix K.  Sample training site or validation site Excel spreadsheet used in SAS 8.02 

COVER X Y B1 B2 B3 B4 B5-11 
ABLA 514200 4769220 9.6536 7.4428 6.1023 17.248 8.3270 

ARARR1 524640 4761840 9.5027 7.2772 5.3381 18.664 7.4740 
ARARR3A 524640 4761810 9.5027 7.2772 5.6438 18.310 8.7535 
ARARR3A 524670 4761810 9.3519 7.1117 5.9495 17.602 7.4740 
 
 
Appendix L.  Sample error matrix with user’s and producer’s accuracies  

     Commission Error User’s 
Example ABLA ARARR1 ARARR3A Total error (%) accuracy
ABLA 33 0 0 33 0 0.0 100.0 

ARARR1 0 202 3 205 3 1.5 98.5 
ARARR3A 0 1 151 152 1 0.7 99.3 

Total 33 203 154 390    
     Total =33+202    

Omission error 0 1 3  Correct +151 = 386  
Error (%) 0.0 0.5 1.9     

Producer's accuracy 100.0 99.5 98.1     
        

Overall accuracy 98.97       
kappa statistic 98.19       
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