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ABSTRACT 

 
Gustafson, Willard A., M.A., May 1997     Geography 
 
Assessing Landsat TM Imagery For Mapping and Monitoring Prairie Dog Colonies 
 
Director: John J. Donahue 
 
 
    At the turn of the 20th century, prairie dog colonies (PDCs) covered between 40 and 
100 million ha of the prairies of western North America (Marsh 1984, Anderson et al. 
1986). However because of government eradication programs, habitat loss and more 
recently Sylvatic plague epidemics, PDCs have experienced a decline of nearly 98% in 
the last 100 years.   
    The goal of this research was to evaluate the effectiveness of Landsat Thematic 
Mapper (TM) imagery for directly mapping PDCs using a two-stage classification 
process.  Specific objectives of this research were to: (1) determine how well PDCs can 
be distinguished from uncolonized prairie (UP); and (2) determine whether active PDCs 
can be distinguished from inactive PDCs, due to plague or other factors.   
    Research focused on a portion of one TM scene (Path 37/Row 27) in north central 
Montana (Figure 3). This study area covers part of the Charles M. Russell National 
Wildlife Refuge (CMR), Fort Belknap Indian Reservation, and the Bureau of Land 
Management’s (BLM) Phillips County Resource Area. This PDCs in this area have been 
extensively mapped and monitored by land management agencies since the late 1970’s, 
and is currently the site of black-footed ferret reintroductions. 
    My research shows that PDCs can be mapped fairly accurately using Landsat TM 
imagery and this methodology; however accurately distinguishing PDCs from IPDCs was 
not possible.  The overall tendency of my classifications was to over predict PDCs and 
IPDCs while consistently missing the very small colonies.  Although commission errors 
were high, a good percentage of these errors were due to confusion between active and 
inactive PDCs.  In addition, some of the commission error may be attributed to the 
correct identification of active PDCs, especially on the nearly 700,000 acres of private 
lands, much of which has never been surveyed for PDCs.  The spatial resolution of 
Landsat TM imagery is quite adequate for the identification of PDCs, and any higher 
resolution imagery would, in my opinion, create more problems than benefits. 
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Introduction 

 Prairie dogs live in densely populated colonies across the Great Plains from 

Canada to Mexico.  They are not really "dogs" but are, in fact, closely related to 

herbivorous ground squirrels.  During their explorations Lewis and Clark dubbed them 

prairie “dogs”, because of the animals' distinctive "bark-like" alarm call. At the turn of 

the 20th century, prairie dog colonies (PDC) covered between 40 and 100 million ha of 

the prairies of western North America (Marsh 1984, Anderson et al., 1986).  The largest 

single prairie dog colony on record, in Texas, was 100 miles wide and 250 miles long and 

contained an estimated 400 million prairie dogs (Foster, 1990).  

  

 

Figure 1. Black-Tailed Prairie Dog. 
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 Because prairie dogs keep vegetation closely cropped in and around their colonies 

(Clippinger, 1989) they were assumed to be responsible for the overgrazing of many 

western rangelands.  So when Merriam estimated, in 1902, that prairie dogs reduced 

range productivity by as much as 50-75%, state and federal governments, looking to 



increase forage production for cattle, established programs to eradicate prairie dogs.  

These programs were highly successful, and by 1960 the total range of prairie dogs had 

been reduced to approximately 600,000 ha (Marsh, 1984).  By conservative measures this 

represents a decline of around 98% in less than 100 years.  Some of these eradication 

programs persisted until the late 1980’s despite modern research showing that the level of 

competition between prairie dogs and cattle was only 4-7% (Uresk and Paulson, 1988), 

meaning it would take approximately 300 prairie dogs to eat as much as one cow and calf 

(Miller et al., 1994).  

 Although the decline of PDCs is primarily a result of these eradication programs, 

other contributing factors to their decline include the spread of sylvatic plague (Yersinia 

pestis) and the conversion of native prairie to agricultural production.  Sylvatic plague is 

currently thought to be the single greatest threat to the health of PDCs, "no other diseases 

of prairie dogs have the potential to cause epizootics of higher mortality to prairie dog 

populations (Miller, et al., 1994)."  All species of prairie dogs are susceptible to plague, 

and colonies are often totally eradicated by the disease.  The plague is spread through 

fleas carried on predators such as coyotes, badgers, and ferrets who visit many colonies in 

their search for food.  Currently there is no known method of protecting PDCs from the 

plague.  However recent efforts suggest that upon detection of plague, burrows should be 

dusted with insecticide to kill infected fleas and limit the spread of plague.  Predator 

control is also used to prevent plague from spreading to adjacent colonies (Miller et al., 

1994).   
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Ecological Considerations 

 More than 100 wildlife species depend at least to some extent on PDCs for habitat 

(Clark et al., 1989; Sharps and Uresk, 1990), and several species, such as the mountain 

plover (Chadarius montanus), and black-footed ferret (Mustela nigripes), have evolved 

very close relationships with prairie dogs.  The disappearance, fragmentation, and 

resulting isolation of PDCs are responsible for the decline of these two species, as well as 

the decline in the overall biodiversity of the prairie ecosystem (Miller et al., 1994). 

 Black-footed ferrets, widely recognized as one of the most endangered species in 

North America, depend entirely on PDCs for food and shelter.  These ferrets were almost 

extinct in the 1980's except for a small population near Meteetse, Wyoming.  When, in 

1985, this population almost perished from canine distemper, the surviving individuals 

were captured and placed in a captive-breeding program.  This breeding program was 

successful, and in 1989 plans were initiated to reintroduce black-footed ferrets back into 

the wild (Oldemeyer, 1993).  Because black-footed ferrets depend entirely upon PDCs for 

their sustenance, knowledge of PDC locations, sizes, and relative health is of utmost 

importance.  However, because of the spread of sylvatic plague, continued expansion of 

agricultural production, and the sheer vastness of the Great Plains, the number, size, and 

whereabouts of healthy PDCs have proven difficult to inventory, and expensive to track.  
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Figure 2. Black-Footed Ferret. 

 

Mapping and Monitoring 

 The methods for mapping PDCs have evolved significantly over the years.  Early 

surveying efforts relied on visual estimation of colony size and location on topographic 

maps.  With the goal of increasing their accuracies, researchers in the 1970's began 

experimenting with black and white aerial photography, and later color infrared 

photography for PDC mapping. Unfortunately, these efforts proved to be “inadequate” 

and too expensive (Biggens et al., 1993). 

 Currently, ground surveys using global positioning systems (GPS) are the most 

common way of mapping and monitoring PDCs.  While planimetrically accurate, GPS 

surveys are very labor intensive, and depend upon the subjective judgments of each 

individual surveyor.  Consequently, this method is limited by manpower, time, and 

consistency, and, as such, may not be suitable for broad-scale applications. 

 The emergence of geographic information systems (GIS) has facilitated the 

development of new computer models focused mainly on the evaluation of the extent and 
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quality of prairie dog habitat.  Some examples include the Habitat Suitability Index 

(Clipinger, 1989) and the more recent habitat models by Reading (1997), and Proctor 

(1998).  These models employed multivariate statistical analysis to predict the most 

suitable habitat types based on slope, aspect, soil type and vegetation. 

 The goal of this research was to evaluate the effectiveness of Landsat Thematic 

Mapper (TM) imagery for directly mapping PDCs using a two-stage classification 

process. I chose Landsat TM imagery because it is readily available, relatively cheap, and 

because a preliminary unsupervised classification of a Landsat TM image showed a 

strong association between a spectral classes and prairie dog colony boundaries 

(Redmond pers. comm., 2001).  Specific objectives of this research were to: (1) 

determine how well PDCs can be distinguished from uncolonized prairie (UP); and (2) 

determine whether active PDCs can be distinguished from inactive PDCs, due to plague 

or other factors.   

 

Prairie Dog Colony Attributes 

 My research depends upon the capacity of the Landsat TM satellite to remotely 

sense differences between UP and PDCs, and more subtly, between active PDCs and 

inactive PDCs (IPDC). These differences include the presence of unvegetated burrows, 

the shortness of the vegetation within the colonies, and the altered composition of that 

vegetation.  Biomass is significantly lower on PDCs, averaging 95g/m2 compared to 190 

g/m2 on the surrounding UP.  There is also a corresponding shift in vegetation 

composition with greater than 95% of PDC biomass being composed of forbs, whereas 

forbs make up less than 15% of the biomass on adjacent UP (Coppock et al., 1989).  
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Research suggests that upon initial abandonment of PDCs (1-2 yr) there is a 32% to 36% 

increase in biomass, primarily stemming from an increase in grasses.  This results in a 

slight decrease in the relative abundance of forbs and an increase in the relative 

abundance of grasses (Cid et al., 1991), and is the result of selective foraging by prairie 

dogs.  Prairie dog colonies are ordinarily one of the first areas to green-up in springtime, 

which in north central Montana usually occurs in late March or early April (Randy 

Matchett pers. comm., 2001).  They also stand out well in late summer against the drier 

prairie grasses due to the abundance of forbs and the immature growth stage of grasses on 

PDCs.  To take advantage of these seasonal high contrasts I selected cloud free images 

recorded during early spring or late summer.  

 

 

Figure 3. Example of a prairie dog colony in a Landsat TM false color composite 
image using bands 4(red), 5(green), and 3(blue). Surveyed boundaries are shown in 
black. Note the apparently unsurveyed PDC in the left central portion of the image. 
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Study Area Description 

 Research focused on a portion of one TM scene (Path 37/Row 27) in north central 

Montana (Fig. 3). The study area covers part of the Charles M. Russell National Wildlife 

Refuge (CMR), Fort Belknap Indian Reservation, and the Bureau of Land Management’s 

(BLM) Phillips County Resource Area.  This region incorporates a wide range of 

physiographies.  The CMR portion is dominated by the Missouri River Breaks, which 

consist of deep valleys, ranging from 500 to 1000 feet below the surrounding plains and 

having steep forested walls and mixed grass and sagebrush floors.  The Fort Belknap and 

Phillips County portions are open rolling prairie dissected by intermittent streams and 

deep coulees.  The dominant vegetation in this portion of the study area consists of 

grasses and sagebrush.   

 Across much of this area the PDCs have been mapped and their status monitored 

by the United States Fish and Wildlife Service (USFWS), Bureau of Indian Affairs 

(BIA), and the BLM since the late 1970’s, and throughout the plague epidemic, which 

began in 1992.  Portions of this area have also been studied extensively through habitat 

modeling (Proctor, 1998, Reading and Matchett, 1997).  Because of the overall quality 

and number of the PDCs in this region, it has been identified as a nationally significant 

area for prairie dogs and species dependent upon them (Proctor, 1998).  In addition, the 

area has been targeted for black-footed ferret reintroductions, which have been taking 

place on several healthy colonies throughout the region.  The importance of this area for 

the protection of PDCs and associated species, as well as the wealth of historical survey 

data, makes it an optimum study area for my research.   
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Figure 4. False color composite using bands 4, 5, and 3 showing extent of Landsat 
TM scene P37/R27 with the study area boundary shown in red. 
 
Raw Data 

 In addition to a complete set of the survey data, I also obtained Landsat TM 

imagery for three dates coinciding approximately with the cycle of plague infestation, 

and the dates of the survey data.  The first date, 1991, represents pre-plague conditions 

and will be used in conjunction with the 1988 survey data.  From the second and third 

dates, 1993 and 1995, I will attempt to measure declining conditions one and four years 

after the plague infestation initially occurred.  

 Landsat TM imagery is collected by satellites, specifically Landsat 5 and Landsat 

7, which carry sensors that record electromagnetic reflectance from the earth in several 
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wavelengths or bands.  Landsat TM imagery has a 30-meter spatial resolution, which 

means that each pixel represents a 30 X 30 meter area on the ground.  For each pixel, data 

for 7 bands, TM1-TM7, are collected. Each pixel’s value for each band is stored using 8 

bits, allowing the data values to range between 0 and 255.  Thus each band is essentially 

a grayscale image made up of 256 distinct shades of gray; zero recording no reflectance 

and 255 recording maximum reflectance or saturation.  Multiple bands may be viewed in 

color by assigning one band to each color gun, red, green, or blue, on a computer monitor 

producing what is known as a false color composite.  For visual inspection, I generally 

assigned TM4 to the red gun, TM5 to the green gun, and TM3 to the blue gun.  

 Some other data that were used during the classification and subsequent analyses 

include a digital elevation model (DEM), an ownership layer; other layers such as 

hydrography, roads, and political boundaries were used primarily for cartographic 

production.
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Methodology 
 My classification methodology consisted of two major stages: image 

segmentation and supervised classification.  During image segmentation the image was 

first run through a clustering algorithm that divided it into groups of spectrally similar 

pixels, i.e. an unsupervised classification.  These similar pixels were then clumped 

together spatially creating a spectrally and spatially segmented image of relatively 

homogenous regions (Ma et al., 2001).  These regions potentially represent distinct 

patches of vegetation or landcover, i.e. forest stands, meadows, rock outcrops, and 

especially, in this case, prairie dog colonies.  

The second stage of the classification involved labeling each of these patches or 

regions with its correct covertype using supervised classification techniques.  Supervised 

classification relies on areas of known covertype, i.e. a training sample, to assign labels to 

the rest of the regions created during the image segmentation.  This two-stage method 

combining unsupervised and supervised classification techniques has been shown to be 

an effective way of classifying landcover (Ma et al., 2000; Steele et al., in press). It is 

also a way to improve the usefulness of ancillary data by pre-grouping the range of 

unique spectral features in the image prior to supervised classification (Wilkie and Finn, 

1996). 

 

Pre-Processing 

 After clipping the TM images to my study area boundary, I excluded, or masked 

out, as much of the non-potential PDC area as possible.  The areas that were masked out 

included croplands, steep slopes, the Little Rocky Mountains, and water. Cropland masks 

 11



were created for each image by digitizing their boundaries on-screen. Because PDCs very 

rarely occur on slopes greater than 25% (Reading, and Matchett, 1997), I masked out 

these areas using a slope grid derived from a 30m DEM. I also used a DEM to create a 

mask for the Little Rocky Mountains by eliminating all elevations greater than 1200m. 

Because water absorbs virtually all light in TM band 7, areas that have very low 

reflectance values in this band, i.e. below 20, were likely to be water. 

 By masking out areas unsuitable for PDCs I hoped to avoid some of the confusion 

associated with having one very broad class, UP, and two much narrower classes, PDC 

and IPDC. Furthermore, by limiting the broader class only to areas that could potentially 

be colonized, i.e. narrowing the broad range of acceptable covertypes, the differences 

between UP, PDC, and IPDC were accentuated.  An additional but minor benefit of the 

masking was a reduction in the number of pixels/regions to be classified. 
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Figure 6. False color composite image map (bands 4, 5, 3) of the study area. White 
areas identify unsuitable habitats. 
 

Image Segmentation 
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 The unsupervised classification phase of the image segmentation stage was 

performed using the ISODATA clustering algorithm available in Erdas Imagine 8.4 using 

Landsat TM bands 1-7.  ISODATA stands for Iterative Self-Organizing Data Analysis 

Technique; it iteratively performs complete classifications of the image and recalculates 

cluster statistics many times (Erdas Field Guide, 1997). Some advantages of the 

ISODATA algorithm are: (1) it is not geographically biased because it is iterative instead 

of single pass; (2) it is highly successful at finding natural patterns in the data; and (3) it 

makes no difference where the initial cluster means are located so long as enough 



iterations are performed (Erdas, 1997).  I used a custom program that incorporates the 

ISODATA algorithm and allows the user to specify the number of clusters, a 

convergence threshold, and the maximum number of iterations per run.  The convergence 

threshold was the maximum percentage of pixels that remained unchanged between 

iterations, i.e. if there is virtually no change between iterations ISODATA stops.  Initially 

the means of the clusters were arbitrarily determined, and an iteration was run.  In 

subsequent iterations, the cluster means were recalculated based on the previous 

classification results, causing them to shift position in spectral space (Figure 7).  These 

new cluster means then provided the basis for the next iteration.  This process continued 

until either the convergence threshold or the maximum number of iterations was reached.   
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Figure 7. An example of how the ISODATA clustering algorithm divides spectral 
space. Reproduced with permission from Jensen, 1996. 
 
 
 Initially the ISODATA routine was run seven times, each one producing between 

13 and 23 spectral classes.  The classes were then combined to produce a set of 119 initial 

spectral classes.  These spectral classes were then manually analyzed. Some classes were 
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split and others merged based on their spectral similarity, the number of pixels belonging 

to the class, and whether or not they were a potential PDC class.  I focused mainly on 

splitting the larger potential PDC classes into smaller classes to discern the subtle 

differences between PDC and IPDC.  Merging of spectral classes is easily done, however 

the splitting of classes was more complicated. The classes to be split were extracted from 

the image and re-classified using ISODATA into multiple classes, and then merged back 

into the original set of spectral classes.  I settled on a final set of 150 spectral classes and 

used a minimum distance to means classifier (see unweighted Euclidean distance 

classification on page 24) to complete the unsupervised classification of the image. 

 When the unsupervised classification was complete the 150-class image was 

spatially segmented using custom software built around the M86 merge algorithm 

(Barsness, 1998) to group pixels of like spectral classes into regions.  The M86 algorithm 

initially identifies the boundaries between spectral classes, and then merges pixels 

together using two major decision rules, a region size threshold, and a spectral similarity 

threshold.  The regional size threshold is the maximum size at which a region will not be 

merged further preventing very large regions from dominating the landscape.  The 

spectral similarity threshold is the maximum difference between spectral groups that is 

allowable when merging.  This prevents very dissimilar spectral types from being 

combined regardless of their spatial extent. 

 After the merge, the mean region size was just over 1 acre and the smallest region 

size was .22 acres. In order to filter out the scattered small regions and standardize the 

minimum mapping unit (MMU) to 1 acre between the classifications, I merged all 

regions less than an acre in size into their surrounding covertype.  
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Figure 8. A comparison of raw and segmented images showing prairie dog colonies 
with surveyed boundaries shown in black. 
 

Z-grid 

 Upon completion of the merge, the image was prepared for the supervised 

classification.  This preparation resulted in an ArcInfo grid called the zone grid or z-grid.  

The z-grid’s Info database housed the attributes for each region in the grid.  These 

attributes included a unique regional identification number, a pixel count, the mean value 

for each TM band, 1-7, and the mode spectral class value.  Modified Normalized 

Difference Vegetation Index (MNDVI), a measure of biomass production adapted from 

Nemani et al. (1993), was then added to the database.  It was calculated using the 

formula: 
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 Four topographic attributes were calculated from a 30-meter DEM and added as 

well.  These attributes were elevation, aspect, slope, and a solar insolation index.  

Elevation was recorded in meters, aspect was divided into eight 45-degree wedges (1-8) 

with the first value mapped to north and ascending clockwise, and slope was measured in 

degrees.  The solar insolation index was designed by Brian Steele and was calculated 

using slope, aspect, and the following algorithm (Steele, unpublished): 

 

( )( )( )1 45 135
cos 6.2832

360

asp
ins slp

    − +    =          

 

 

Setting slope aside for now, the transformation maps the southwest aspect to 1 

and the northeast aspect to -1.  All other aspects fall in between: northwest and southeast 

go to 0, north and east go to - .707, and south and west go to + .707.  These values are 

then multiplied by slope to produce the solar insolation index.  

 At this juncture each region in the z-grid had the following attributes: value, 

count, spectral-class (from the image segmentation), mean values for TM Bands 1-7, 

mean MNDVI, mean elevation, mean slope, majority aspect, and mean solar insolation.  

Nine of these variables were used directly as inputs into the supervised classification: TM 

Bands 1-7, MNDVI, and solar insolation.  I excluded slope, aspect and elevation as direct 

inputs to the classification because I had already partially accounted for slope and 
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elevation during pre-processing, and by using solar insolation, I already had a 

topographic attribute that provided beneficial results in landcover classifications.  

 

Supervised Classification 

 Once the z-grid was prepared, a supervised classification was used to assign a 

covertype label to each region. Supervised classification initially uses a training sample 

to generate statistics about the represented covertypes, and then uses these statistics to 

predict a region's covertype.  Covertype labels were assigned to the unknown regions 

based on an evaluation of covertypes for the most similar samples.  Because supervised 

classification depends on knowledge of land cover for training, careful selection of the 

training data was very important. 

 

Training Data 

 Because of the importance of training data, its selection must be undertaken with 

great care.  The main reason stems from geographic variation within covertype classes. 

Geographic variation occurs within a single covertype due to differences in soil types, 

moisture, topography, and other factors.  Thus a single land cover type can have a 

different spectral response from one part of the study area to another.  One way to 

mitigate the effects of geographic variation is through the use of stratified random 

sampling when selecting the training samples (Wilke, and Finn, 1996).  Stratified random 

sampling divides a population into internally homogeneous sub-populations (strata) based 

on a priori knowledge about the population.  In this case the survey data, (a priori 

knowledge) was used to stratify the training samples by covertypes.  These samples were 
 19



then used to generate specific information about each covertype to increase the precision 

of the estimates about the population (Congalton, 1988).  

  I initially drew together my training sample by using a random number generator 

and ArcInfo to generate 50,000 points.  These 50,000 points were then overlaid on the z-

grids for each classification and any duplicate points falling within a region were 

eliminated.  The remaining points were then edited further to remove any falling within 

uncharacteristic, mixed, or atypical regions so as to prevent them from adversely 

affecting the final classification (Wilkie and Finn, 1996).  After editing, I had a set of 

more than 30,000 points randomly distributed across the study area.  The attribute data 

for each sampled region, i.e. a region with a point falling within its boundaries, was then 

added to the Info database of that point.  From this master sample set I then randomly 

selected the training samples required for each classification.   

 According to Lillesand and Keifer (1994) each covertype must have at least n +1 

samples, where n is the number of variables (spectral bands, etc).  In practice, however, 

the usual minimum number of training regions ranges from 10n to 100n.  Wilkie and Finn 

(1996) suggest additionally that 50n pure pixels are required to estimate the spectral 

response (SR) for each land cover class.  My analysis uses nine variables (TM1-7, 

MNDVI, and solar insolation) suggesting that, according to Lillesand and Keifer, I need 

between 90 and 900 samples from each covertype and at least 450, according to Wilkie 

and Finn, from each to estimate the SR of the classes.  However, because these 

recommendations failed to address the need for proportionality in a stratified sampling 

scheme, I decided upon a compromise between proportional sample size and the 

minimum sample to effectively estimate SR within each class.  I set the number of PDC 
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training regions at a minimum of 500, slightly above what was needed for estimation of 

SR, limited the UP training sample size to 5000, and set the IPDC training sample size at 

a minimum of 200.  These numbers corresponded to a computationally efficient sample 

size that conformed as much as possible to the guidelines outlined in Lillesand and Keifer 

(1994) and Wilkie and Finn (1996), while keeping within the spirit of a proportional 

sample.  The relatively high proportion of sampled to unsampled regions in the PDC and 

inactive PDC covertypes, as compared with the UP covertype is appropriate because of 

their small area, and their need for adequate representation (Congalton, 1988).  An added 

benefit of keeping the sample size relatively small is that it permits land management 

agencies to collect field data and perform PDC classifications semi-annually without 

having to survey every known PDC. In essence the model, if successful, will provide 

more efficient options to agencies responsible for monitoring PDC populations.   
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Classifiers 

 Supervised classification can be conducted using a variety of classification 

algorithms. I used a combination of unweighted Euclidean distance (UED) and Mean 

Inverse Distance (MID) classifiers.  I selected this combination classifier because it 

yielded consistently accurate covertype results for all 3 dates, and was relatively simple 

conceptually in comparison to other classifiers.  I will focus on the UED and MID 

classifiers and how, using the product rule, the two individual classifiers, UED and MID, 

were combined to produce a single more accurate covertype classifier.  

 

Terminology and Notation 

 Following Steele and Patterson (2001) suppose that a training sample x = {x1, ... 

xn} has been collected by sampling a population P consisting of n covertypes, C1, ... Cn.   

The ith observation is denoted by xi = (ti, ci, zi), where ti is the mean covariate vector 

(MCV) (explained in detail on page 24), ci is a covertype label, and zi is a pair of location 

coordinates.  For my study, P is the set of regions created by the image segmentation, zi is 

the location of the centroid of the ith sampled region, ci is the covertype label at zi, and ti 

represents the remotely sensed and terrain variables observed at zi.   For an unclassified 

region x0, t0 and z0 are known, but the covertype c0 is unknown.  The posterior probability 

that x0 belongs to covertype Cc, given t0 and z0 is denoted by Pg(x0) = P(c0 = c | x0).   A 

classifier can be viewed as an estimator of P1(x0),...,Pn(x0) that assigns x0 to the group 

with the largest posterior probability estimate (Steele, 2000).  The posterior 

probability produced by the unweighted Euclidean distance classifier is the 

percentage of the k-nearest neighbors belonging to C

0( )UED
gP x

c, where the distances between x0 
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and the training observations x1, ... xn are the Euclidean distances from t0 to the covariate 

vectors t1, ... tn.  The posterior probability  produced by the mean inverse 

distance classifier is the probability that the covertype C

0( )MID
gP x

c is going to occur at location x0 

given the relative proximity’s of the other training samples. 

 

Unweighted Euclidean Distance Classifier 

  The unweighted Euclidean distance (UED) classifier, similar to the Minimum 

Distance to Means classifier (MDM) (Lillesand and Kiefer, 1987, and Jensen, 1996), 

used spectral Euclidean distance (SED) as a measure of how similar the covertypes of 

unlabeled regions were to the covertypes of the training regions. SED is the distance 

between two n-dimensional vectors, or MCVs, in spectral space computed in n-

dimensions where n is the number of bands” (Erdas, 1997). The differences between the 

unlabeled regions and the training samples for each covertype, i.e. their SEDs, were 

calculated by comparing the MCVs of the unlabeled regions and the MCVs for each 

covertype represented by the training samples.  A MCV is defined by the values of each 

variable either from the training samples of a covertype class, or from each unlabeled 

region.  The smaller the SED between an unlabeled region’s MCV and a covertypes 

MCV, the closer the similarity of the two and, thus, the more likely that the unlabeled 

region should be labeled as that covertype.  In a traditional MDM classification the SEDs 

are calculated between each unlabeled regions MCV and the average MCV for each 

covertype using the following formula (Wilkie and Finn, 1996): 
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Where TxUy is the Euclidean distance between training region x’s MCV and unclassified 

region y’s MCV, Txn  is the mean variable n value for training region x, Uyn is the mean 

variable n value for unknown region y, and b is the number of variables in the 

classification.  The covertype producing the smallest SED, i.e. the MCV most similar to 

that of the unclassified region, labels that region.   

The UED classifier I used is very similar to the MDM classifier with one major 

exception.  While the minimum distance to means classifier compares each covertype’s 

average MCV, calculated using all the training samples in each covertype, with each 

unclassified region’s MCV; the UED classifier compares each individual training 

regions’ MCV with those of each unclassified region.  The training regions are then 

sorted from closest to farthest and the first “k” nearest neighbors (k-NN) according to 

spectral Euclidean distance are selected.  These k-NN training regions are then used to 

calculate the mode covertype, which then is assigned to the region in question. 

Historically, MDM classifications use a k-NN size of one, thus, only the single 

nearest neighbor to an unlabeled region classified its covertype.  However, 

experimentation with different k-NN sizes can lead to higher classification accuracies 

because every training data set has an optimum neighborhood size at which the 

classification is most accurate (Steele and Redmond, 2001).  To determine the optimum 

k-NN size for my classification I employed a simple looping algorithm to iteratively test 

all neighborhood sizes from 1 to 100.  The k-NN size producing the highest accuracies, 
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i.e. the “optimum” k-NN size, was then used to perform the final classification. The “k” 

nearest neighbors were selected from the sorted list of training regions, and the covertype 

that occurred most often in the k-NN, i.e. the mode covertype, classified the region.  If a 

tie were to occur, the neighborhood size was slowly expanded, until a modal covertype 

resulted.   

 

Mean Inverse Distance Spatial Classifier 

 The Mean Inverse Distance (MID) spatial classifier was used to determine the 

spatial configuration of training observations around each unclassified region (Steele and 

Patterson, 2001). This was accomplished by calculating the mean inverse distance 

between the centroid of an unclassified region and the centroids of all the training regions 

for each covertype. The resulting patterns were then used to identify areas whose spatial 

characteristics closely matched those of the each covertype (Steele and Redmond, 2001). 

 The MID classifier measures spatial Euclidean distances, in meters, as opposed to 

spectral Euclidean distance, which is measured by the UED classifier.  Mean inverse 

distance, , between a region with location z( )0
MID
g zδ 0 and all training regions with 

covertype Gg is defined as: 

 

( ) ( )0 0
1

g

qMID E
g i

i Ig

z z
n

δ δ −

∈

= ∑ , 

 

Where Ig denotes a set of indices for the group Gg training regions with i being the ith 

training region in the set of Ig,  is the Euclidean distance between a region with ( 0
E

i zδ )
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location z0 and the training region with location zi, and the exponent q is set to 2. The 

exponent q in this formula controls the influence of near neighbors of z0 in determining 

.  The choice of q = 2 as the exponent in the equation has the appeal of relating 

the MID classifier to the standard inverse square law.  The effect of this classifier can be 

visualized by imagining the training data to be lights of equal intensity spread across the 

study area, and  to be thought of as the average illumination generated by the 

lights of group G

( )0
MID
g zδ

( )0
MID
g zδ

g at z0 (Steele, 2000).  As the distance increases between training 

samples and unlabeled regions, the effect of the MID classifier decreases, i.e. the lights 

get dimmer.  Thus, the closer and, if you will, brighter areas would then have higher 

probabilities of covertype membership than more distant and thus darker areas.  The 

probability of membership in covertype g is estimated by:  

0( )MID z∑

 

( )0
0

01

( )
( )

MID
gMID

g c MID
kk

z
P z

z

δ
δ

=

=
∑

. 

 

Where  is the sum of the inverse distances between all training regions, 

regardless of covertype, and the region with location z

1

c
kk

δ
=

0.  While not especially accurate 

when taken alone, as it is based purely upon spatial configurations, the accuracies of 

Euclidean distance classifiers are significantly improved when combined with the MID 

spatial classifier using the product rule (Steele, 2000).  In essence the MID classifier 

increases the probability that unlabeled regions close to training regions will be classified 

 27



as the training regions covertype, however, when the unlabeled regions are very distant 

from a training sample the influence of the MID classifier approaches zero (Steele, 2000).   

 

Product rule 

  Suppose that two classifiers have produced membership probability estimates 

denoted by: and , g = 1, ... c.  Where is the probability that 

region x

0( )UED
gP x 0( )MID

gP x 0(UED
gP x )

0 belongs to covertype g according to the UED classifier and  is the 

probability that region x

0( )MID
gP x

0 belongs to covertype g according to the MID classifier.  The 

product rule (Steele, 2000) combines these two estimates by computing their relative 

products: 

 

0 0
0

0 0
1

( ) ( )
( ) , 1,..., .

( ) ( )

UED MID
g gprod

g c
UED MID
j j

j

P x P x
P x g

P x P x
=

= =
∑

c

0

 

 

In this case region x0 is then assigned to covertype g if  is the largest among 

.   

0( )prod
gP x

1 0( ),..., ( )prod prod
cP x P x

 The rule imposed a consensus agreement between the classifiers because, if any 

classifier predicts a probability of covertype membership near zero, then the relative 

product of the classifiers will also be near zero.  Thus, if any classifier indicates that a 

region’s membership in a particular covertype is unlikely, then the combination classifier 

is unlikely to label the region with that covertype (Steele, 2000).  When assigning 

covertype labels to unlabeled regions, the probabilities for membership in each covertype 
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are calculated.  The region is then labeled according to the covertype that produces the 

highest relative probability of membership.  

 

Accuracy Assessment 

Accuracy assessment is arguably the most important aspect of a classification. 

Therefore, it is imperative that it be undertaken with extreme care.  The most objective 

and scientifically valid method of accuracy assessment would be to take a stratified 

random sample of classified regions and verify their covertypes in the field.  However 

because I worked with historical data (1991, 1993, and 1995), a field survey was not 

possible.  Therefore I relied upon the existing survey data and classification results to 

compute (1) the raw observed (surveyed) and predicted (classified) acreages, (2) a leave-

one-out cross-validation assessment (McLachlan, 1992), and (3) an overlay analysis.  The 

raw observed and predicted acreages provided a quick estimate of commission and 

omission errors, while the cross-validation and overlay analyses provided much more 

detailed assessments of classification performance.   

 

Leave-One-Out Cross-Validation Accuracy Assessment 

A leave-one-out cross-validation accuracy assessment was calculated by 

removing a single training region from the training sample, constructing the classification 

rule from this reduced training set, and then applying this new rule to classify the left out 

region.  This process was repeated until each training region had been held out and 

classified once. These results were then used to calculate omission error and commission 

error.  Omission error is the number of training regions incorrectly classified divided by 
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the total number of training regions for that class.  It represents the percentage of training 

regions for each covertype that were misclassified, i.e. under-classification.  Commission 

error is the number of training regions incorrectly classified divided by the total number 

of regions predicted to be in that covertype.  Sometimes referred to as reliability, 

commission error represents the percentage of regions classified on a map that do not 

represent that category on the ground, i.e. over-classification.  

 

Overlay Analysis 

 Overlay analysis used the PDC survey data in conjunction with the classification 

results to determine how much of the surveyed area was correctly identified.  Overlay 

analysis involved converting the survey data and classification results into ArcInfo grids 

and then mathematically adding these grids together to produce combination grids.  The 

key to getting useful combination grids was assigning the input grids initial values in a 

binary fashion.  This means that the input grids had values in the pattern of 2n where n = 

0, 1, 2, 3 …n, because any natural integer can be expressed by the addition of a unique 

set of base 2 outcomes.   I set all the survey grids so that UP had a value of 0 and PDCs 

had a value of 1.  For the bi-variate classification results I set the value for UP to 0, and 

PDCs to 2.  When these grids were then added together they produced unique values 

depending upon the values assigned to the areas of intersection.  For the bi-variate 

combinations the resulting grid had values ranging from 0-3, with 0 being UP, 1 

representing areas of omission, 2 representing areas of commission, and 3 representing 

areas of agreement, i.e. correctly classified.  The overlay analysis for the tri-variate 

classifications followed the same technique but extended from an initial 5 classes instead 
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of 3: UP (0), surveyed PDC (1), surveyed IPDC (2), classified PDC (4), and classified 

IPDC (8), resulting in 16 unique values (0-15) in the combination grid.   

The GIS data used during these analyses included: the final classified grids for 

each image date and type of classification, the PDC survey data provided by the BIA, 

BLM, and CMR collected in 1988, 1993, and 1995, and the current ownership layer from 

the Montana Natural Resource Information System (http://nris.state.mt.us).  All of the 

GIS data were converted to the same Albers equal area projection prior to any processing.  

Because sylvatic plague initially struck in 1992, and I wanted to get a good 

representation of the pre-plague conditions, I began with a 1991 image even though the 

only survey data, and thus training data, available prior to the plague infestation was from 

1988.  This was necessary in part because a suitable cloud free image was unavailable, 

and also because I was able to classify, by beginning with a 1991 image, a series of 

images 2 years apart to monitor change.   

The 1988 field survey data were gathered using visual estimates of PDC 

boundaries, which were then delineated on 7.5 minute (1:24k scale) quad maps.  

Beginning in 1993 the survey data were collected using GPS.  The 1993 survey is 

probably the most complete of any of the three years because it was the first survey 

performed after the plague outbreak was discovered. Thus, extra care was taken to ensure 

that all known PDCs were surveyed regardless of land ownership or stewardship.  The 

1995 survey is similarly complete except on BLM lands. Because of budget and 

personnel constraints, the BLM lands were divided into three proportional units and 

surveyed on a 3-year rotating basis, 1/3 in 1995, 1/3 in 1996, and 1/3 in1997.  Therefore, 

the BLM’s acreage for 1995 represents approximately 1/3 of their existing PDCs, and I 

 31

http://nris.state.mt.us)/


did not feel comfortable including 1996 and 1997 data for training the 1995 image.  

Therefore, the cross-validation accuracy assessment results, which are derived directly 

from known covertype and locations, are most reliable, but the results of the other 

accuracy analyses are still important for understanding the nature of the errors that 

occurred.  

 

Results 

Bi-Variate Classifications 

 The total predicted area of PDCs remained very stable in the study area, rising 

slightly from 66,530 acres in 1991 to 67,958 in 1995 (Table 1).  This stability was 

observed despite a 63.4% reduction in the area of PDCs mapped by surveys between 

1988 (44,079 acres) and 1995 (16,149 acres).  These comparative results suggest an over-

classification of more than 20,000 acres in 1991, 30,000 in 1993, and 50,000 in 1995 

(Table 1).  Because I wanted to determine if there were differences in the proportions of 

error on lands managed by different government agencies and private landowners, i.e. 

stewardship classes, I calculated the difference densities (DD) for each stewardship class 

by taking the absolute differences between the observed (surveyed) and predicted 

(classified) acres of PDCs under that stewardship, and dividing this by the observed PDC 

acreages under that stewardship: | o pDD
o
−= |  where o = observed acreages and p = 

predicted acreages.  The results showed consistently lower differences in the CMR and 

consistently higher ones on private lands (Table1).  It is also worth noting that for all 

stewardships, aside from the Bureau of Reclamation (BOR) whose acreage was relatively 
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insignificant, the DD rose as the plague infestation spread between 1991 and 1995 

(Table1).  

Table 1. Relationships between land stewardship and the number of acres of PDCs 
observed vs. predicted for the bi-variate classifications. 

 
    PDC Acres 

Stewardship Acres % of SA1 Status 1991 1993 1995 
Observed 16,204 14,979 7,261 
Predicted 26,403 33,773 25,845 BIA 484,102 24.6 

DD2 .63 1.25 2.56 
Observed 11,685 5,969 2,772  
Predicted 17,189 12,143 15,547 BLM3 66,889 3.4 

DD2 .47 1.03 4.61 
Observed 27 69 0 
Predicted 143 136 24 BOR 7,646 .4 

DD2 4.29 .97 - 
Observed 6,717 3,325 4,048 
Predicted 6,706 4,163 6,096 CMR 537,264 27.3 

DD2 .001 .25 .51 
Observed 5,965 4,337 1,057 
Predicted 11,150 23,228 15,323 Private 741,438 37.6 

DD2 .87 4.36 13.5 
Observed 3,468 2,653 1,011 
Predicted 4,939 5,042 5,123 State 132,763 6.7 

DD2 .42 .9 4.08 
Observed 44,079 31,332 16,149 
Predicted 66,530 68,485 67,958 Total 1,970,102 100 

Average DD2 .51 1.19 3.21 
1. SA = Study Area  
2. DD = Difference Density 
3. In 1995 approximately only 1/3 of BLM PDCs were surveyed, the observed BLM values are 

estimated. 

 33



10
0

5
10

15
20

M
IL

E
S

SC
A

L
E

 1
:1

06
92

50

U
nc

ol
on

iz
ed

 P
ra

ir
ie

O
m

is
si

on
 E

rr
or

C
om

m
is

si
on

 E
rr

or

C
or

re
ct

ly
 C

la
ss

if
ie

d 
PD

C

H
yd

ro
gr

ap
hy

M
T

 R
ou

te

U
S 

R
ou

te

St
ud

y 
A

re
a 

B
ou

nd
ry

Fi
gu

re
 1

0.
 1

99
1 

B
i-

va
ri

at
e 

C
la

ss
if

ic
at

io
n 

R
es

ul
ts

.

RT 66

US 19
1

34

H
ay

s

M
al

ta

Jo
rd

an

H
ar

le
m

U
S 

2

M
ile

s



10
0

5
10

15
20

M
IL

E
S

SC
A

L
E

 1
:1

06
92

50

U
nc

ol
on

iz
ed

 P
ra

ir
ie

O
m

is
si

on
 E

rr
or

C
om

m
is

si
on

 E
rr

or

C
or

re
ct

ly
 C

la
ss

if
ie

d 
PD

C

H
yd

ro
gr

ap
hy

M
T

 R
ou

te

U
S 

R
ou

te

St
ud

y 
A

re
a 

B
ou

nd
ry

Fi
gu

re
 1

1.
 1

99
3 

B
i-

va
ri

at
e 

C
la

ss
if

ic
at

io
n 

R
es

ul
ts

.

RT 66

US 19
1

35

H
ay

s

M
al

ta

Jo
rd

an

H
ar

le
m

U
S 

2

M
ile

s



10
0

5
10

15
20

M
IL

E
S

SC
A

L
E

 1
:1

06
92

50

U
nc

ol
on

iz
ed

 P
ra

ir
ie

O
m

is
si

on
 E

rr
or

C
om

m
is

si
on

 E
rr

or

C
or

re
ct

ly
 C

la
ss

if
ie

d 
PD

C

H
yd

ro
gr

ap
hy

M
T

 R
ou

te

U
S 

R
ou

te

St
ud

y 
A

re
a 

B
ou

nd
ry

Fi
gu

re
 1

2.
 1

99
5 

B
i-

va
ri

at
e 

C
la

ss
if

ic
at

io
n 

R
es

ul
ts

.

RT 66

US 19
1

36

H
ay

s

M
al

ta

Jo
rd

an

H
ar

le
m

U
S 

2

M
ile

s



Accuracy Assessments 

 My findings indicate that for the 1991 classification 22.4% of all PDC training 

regions were incorrectly classified.  In 1993 this dropped to a low of 16.4%, and in 1995 

went back up to 22.3% (Table 2).  The omission errors derived from the overlay analyses 

were higher in 1991, very similar to observed in 1993 (17.1%), and significantly lower in 

1995 (13.0%) (Table 3).  Commission errors derived from cross validation stayed near 

20% in all three years (Table 2). But the commission errors from the overlay analysis 

rose from 52% in 1991 to nearly 82% in 1995 (Table 3). 

 

Table 2: Leave-one-out cross-validation statistics for the bi-variate classifications. 

Predicted Covertype Observed Covertype 
1991 UP PDC Total TR1 

Omission 
Error 

Uncolonized Prairie 4902 98 5000 2% 
Prairie Dog Colony 112 388 500 22.4% 
Total TR Classified 5014 486 5500 Overall Error 
Commission Error 2.3% 20.2%  3.8% 

1993   
Uncolonized Prairie 4891 109 5000 2.2% 
Prairie Dog Colony 82 418 500 16.4% 
Total TR Classified 4973 527 5500 Overall Error 
Commission Error 1.4% 20.7%  3.5% 

1995     
Uncolonized Prairie 3361 84 3445 2.4% 
Prairie Dog Colony 82 286 368 22.3% 
Total TR Classified 3443 370 3813 Overall Error 
Commission Error 2.4% 22.7%  4.4% 

1. TR = Training Regions. 
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Table 3: Results of the bi-variate classifications overlay analyses showing the 
proportions of each error type and correctly classified areas. 

Bi-variate Classifications 
1991 PDC Overlay Acres1 Total Acres % Of Total 

Omission Error 12,165 44,0792 27.6% of Surveyed Area 
Commission Error 34,616 66,5303 52.0% of Predicted Area 

44,0792 72.4% of Surveyed Area Correct 31,914 66,5303  48.0% of Predicted Area 
1993 PDC    

Omission Error 5,352 31,3322 17.1% of Surveyed Area 
Commission Error 42,505 68,4853 62.1% of Predicted Area 

31,3322  82.9% of Surveyed Area Correct 25,980 68,4853 37.9% of Predicted Area 
1995 PDC4    

Omission Error 1,852 14,3012 13.0% of Surveyed Area 
Commission Error 55,510 67,9593 81.7% of Predicted Area 

14,3012 87.0% of Surveyed Area Correct 12,449 67,9593 18.3% of Predicted Area 
1. The areas of the regions produced by the overlay analysis.  
2. The total area of surveyed PDCs in my study area. 
3. The total area predicted to be PDCs by the classification. 
4.  In 1995 approximately only 1/3 of BLM PDCs were surveyed; these values are 

estimated. 
 

Omission Error Analysis  

 Between 27-30% of all PDCs surveyed between 1988 and 1995 were missed by 

the supervised classifications (Table 4).  The size of those colonies averaged 5-16 acres 

during the three time periods and made up only 3-4% of the total area of PDCs surveyed.  

The colonies that were partially predicted/missed averaged between 53 and 167 acres, 

and in addition, 72-87% of the areas of those colonies were correctly classified as PDCs.   
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Table 4: Results of the omission error analyses for the bi-variate classifications 
identifying the number and acreages of colonies that were missed or partially 
predicted/missed. 
 

  Missed Part Predicted Part Missed Total 
# PDCs 112 (30%) 253 (70%) 365 
Acres 1,805 (4%) 31,914 (72%) 10,361(24%) 44,081 1991 

Avg. Size 16 167 121 
# PDCs 114 (27%) 310 (73%) 424 
Acres 1,004 (3%) 25,980 (83%) 4,348 (14%) 31,332 1993 

Avg. size 8.8 98 74 
# PDCs 95 (27%) 261 (72%) 356 
Acres 453 (3%) 12,449 (87%) 1,399 (10%) 14,302 1995 

Avg. Size 5 53 40 

 

Commission Error Analysis 

 To determine the extent to which IPDCs were being confused with PDCs, I 

performed another overlay analysis using the surveyed IPDCs and the PDC commission 

areas from the original overlay analysis.  In 1993, 25.2%, or more than 5,000 acres of the 

surveyed IPDCs, were misclassified as PDCs, accounting for 12.4% of the total 

commission error (Table 5).  In 1995, 48.5%, or more than 17,500 acres of the surveyed 

IPDCs, were classified as PDCs, accounting for 31.7% of the total commission error.  
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Table 5: Results of the commission error analysis comparing PDC commission and 
IPDCs.  

1993  Overlay Acres1 Total Acres % Of Total 

Surveyed IPDC  15,659 20,9472 74.8% of surveyed IPDC 
PDC Commission  37,217 42,5053 87.6% of PDC Commission 

20,9472 25.2% of surveyed IPDC IPDC Classified as PDC 5,288 42,5053 12.4% of PDC Commission 
1995     

Surveyed IPDC  21,653 36,2412 59.7% of surveyed IPDC 
PDC Commission  37,921 55,5093 68.3% of PDC Commission 

36,2412 48.5% of surveyed IPDC IPDC Classified as PDC 17,588 55,5093 31.7% of PDC Commission 
1. The areas of the regions produced by the overlay analysis. 
2. The total surveyed IPDC area. 
3. The total predicted IPDC area in the tertiary classifications. 
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Tri-Variate Classifications 

 Between 1993 and 1995 the tri-variate classifications predicted a net decrease of 

almost 10,000 acres in the PDC covertype and a 9,000 acre net increase in the IPDC 

covertype (Table 6).  But the predicted acreages for both classes were considerably more 

than the acreages actually mapped each year.  For example, the tri-variate classifications 

appeared to over predict PDCs by more than 30,000 acres in 1993 and 39,000 acres in 

1995 (Table6).  Similarly the IPDC covertype was over predicted by 17,000 acres in 1993 

and dropping to less than 7,500 acres 1995 (Table 6).  The difference densities for the 

PDC covertype were slightly lower than in the bi-variate classifications; however, in 

1995 the DDs for the IPDC covertype were much lower than the PDCs’ DDs in the bi-

variate classifications. (Table 6).   

Table 6: Relationship between the surveyed and predicted acreages of each 
covertype for the tri-variate classifications.  

 

Status Acres 
 1993 1995* 

Observed PDC 31,332 14,302 
Predicted PDC 63,045 53,237 

Average DD 1.01 2.72 
Observed IPDC 20,947 39,241 
Predicted IPDC 37,896 46,703 

Average DD .81 .19 
*In 1995 approximately only 1/3 of BLM PDCs were 
surveyed; these values are estimated. 
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Accuracy Assessments 

 Based on the leave-one-out cross-validation analysis, in 1993 25.6% of all 

training regions originally labeled as PDC for 1993 were incorrectly classified (Table 7). 

For 1995 the PDC omission error rose to 37%.  Both of these rates are higher than those 

reported for the bi-variate classification’s PDC covertype.  The omission error for IPDCs 

began at 54.8% in 1993 and dropped to 42.6% in 1995 (Table 7).  Almost half of the 

IPDC training regions were incorrectly classified. This is clearly an unacceptably high 

rate of error.  

 Commission error reported by cross-validation was also higher than those 

reported by the bi-variate classifications, especially for the IPDC covertype.  In 1993 the 

commission error for the PDC covertype was 30% and it rose to 35.2% in 1995 (Table 7).  

The commission error for the IPDC covertype stayed fairly constant at 45-46% in both 

years.  These again were much higher commission errors than those obtained from the bi-

variate classifications.  
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Table 7: Leave-one-out cross-validation statistics for the tri-variate classifications. 

1993 Original Covertype 
Predicted Covertype UP IPDC PDC Total TR1 

Omission 
Error 

Uncolonized Prairie 4871 74 110 4965 1.9% 
Inactive PDC 154 178 62 394 54.8% 

Prairie Dog Colony 59 79 402 540 25.6% 
Total TR Classified 4994 331 574 5899 Overall Error 
Commission Error 2.5% 46.2% 30%  7.6% 

1995      
Uncolonized Prairie 3296 78 71 3445 4.3% 

Inactive PDC 90 195 55 340 42.6% 
Prairie Dog Colony 54 82 232 368 37% 
Total TR Classified 3440 355 358 4153 Overall Error 
Commission Error 4.2% 45.1% 35.2%  10.4% 

1. TR = Training Regions. 

 

 In 1993 according to the overlay analysis, only 54.9% of the surveyed IPDCs 

were correctly classified as IPDC, making up only 30.3% of the total predicted IPDC area 

(Table 8).  By 1995 the correct classification of surveyed IPDC dropped to 39%, making 

up a total of 32.7% of the total predicted IPDC.  With IPDC omission errors starting near 

50% and increasing to over 61%, it is clear that the tri-variate classifications weren’t 

working.  
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Table 8: The results of the tri-variate classifications overlay analyses. 
 

Tri-variate Classifications 
1993 PDC  Overlay Acres1 Total Acres % Of Total 

Omission Error 6,283 31,3322 20.1% of surveyed 
Commission Error 37,896 62,9453 60.2% of classified 

31,3322 79.9% of surveyed Correct 25,049 62,9453 39.8% of classified 
1993 IPDC    

Omission Error 9,451 20,9472 45.1% of surveyed 
Commission Error 26,400 37,8963 69.7% of classified 

20,9472 54.9% of surveyed Correct 11,496 37,8963 30.3% of classified 
1995 PDC4    

Omission Error 3,246 14,3022 22.7% of surveyed 
Commission Error 42,181 53,2373 79.2% of classified 

14,3022 77.3% of surveyed Correct 11,056 53,2373 20.8% of classified 
1995 IPDC4    

Omission Error 23,945 39,2402 61.0% of surveyed 
Commission Error 31,408 46,7033 67.3% of classified 

39,2402 39.0% of surveyed Correct 15,295 46,7033 32.7% of classified 
1. The areas of the regions produced by the overlay analysis. 
2. The total area of surveyed PDCs or IPDCs in my study area.  
3. The total area predicted to be PDCs or IPDCs by the tri-variate classifications. 
4. In 1995 approximately only 1/3 of BLM PDCs were surveyed; these values are 

estimated. 
 

Discussion 

Bi-variate classifications 

The bi-variate classifications were intended to test whether or not I could 

accurately predict the presence or absence of PDCs.  Verification of the results in the 

field would be the best way to assess their accuracy; however, because I was working 

with historical data, field verification was impossible.  Instead I had to rely on the survey 

data for accuracy assessment.  Although these surveys were performed carefully, it is 

 48



unlikely that they recorded and accurately mapped every PDC in the study area.  But 

unfortunately at this point in time there is no easy way to distinguish between the correct 

classification of undocumented PDCs and true commission errors.   

 As the plague spread and the amount of active PDCs surveyed decreased, my total 

predicted area of PDCs did not.  Thus, commission errors rose significantly between 

1993 and 1995.  These commission errors could be due to the inclusion of undocumented 

PDCs in the classification, confusion between PDC and/or other similar covertypes, or 

both. In the commission error analysis I determined that 12.4% in 1991 and 31.7% in 

1995 of these areas were made up of surveyed IPDCs that were being mistakenly 

classified as PDCs.  In addition, with over 700,000 acres of private lands in the study 

area, many of which were unsurveyed for PDCs, and a predicted PDC acreage of between 

11,000 and 23,000 acres, or 16.5 and 33.9% of the total predicted acreage of PDCs 

respectively, it is highly likely that some of this “commission error” can be attributed to 

the correct classification of undocumented PDCs.  This assertion is also supported by the 

relatively high DDs on private lands. 

Because of the tendency for the bi-variate classifications to over predict PDCs, 

one might expect relatively low commission errors.  Yet both the cross-validation and 

overlay analyses indicated that between 16 and 28% of all PDCs surveyed between 1988 

and 1995 were missed by the classifications (Tables 2 and 3).  Fortunately though those 

colonies that were missed tended to be much smaller than the average; and made up just a 

small fraction of the overall PDC area. 
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Tri-variate Classifications 

 The purpose of the tri-variate classifications was to determine if inactive PDCs, 

due to plague or other factors, could be classified separately from active PDCs and 

uncolonized prairie.  It became apparent fairly early that it was not working very well. 

The low accuracies recorded for the tri-variate classifications, as well as the lack of 

decline in total acreage identified as active PDCs in the bi-variate classifications over the 

course of the plague infestation, led me to conclude that either my methods and or data, 

as outlined above, were inadequate to accurately discern between inactive and active 

PDCs.  This is understandable because IPDCs represent a continuum between active 

PDCs and uncolonized prairie. This wide range of spectral response makes it very 

difficult to define a distinct IPDC class.  

Although classifying IPDC directly may not be feasible, IPDC can still be derived 

indirectly using a series of bi-variate classification results and overlay analysis, much in 

the same way I determined the surveyed IPDC areas from the PDC survey data. First one 

must assume that any PDCs from the previous years classification or survey represents 

active for that year. Then by overlaying subsequent years classifications it can be 

determined which of the previously classified areas were not classified in the subsequent 

year. These areas would be then labeled IPDCs in the new classification. 

 

Conclusions 

My research shows that PDCs can be mapped fairly accurately from Landsat TM 

imagery; however accurately distinguishing PDCs from IPDCs was not possible.  The 

spatial resolution of 30 x 30 meters is quite adequate for the identification of PDCs, and 
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any higher resolution imagery would, in my opinion, create more problems than benefits 

by accentuating the significant variation within PDCs, and by creating a significantly 

more cumbersome dataset.  The overall tendency of my classifications was to over 

predict PDCs and IPDCs, while consistently missing the very small, i.e. < 15 acre, 

colonies. Although commission errors were fairly high, a good percentage of these errors 

(12-32%) were due to confusion with IPDC.  

One important and as yet unanswered question remains: what percentage of the 

commission areas were really undocumented active PDCs.  It is clear that some of the 

commission error, particularly on private lands, is likely to represent active PDCs 

however I cannot say for what percentage this is true.  Future research using current 

imagery and a post classification survey (see below) could answer this question, and in so 

doing provide further validation of the method as well as the basis for deciding whether 

to apply this methodology to other areas. If such validation were successful, it would 

greatly help promote and improve the management and conservation of prairie dogs and 

related species across western North America. 

  

Future research 

 If I were to begin this project again I would begin by selecting a current TM 

image date and then carefully planning and executing a field survey designed explicitly to 

collect training data.  This would enable the tailoring of survey design for more accurate 

feature representation, which would then be reflected by higher accuracies in the 

subsequent classifications. As part of the pre-processing I would perform a simple, 10-20 

class, unsupervised classification and use this to mask out any covertypes not associated 
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with known PDCs.  The image segmentation and supervised classifications could then be 

run, and the results assessed using cross validation analysis.  These results would then be 

used to help design a post classification survey for the collection of field data to be used 

in an independent accuracy assessment.  These changes would provide, in my opinion, a 

more accurate classification, and a sounder method of assessing its accuracy.  
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APPENDICES 
 
 

Appendix 1: 1991 Bi-variate Data. 

 
Overall Acreages Pixel Count Acres 
Surveyed PDCs 198203 44079.33 
Classified PDCs 299153 66530.09 

Overlay Analysis Results   
PDC Omission 54703 12165.67 

PDC Commission 155653 34616.43 
Correctly Classified 143500 31913.66 

Surveyed PDC Stewardship   
BIA 72861 16203.91 
BLM 52542 11685.07 
BOR 122 27.13 
CMR 30203 6716.99 

Private 26882 5965.07 
State 15593 3467.8 

Predicted PDC Stewardship   
BIA 118721 26402.94 
BLM 77291 17189.12 
BOR 644 143.22 
CMR 30152 6705.65 

Private 50138 11150.43 
State 22207 4938.72 

 

Cross Validation Results Observed Covertype 
Predicted Covertype UP PDC Total TR1 

% Omission 
Error 

UP Classified 4902 98 5000 2 
PDC Classified 112 388 500 22.4 

Total # Classified 5014 486 5500 
% Commission Error 2.3 20.2   

1. TR = Training Regions. 
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Appendix 2: 1993 Bi-variate Data. 

 
Overall Acreages Pixel Count Acres 
Surveyed PDCs 140885 31332.1 
Classified PDCs 307943 68484.94 

Overlay Analysis Results   
PDC Omission 24067 5352.38 

PDC Commission 191125 42505.22 
Correctly Classified 116818 25979.72 

Surveyed PDC Stewardship   
BIA 67353 14978.96 
BLM 26840 5969.08 
BOR 310 68.94 
CMR 14953 3325.47 

Private 19500 4336.7 
State 11929 2652.95 

Predicted PDC Stewardship   
BIA 151860 33772.88 
BLM 54600 12142.76 
BOR 612 136.11 
CMR 18719 4163.01 

Private 59479 13227.82 
State 22673 5042.36 

Commission Analysis Results   
Surveyed IPDC 70411 15659.04 

PDC Commission 167348 37217.34 
Area in Agreement 23777 5287.88 

 

Cross Validation Results Observed Covertype 
Predicted Covertype UP PDC Total TR1 

% Omission 
Error 

Uncolonized Prairie 4891 109 5000 2.2 
Prairie Dog Colony 82 418 500 16.4 
Total TR Classified 4973 527 5500 

% Commission Error 1.4 20.7   

1. TR = Training Regions. 
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Appendix 3: 1993 Tri-variate Data. 

 
Overall Acreages Pixel Count Acres 
Surveyed PDCs 140885 31332.1 
Predicted PDCs 283483 63045.16 
Surveyed IPDCs 94188 20946.93 
Predicted IPDCs 170398 37895.64 

Overlay Analysis Results   
PDC Omission 28250 6282.65 

PDC Commission 170848 37995.72 
PDC Correctly Classified 112635 25049.45 

IPDC Omission 42498 9451.34 
IPDC Commission 118708 26400.05 

IPDC Correctly Classified 51690 11495.59 
 

 
Cross Validation Results Original Covertype 

Predicted Covertype UP IPDC PDC Total TR1 
% Omission 

Error 
Uncolonized Prairie 4871 74 110 4965 1.9 

Inactive PDC 154 178 62 394 54.8 
Prairie Dog Colony 59 79 402 540 25.6 
Total TR Classified 4994 331 574 5899 

% Commission Error 2.5 46.2 30   

1. TR = Training Regions.
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Appendix 4: 1995 Bi-variate Data. 

 
Overall Acreages Pixel Count Acres 
Surveyed PDCs 64308 14301.77 
Predicted PDCs 305578 67958.98 

Overlay Analysis Results   
PDC Omission 8330 1852.55 

PDC Commission 249600 55509.76 
Correctly Classified 55978 12449.22 

Stewardship   
Surveyed PDCs   

BIA 32647 7260.52 
BLM 4155 924.05 
BOR 0  
CMR 18203 4048.25 

Private 4756 1057.71 
State 4547 1011.23 

Predicted PDCs   
BIA 116214 25845.4 
BLM 69909 15547.4 
BOR 109 24.24 
CMR 27412 6096.29 

Private 68899 15322.78 
State 23035 5122.87 

Commission Analysis Results   
Surveyed IPDC 97361 21652.59 

PDC Commission 170514 37921.44 
Area in Agreement 79086 17588.32 

 

1. TR = Training Regions 

1995 Observed Covertype 
Predicted Covertype UP PDC Total TR1 % Omission Error 

Uncolonized Prairie 3361 84 3445 2.4 
Prairie Dog Colony 82 286 368 22.3 
Total TR Classified 3443 370 3813 

% Commission Error 2.4 22.7   
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Appendix 5: 1995 Tri-variate Data. 

Overall Acreages Pixel Count Acres 
Surveyed PDCs 64308 14301.77 
Predicted PDCs 239379 53236.67 
Surveyed IPDCs 176447 39240.9 
Predicted IPDCs 210001 46703.14 

Overlay Analysis Results   
PDC Omission 14594 3245.63 

PDC Commission 189665 42180.52 
PDC Correctly Classified 49714 11056.14 

IPDC Omission 107671 23945.48 
IPDC Commission 141225 31407.72 

IPDC Correctly Classified 68776 15295.43 
 

Cross Validation Results Observed Covertype 
Predicted Covertype UP IPDC PDC Total TR1 

% Omission 
Error 

Uncolonized Prairie 3296 78 71 3445 4.3 
Inactive PDC 90 195 55 340 42.6 

Prairie Dog Colony 54 82 232 368 37 
Total TR Classified 3440 355 358 4153 

% Commission Error 4.2 45.1 35.2   

1. TR = Training Regions. 
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