
GREATER SAGE-GROUSE RESPONSE TO COAL-BED NATURAL GAS  

DEVELOPMENT AND WEST NILE VIRUS IN THE POWDER  

RIVER BASIN, MONTANA AND WYOMING, USA. 

By 

Brett Lincoln Walker 

B.A., University of California at Berkeley, 1990 
M.S., University of Montana, 2000 

Dissertation 

presented in partial fulfillment of the requirements 
 for the degree of 

Doctor of Philosophy 
in Wildlife Biology 

The University of Montana 
Missoula, MT 

Spring 2008 

Approved by: 

Dr. David A. Strobel, Dean 
Graduate School 

 
Dr. David E. Naugle, Chair 
Wildlife Biology Program 

 
Dr. Thomas E. Martin 

Wildlife Biology Program 
 

Dr. Erick P. Greene 
Division of Biological Sciences 

 
Dr. Paul Krausman 

Wildlife Biology Program 
 

Dr. David A. Patterson 
Dept. of Mathematical Sciences 



 

 

 

 

 

 

 

© COPYRIGHT 

by 

Brett Lincoln Walker 

2008 

All Rights Reserved  

ii 



Walker, Brett, Ph.D., Spring 2008  Fish and Wildlife Biology 

 

Greater Sage-grouse Response to Coal-bed Natural Gas Development and West Nile 

Virus in the Powder River Basin, Montana and Wyoming, USA. 

 

Chairperson:  Dr. David E. Naugle 

  Understanding how population dynamics respond to landscape-scale disturbance and 
disease are crucial for effective wildlife management and conservation.  Two new 
potential stressors on greater sage-grouse (Centrocercus urophasianus) populations in the 
Powder River Basin of Montana and Wyoming are coal-bed natural gas (CBNG) 
development and West Nile virus (WNv).  I first examined how CBNG development, 
habitat, and other landscape features influenced trends in the abundance of displaying 
males and the status of sage-grouse leks.  Second, I used rates of WNv-induced mortality 
and seroprevalence from radio-marked birds to estimate rates of WNv infection.  Third, I 
studied the influence of female characteristics, season, and environmental variables on 
nest, brood, and female survival.  I then used population models to estimate potential 
impacts of WNv on population growth.  From 2001-2005, numbers of males on leks in 
CBNG fields declined more rapidly than leks outside CBNG.  Of leks active in 1997 or 
later, only 38% within CBNG remained active by 2004-2005, compared to 84% of leks 
outside CBNG.  By 2005, leks in CBNG had 46% fewer males per active lek than leks 
outside CBNG.  Persistence of 110 leks was positively influenced by proportion 
sagebrush habitat within 6.4 km of the lek and negatively affected by CBNG 
development at multiple scales.  Prohibiting CBNG development within 0.4 km of sage-
grouse leks is inadequate to ensure lek persistence.  From 2003-2005, minimum WNv-
related mortality rates from 1 July-15 September ranged from 2.4-13.3% and maximum 
possible rates ranged from 8.2-28.9%.  In spring 2005 and 2006, 10.3% and 1.8% 
respectively, of newly-captured females tested seropositive for neutralizing antibodies to 
WNv.  Annual WNv infection rates were lower in habitats without CBNG development.  
Summer mortality from WNv occurred every year, decreased annual female survival 
rates by 0-27% per year, and reduced estimates of population growth by 7-10% per year.  
Changes in epizootiology of WNv and in distribution and management of surface water 
from CBNG development will play an important role in long-term impacts of WNv on 
greater sage-grouse populations in the Powder River Basin.  Management should focus 
on eliminating man-made water sources that support breeding mosquitos known to vector 
the virus. 
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CHAPTER 1.  INTRODUCTION 

 

Widespread concern over declines in greater sage-grouse (Centrocercus 

urophasianus) abundance and distribution have led to extensive research and 

management efforts to understand and reverse population declines.  Recently, energy 

development and West Nile virus have emerged as two new potential stressors on sage-

grouse populations.  My dissertation research was originally designed to evaluate impacts 

of CBNG development on greater sage-grouse demography.  However, the emergence of 

WNv as an additional stressor on sage-grouse populations in the PRB (Naugle et al. 2004, 

2005; Walker et al. 2004) and the apparent causal link between CBNG and WNv 

mortality (Zou et al. 2006, Doherty 2007) has generated the need to investigate potential 

consequences of both coal-bed natural gas and WNv mortality on sage-grouse 

populations. 

In Chapter 2, I examine how CBNG development, habitat, and other landscape 

features influenced trends in the abundance of displaying males in the PRB between 

2001-2005 and the status of sage-grouse leks between 1997-2005.  I then use these results 

to estimate approximate threshold densities of CBNG development and the size of lek 

buffers required to maintain various levels of population persistence.  A condensed 

version of this chapter was published in the Journal of Wildlife Management in 2007 

(Walker et al. 2007a).  In Chapter 3, I use data on WNv-induced mortality and 

seroprevalence from the PRB to estimate rates of WNv infection from 2003-2006.  A 

condensed version of this chapter was published in the journal Avian Diseases in 2007 

(Walker et al. 2007b).  In Chapter 4, I use data from radio-marked females in three 

 1



regions of the PRB from 2003-2006 to generate age-specific estimates of nest, brood, and 

adult female survival for use in population models in Chapter 5 and to study the influence 

of female characteristics, season, and environmental variables on nest, brood, and female 

survival.  These analyses also form the foundation for future research on how local and 

landscape habitat and infrastructure variables influence key vital rates after controlling 

for other factors.  In Chapter 5, I use age-specific demographic estimates from the PRB to 

parameterize a life-stage simulation analysis model to examine potential consequences of 

WNv mortality for population growth under different scenarios.  Chapter 5 also forms the 

basis for a separate manuscript reviewing the ecology of WNv in sagebrush habitat, 

impacts on greater sage-grouse demography, and potential range-wide consequences of 

WNv for sage-grouse populations (Walker and Naugle 2008). 
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CHAPTER 2.  GREATER SAGE-GROUSE POPULATION RESPONSE TO ENERGY 

DEVELOPMENT AND HABITAT LOSS 

 

Abstract:  Modification of landscapes due to energy development may alter both habitat 

use and vital rates of sensitive wildlife species.  Greater sage-grouse (Centrocercus 

urophasianus) in the Powder River Basin (PRB) of Wyoming and Montana have 

experienced widespread, rapid changes to habitat due to recent coal-bed natural gas 

(CBNG) development.  We analyzed lek-count, habitat, and infrastructure data to assess 

how CBNG development and other landscape features influenced trends in the numbers 

of male sage-grouse observed and persistence of leks in the PRB.  From 2001-2005, the 

numbers of males observed on leks in CBNG fields declined more rapidly than leks 

outside of CBNG.  Of leks active in 1997 or later, only 38% within CBNG fields 

remained active by 2004-2005, compared to 84% of leks outside CBNG fields.  By 2005, 

leks in CBNG fields had 46% fewer males per active lek than leks outside of CBNG.  

Persistence of 110 leks was positively influenced by the proportion of sagebrush habitat 

within 6.4 km of the lek.  After controlling for habitat, we found support for negative 

effects of CBNG development within 0.8 km and 3.2 km of the lek and for a time lag 

between CBNG development and lek disappearance.  Current stipulations that prohibit 

development within 0.4 km of sage-grouse leks on federal lands are inadequate to ensure 

lek persistence and may result in impacts to breeding populations over larger areas.  

Seasonal restrictions on drilling and construction do not address impacts caused by loss 

of sagebrush and incursion of infrastructure that can affect populations over longer 

periods of time.  Development thresholds suggest that the current density of development 
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is several times greater than that which allows sage-grouse breeding populations to 

persist.  Increased spatial restrictions on CBNG development, rapid implementation of 

more effective mitigation measures, or both may be required to reduce impacts of CBNG 

development on sage-grouse populations in the PRB. 

 

Keywords: agriculture, Centrocercus urophasianus, coal-bed natural gas, coal-bed 

methane, energy development, greater sage-grouse, lek count, population, Powder River 

Basin, sagebrush 
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Large-scale modification of habitat associated with energy development may alter 

habitat use or vital rates of sensitive wildlife species.  Populations in developed areas 

may decline if animals avoid specific features of infrastructure such as roads or power 

lines (Trombulak and Frissell 2000, Nelleman et al. 2001, 2003) or if energy 

development negatively affects survival or reproduction (Holloran 2005, Aldridge and 

Boyce 2007).  For example, mortality caused by collisions with vehicles and power lines 

reduces adult and juvenile survival in a variety of wildlife species (reviewed in Bevanger 

1998 and Trombulak and Frissell 2000).  Indirect effects of energy development on 

populations are also possible due to changes in predator or parasite communities (Knight 

and Kawashima 1993, Steenhof et al. 1993, Daszak et al. 2000) or changes in vegetation 

structure and composition associated with disturbance (Trombulak and Frissell 2000, 

Gelbard and Belnap 2003).  Negative impacts may be exacerbated if features of 
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development that attract animals (e.g., ponds) simultaneously reduce survival and thereby 

function as ecological traps (Gates and Gysel 1978). 

Rapidly expanding coal-bed natural gas (CBNG) development is a concern for 

conservation of greater sage-grouse (Centrocercus urophasianus) in the Powder River 

Basin (PRB) of northeastern Wyoming and southeastern Montana.  The PRB supports an 

important regional population, with over 500 leks documented between 1967-2005 

(Connelly et al. 2004).  In the past decade, the PRB has also experienced rapidly 

increasing CBNG development, with impacts on wildlife habitat projected to occur over 

an area of approximately 24,000 km2 (Bureau of Land Management 2003a, b).  Coal-bed 

natural gas development typically requires construction of 2-7 km of roads and 7-22 km 

of power lines per km , depending on well density, as well as an extensive network of 

compressor stations, pipelines, and ponds (Bureau of Land Management 2003b).  

Approximately 10% of surface lands and 75% of mineral reserves in the PRB are 

federally owned and administered by the Bureau of Land Management (BLM) (Bureau of 

Land Management 2003a, b).  

2

Over 50,000 CBNG wells have been authorized for 

development on federal mineral reserves in northeastern Wyoming, at a density of 1 well 

per 16-32 ha, and as many as 18,000 wells are anticipated in southeastern Montana 

(Bureau of Land Management 2003a, b).  According to data from the Wyoming Oil and 

Gas Conservation Commission and Montana Board of Oil and Gas Conservation, by the 

beginning of 2005, approximately 28,000 CBNG wells had been drilled on federal 

(~31%), state (~11%), and private (~58%) mineral holdings in the PRB.  Mitigation for 

sage-grouse on BLM lands typically includes lease stipulations prohibiting surface 

infrastructure within 0.4 km of sage-grouse leks as well as restrictions on timing of 
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drilling and construction within 3.2 km of documented leks during the 15 March - 15 

June breeding season and within crucial winter habitat from 1 December - 31 March 

(Montana only) (Bureau of Land Management 2003a, b).  These restrictions can be 

modified or waived by BLM, or additional conditions of approval applied, on a case-by-

case basis.  In contrast, most state and private minerals have been developed with few or 

no requirements to mitigate impacts on wildlife. 

Coal-bed natural gas development and its associated infrastructure may affect 

sage-grouse populations via several different mechanisms, and these mechanisms can 

operate at different scales.  For example, males and females may abandon leks if 

repeatedly disturbed by raptors perching on power lines near leks (Ellis 1984), by vehicle 

traffic on nearby roads (Lyon and Anderson 2003), or by noise and human activity 

associated with energy development during the breeding season (Braun et al. 2002, 

Holloran 2005, Kaiser 2006).  Collisions with nearby power lines and vehicles and 

increased predation by raptors may also increase mortality of birds at leks (Connelly et al. 

2000a, 2000b).  Alternatively, roads and power lines may indirectly affect lek persistence 

by altering productivity or survival of local populations at other times of the year.  For 

example, mortality associated with power lines and roads occurs year-round (Patterson 

1952, Beck et al. 2006, Aldridge and Boyce 2007).  Ponds created during CBNG 

development may facilitate the spread of mosquitos that transmit West Nile virus (WNv), 

thereby increasing mortality in late summer (Walker et al. 2004, Zou et al. 2006, Walker 

et al. 2007).  Loss and degradation of sagebrush habitat may also reduce carrying 

capacity of local breeding populations (Braun 1998, Connelly et al. 2000b, Crawford et 

al. 2004).  Alternatively, birds may simply avoid otherwise suitable habitat if the density 
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of roads, power lines, or energy development increases above a certain threshold (Lyon 

and Anderson 2003, Holloran 2005, Kaiser 2006, Doherty et al. 2008). 

Understanding how energy development affects sage-grouse populations also 

requires that we control for other landscape features that affect population size and 

persistence, including the extent of suitable habitat.  Sage-grouse are closely tied to 

sagebrush habitats throughout their annual cycle, and variation in the amount of 

sagebrush habitat available for foraging and nesting is likely to influence the size of 

breeding populations and persistence of leks (Ellis et al. 1989, Schroeder et al. 1999, 

Leonard et al. 2000, Smith et al. 2005).  For this reason, it is crucial to quantify and 

separate effects of habitat loss from those of energy development. 

  To assess how CBNG development and habitat loss influence sage-grouse 

populations in the PRB, we conducted 2 analyses based on region-wide lek-count data.  

First, we analyzed counts of the numbers of males displaying on leks (hereafter, “lek 

counts”) to assess whether trends in the number of males counted and proportion of 

active and inactive leks differed between areas with and without CBNG development.  

Lek counts are widely used for monitoring sage-grouse populations, and at present, are 

the only data suitable for examining trends in population size and distribution at this scale 

(Connelly et al. 2003, 2004).  Second, we used logistic regression to model lek status 

(i.e., active or inactive) in relation to landscape features hypothesized to influence sage-

grouse demographics and habitat use at 3 spatial scales.  The objectives of the lek-status 

analysis were first, to identify the scale at which habitat and non-CBNG landscape 

features influence lek persistence and second, to evaluate and compare effects of CBNG 
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development at different scales with those of non-CBNG landscape features after 

controlling for habitat. 

Study Area 

We analyzed data from sage-grouse leks within an approximately 50,000-km2 

area of northeastern Wyoming and southeastern Montana (Figure 1).  This area included 

all areas with existing or predicted CBNG development in the PRB (Bureau of Land 

Management 2003a, b) as well as surrounding areas without CBNG.  Land use in this 

region was primarily cattle ranching with limited dry-land and irrigated tillage 

agriculture.  Natural vegetation consisted of sagebrush-steppe and mixed-grass prairie 

interspersed with occasional stands of conifers.  Sagebrush-steppe was dominated by 

Wyoming big sagebrush (Artemisia tridentata wyomingensis) with an understory of 

native and non-native grasses and forbs.  Plains silver sagebrush (A. cana cana) and black 

greasewood (Sarcobatus vermiculatus) co-occurred with Wyoming big sagebrush in 

drainage bottoms. 

Methods 

Lek-count trend analyses 

Lek-count data.  We used sage-grouse lek-count data in public databases 

maintained by Wyoming Game and Fish Department and Montana Department of Fish, 

Wildlife, and Parks as the foundation for analyses.  We augmented databases with lek 

counts provided by consultants and by the BLM’s Miles City field office for 37 leks (36 

in Montana, 1 in Wyoming) known to have been counted but for which data were 

missing.  We checked for and, when possible, corrected errors in the database after 

consultation with database managers and regional biologists for each state.  We excluded 
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records with obvious errors, surveys in which lek status was not determined, leks without 

supporting count data, and duplicate leks prior to analysis.   

Coal-bed natural gas development.  We obtained data on the type, location, 

status, drilling date, completion date, and abandonment date of wells from public 

databases maintained by the Wyoming Oil and Gas Conservation Commission and 

Montana Board of Oil and Gas Conservation.  Because wells are highly correlated with 

other features of development, such as roads, power lines, and ponds (D. E. Naugle, 

University of Montana, unpublished data), using locations of wells is a reliable way to 

measure the extent of CBNG development.  We retained only those wells that were 

clearly in the ground, associated with energy development (gas, oil, stratification test, 

disposal, injection, monitoring, and water source wells), and likely to have infrastructure.  

We excluded wells that were plugged and abandoned, wells waiting on permit approval, 

wells drilled or completed in 2005 or later, and those with status reported as dry hole, 

expired permit, permit denied, unknown, or no report.  We included wells in analyses 

starting in the year in which they were drilled or completed (i.e., started producing).  For 

active wells without drilling or completion dates, we estimated start year based on 

approval and completion dates of wells in the immediate vicinity and in the same unit 

lease.  Wells with current status reported as dormant, temporarily abandoned, or 

permanently abandoned were included until the year they were first reported abandoned.  

Because capped (i.e., “shut-in”) wells may or may not have associated infrastructure, we 

included capped wells only in years in which they were surrounded by, or within 1 km of, 

a producing gas field. 
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We estimated the extent of CBNG development around each lek in each year.  We 

first approximated the area affected by CBNG development by creating a 350-m buffer 

around all well locations using ArcInfo 8.2 (ESRI, Inc., Redlands, CA) and dissolving 

boundaries where buffers overlapped.  We then estimated the proportion area within 3.2 

km of the lek center covered by the buffer around wells.  At current well density (1 well 

per 32-64 ha), a 350-m buffer around wells estimates the extent of CBNG development 

more accurately than larger or smaller buffer sizes.  This metric is less sensitive to 

variation in spacing of wells than measures such as well density and therefore more 

accurate for estimating the total area affected by CBNG development. 

Trends in lek counts. We examined lek-count data from 1988-2005.  We 

categorized a lek as in CBNG if ≥40% of the area within 3.2 km was developed or if 

≥25% was developed and ≥1 well was within 350 m of the lek center.  We categorized a 

lek as outside CBNG if <40% of the area within 3.2 km was developed and no wells were 

within 350 m of the lek center.  However, because few leks in CBNG were counted in 

consecutive years prior to 2001, we analyzed trends in lek-counts only from 2001-2005.  

We calculated the rate of increase in the number of males counted on leks for each year-

to-year transition by summing count data across leks within each category according to 

their stage of development at the end of the first year of each year-to-year transition 

(Connelly et al. 2004).  We summed data across leks to reduce the influence of 

geographic variation in detectability and used the maximum annual count for each lek to 

reduce the influence of within-year variation in detectability on the estimated rate of 

increase.  Data for each transition were derived only from leks counted in both years and 

known to be active in at least 1 of the 2 years of the transition.  We estimated mean rates 
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of increase in CBNG versus outside CBNG fields based on the slope of a linear 

regression of interval length versus rate of increase (Morris and Doak 2002).  Wells 

completed between January and March (i.e., before lek counts were conducted) in the 

second year of each transition may have caused us to underestimate the amount of CBNG 

development around leks at the time counts were conducted.  However, if CBNG 

development negatively affects populations, this would cause the difference between 

trends in lek-count data in CBNG and outside CBNG to be underestimated and produce a 

conservative estimate of impacts. 

Timing of lek disappearance.  If CBNG development negatively affects lek 

persistence, most leks in CBNG fields that became inactive should have done so 

following CBNG development.  To explore this prediction, we examined the timing of 

lek disappearance in relation to when a lek was first considered in a CBNG field (i.e., 

≥40% development within 3.2 km or ≥25% development and wells within 350 m of the 

lek center). 

Development threshold.  We estimated an approximate threshold density of 

CBNG development at which sage-grouse leks will remain active by calculating well 

densities around active leks affected by CBNG.  This required assumptions about the 

scale and extent of CBNG around a lek at which development begins to affect lek 

persistence.  Models with effects of CBNG within 3.2 km were strongly supported (see 

Results, below), whereas those with CBNG within 6.4 km received considerably less 

support.  Thus, for this analysis, we conservatively assumed that only CBNG within 3.2 

km would affect lek persistence.  Impacts of 40% CBNG development at the 3.2-km 

scale were pronounced (see Results, below), so it is also reasonable to assume that CBNG 
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affects male lek attendance before development reached 40%.  We used data on males 

per active lek to identify the approximate extent of development within 3.2 km at which 

male lek attendance begins to decline.  We did this by comparing the number of males 

per lek at active leks with no CBNG versus those with CBNG over a range of increasing 

development.  We varied the lower limit of development from 0.01% to 37.5% (in 

intervals of 2.5%) and the maximum was held constant at 92% (the highest observed 

value for any lek).  We then calculated well densities around active leks that exceeded the 

identified cut-off values.  Because wells are often drilled in groups into different coal 

seams from the same well pad, we then converted well densities into well-pad densities 

based on an average of 1.43 wells per pad (Bureau of Land Management 2003b). 

 

Lek-status analysis 

Definition of leks.  We defined a lek as a site where multiple males were 

documented displaying on multiple visits within a single year or over multiple years.  We 

defined a lek complex as multiple leks located <2.5 km from the largest and most 

regularly attended lek in the complex (Connelly et al. 2004).  We defined an initial set of 

lek complexes based on those known prior to 1990.  Leks discovered in 1990 or later 

were considered separate complexes, even if they occurred <2.5 km from leks discovered 

in previous years.  This was done to avoid problems with the location of already-defined 

leks and lek complexes shifting as new leks were discovered or if new leks formed in 

response to nearby CBNG development.  Leks newly discovered in the same year within 

2.5 km of each other were grouped in the same lek complex.  We used lek complexes as 

the sample unit for calculating proportion of active and inactive leks and in the lek-status 
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analysis, but because “lek complex” can refer either to multiple leks or to a single lek, 

hereafter we refer to both simply as a “lek”. 

Lek status.  We determined the final status of leks by examining count data from 

2004-2005.  We considered a lek active if ≥ 1 male was counted in 2004 or 2005, 

whichever was the last year surveyed.  To minimize problems with non-detection of 

males, we considered a lek inactive only if: 1) at least 3 consecutive ground or air visits 

in the last year surveyed failed to detect males, or 2) if surveys in the last 3 consecutive 

years the lek was checked (2002-2004 or 2003-2005) failed to detect males.  We 

classified the status of leks that were not surveyed or were inadequately surveyed in 2004 

or 2005 as unknown.  Survey effort in the PRB increased 5-fold from 1997-2005, and 

included systematic aerial searches for new leks and repeated air and ground counts of 

known leks within and adjacent to CBNG fields.  Therefore, it is unlikely that leks shifted 

to nearby sites without being detected.  Many leks in the PRB disappeared during a 

region-wide population decline in 1991-1995 (Connelly et al. 2004), well before most 

CBNG development in the PRB began.  To eliminate leks that became inactive for 

reasons other than CBNG, we calculated proportions of active and inactive leks in CBNG 

and outside CBNG based only on leks active in 1997 or later. 

Scale.  We calculated landscape metrics at 3 distances around each lek: 0.8 km 

(201 ha), 3.2 km (3,217 ha), and 6.4 km (12,868 ha).  The 0.8-km scale was selected to 

represent processes that impact breeding birds at or near leks, while avoiding problems 

with spatial error in lek locations.  The 6.4-km scale reflects processes that occur at larger 

scales around the lek, such as loss of nesting habitat, demographic impacts on local 

breeding populations, or landscape-scale avoidance of CBNG fields.  The 3.2-km scale is 
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that at which state and federal agencies apply mitigation for CBNG impacts (e.g., timing 

restrictions), and it is important to determine the appropriateness of managing at a 3.2-km 

scale versus at smaller or larger scales. 

Habitat variables.  Each model in our analysis represented a distinct hypothesis, 

or combination of hypotheses, regarding how landscape features influence lek 

persistence.  We included 2 types of habitat variables in the analysis, the proportion of 

sagebrush habitat and the proportion of tillage agriculture in the landscape around each 

lek.  Because the scale at which habitat most strongly influenced lek persistence was 

unknown, we considered habitat variables at all 3 scales.  We calculated the amount of 

sagebrush habitat and tillage agriculture around each lek at each scale using ArcInfo 8.2 

based on classified SPOT-5 satellite imagery taken in August 2003 over an 

approximately 15,700 km2 area of the PRB.  We restricted the lek-status analysis to leks 

within the SPOT-5 satellite imagery because the only other type of classified imagery 

available for this region (Thematic Mapper at 30-m resolution) is unreliable for 

measuring the extent of sagebrush habitat (Moynahan 2004).  Areas with tillage 

agriculture were visually identified from the imagery and manually digitized.  

Classification accuracy was 83% for sagebrush habitat (i.e., sagebrush-steppe and 

sagebrush-dominated grassland).  We excluded 20 leks for which >10% of classified 

habitat data were unavailable due to cloud cover or proximity to the edge of the imagery. 

Road, power line, and CBNG variables.  We hypothesized that infrastructure can 

affect lek persistence in 3 ways and included different variables to examine each 

hypothesis.  Roads, power lines, and CBNG development may affect lek persistence in 

proportion to their extent on the landscape.  Alternatively, the effects of roads and power 
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lines may depend their distance from the lek, in which case they are expected to drop off 

rapidly as distance increases.  Coal-bed natural gas development may also influence lek 

status depending on how long the lek has been in a CBNG field.  If CBNG increases 

mortality, it may be several years before local breeding populations are reduced to the 

point that males no longer attend the lek (Holloran 2005).  Avoidance of leks in CBNG 

fields by young birds (Kaiser 2006) combined with high site fidelity of adults to breeding 

areas (Schroeder et al. 1999) would also result in a time lag between full CBNG 

development and lek disappearance.   

We used TIGER/Line® 1995 public-domain road layers for Wyoming and 

Montana (U.S. Census Bureau 1995) to estimate the proportion of each buffer around 

each lek within 350 m of a road at each of the 3 scales.  We used 1995 data, rather than a 

more recent version, to represent roads that existed on the landscape prior to CBNG 

development.  We obtained autumn 2005 GIS coverages of power lines directly from 

utility companies and used this layer to estimate the proportion of each buffer around 

each lek within 350 m of a power line at each scale.  Year-specific power line coverages 

were not available, so this variable includes both CBNG and non-CNBG power lines.  

We estimated the extent of CBNG development around each lek at each scale by 

calculating the proportion of the total buffer area around the lek center covered by a 

dissolved 350-m buffer around well locations.  If a lek was a complex, we first placed a 

buffer around all lek centers in the complex then dissolved the intersections to create a 

single buffer.  We selected a 350-m buffer around roads, power lines, and CBNG wells 

for 2 reasons.  First, quantitative estimates of the distance at which infrastructure affects 

habitat use or vital rates of sage-grouse were not available, and 350 m is a reasonable 
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distance over which to expect impacts to occur, such as increased risk of predation near 

power lines or increased risk of vehicle collisions near roads.  Second, we also wished to 

maintain a consistent relationship between well, road, and power line variables and the 

amount of area affected by each feature.  We measured how long a lek was in a CBNG 

field as the number of years prior to 2005 during which the lek had ≥40% CBNG 

development within 3.2 km or ≥25% CBNG within 3.2 km and ≥ 1 well within 350 m of 

the lek center. 

Analyses.  We used a hierarchical analysis framework to evaluate how landscape 

features influenced lek status (i.e., active or inactive).  Our first goal was to identify the 

scale at which habitat, roads, and power lines affected lek persistence.  Our second goal 

was to evaluate and compare effects of CBNG development at different scales with those 

of roads and power lines after controlling for habitat.  In both cases, we used an 

information-theoretic approach (Burnham and Anderson 2002) to select the most 

parsimonious model from a set of plausible candidate models.  All analyses were 

conducted using logistic regression in R (version 2.3.1, R Development Core Team 

2006).  We used a logit-link function to bound persistence estimates within a (0,1) 

interval.  Almost all CBNG development within the extent of the SPOT-5 imagery 

occurred after 1997, so we restricted our analysis to leks known to have been active in 

1997 or later to eliminate those that disappeared for reasons other than CBNG 

development.  We also excluded 4 leks known to have been destroyed by coal mining. 

To identify the most relevant scale(s) for each landscape variable, we first 

allowed univariate models at different scales to compete.  Variables assessed for scale 

effects included: (1) proportion sagebrush habitat, (2) proportion tillage agriculture, (3) 
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proportion area affected by power lines, and (4) proportion area affected by non-CBNG 

roads.  We then used the scale for each variable that best predicted lek status to construct 

the final set of candidate models.  We also included models with squared distance to 

nearest road and squared distance to nearest power line in the final model set.  To assess 

different possible mechanisms of CBNG impacts, we evaluated models with the extent of 

CBNG development or the number of years since the lek was classified as in a CBNG 

field.  To assess the scale at which CBNG impacts occur, we included models with the 

extent of CBNG effects at all 3 scales.  We also included models with interactions 

between habitat and CBNG metrics to evaluate whether effects of CBNG development 

are amelioriated by the amount of sagebrush habitat around the lek.  To avoid problems 

with multicollinearity, we did not allow models with correlated variables (i.e., r > |0.7|) in 

the final model set. 

We judged models based on Akaike’s Information Criterion adjusted for small 

sample size (AICc), and examined beta coefficients and associated standard errors in all 

models to determine the direction and magnitude of effects.  We estimated overdispersion 

by dividing the residual deviance of the global model by the deviance degrees of 

freedom.  Goodness-of-fit testing was conducted in R following methods described in 

Hosmer et al. (1997).  We used parametric bootstrapping (Efron and Tibshirani 1993) to 

obtain means, standard errors, and 95% confidence limits for persistence estimates 

because coefficients of variation for most beta estimates were large (Zhou 2002).  Due to 

model uncertainty, we used model averaging to obtain unconditional parameter estimates 

and variances (Burnham and Anderson 2002).  We compared the relative importance of 

habitat, CBNG, and infrastructure in determining lek persistence by summing Akaike 
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weights across all models containing each class of variable (Burnham and Anderson 

2002).  We also calculated evidence ratios to compare the likelihood of the best 

approximating habitat-plus-CBNG, habitat-plus-infrastructure, and habitat-only models. 

To assess whether a known West Nile virus outbreak or habitat loss associated 

with tillage agriculture disproportionately influenced model selection and interpretation, 

we also reanalyzed the dataset after removing specific leks. The first analysis excluded 4 

leks near Spotted Horse, Wyoming known to have disappeared after 2003 likely due to 

WNv-related mortality (Walker et al. 2004).  The second analysis excluded 20 leks that 

had ≥5% agriculture at 1 or more of the 3 scales examined. 

To evaluate the effectiveness of the stipulation for no surface infrastructure within 

0.4 km of a lek, we examined the estimated probability of lek persistence without 

development versus that under full CBNG development with a 0.4-km buffer.  We also 

used models with effects of CBNG within 3.2 km and CBNG within 6.4 km to estimate 

the probability of lek persistence over a range of lek buffer sizes from 0.4 to 6.4 km.  

This second analysis assumes that effects of CBNG only occur within the maximum 

distance specified under each model.  We excluded data based on model with effects of 

CBNG within 0.8 km because effects of CBNG were apparent at both larger scales. 

 

Results 

Trends in lek counts.  From 2001-2005, lek-count indices in CBNG fields 

declined by 82%, at a rate of 35% per year (mean rate of increase in CBNG = 0.65, 95% 

CI: 0.34-1.25) whereas indices outside CBNG declined by only 12%, at a rate of 3% per 

year (mean rate of increase outside CBNG = 0.97, 95% CI: 0.50-1.87) (Figure 2).  The 
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mean number of males per active lek was similar between leks in CBNG and outside 

CBNG in 2001, but averaged 46% ± 8% (mean ± SE; range 33-55%) lower for leks in 

CBNG from 2002-2005 (Figure 3). 

Lek status.  Among leks active in 1997 or later, fewer leks remained active by 

2004-2005 in CBNG fields (38%) than outside CBNG fields (84%) (Table 1).  Of the 10 

remaining active leks in CBNG fields, all were classified as being in CBNG in 2000 or 

later.   

Timing of lek disappearance.  Of 12 leks in CBNG fields monitored intensively 

enough to determine the year when they disappeared, 12 became inactive after or in the 

same year that development occurred (Figure 4).  The average time between full CBNG 

development and lek disappearance was 4.1 ± 0.9 years (mean ± SE). 

Development thresholds.  Values for males per active lek and well-pad density 

were positively skewed, so we examined both median and mean values.  Median values 

for males per active lek began to diverge once CBNG development exceeded 2.5% within 

3.2 km.  In contrast, mean values for leks with CBNG were approximately 2 males per 

lek lower even at the minimum level of development.  After accounting for this initial 

difference, mean values for males per active lek began to diverge once CBNG 

development exceeded 7.5%.  We approximated development thresholds using both 

values.  A total of 67 active leks had >2.5% CBNG development within 3.2 km.  Median 

density around these leks was 1 well pad per 305 ha (mean ± SE; 171 ± 31 ha).  A total of 

55 active leks had >7.5% CBNG development within 3.2 km.  Median density around 

these leks was 1 well pad per 229 ha (mean ± SE; 146 ± 26 ha). 
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Lek-status analysis.  We analyzed data from 110 leks of known status within the 

SPOT-5 imagery that were confirmed active in 1997 or later.  Proportion sagebrush 

habitat and proportion tillage agriculture best explained lek persistence at the 6.4-km 

scale (Table 2).  Proportion power lines also best explained lek persistence at the 6.4-km 

scale (although power line effects at the 3.2-km scale were also supported), whereas 

proportion roads best explained lek persistence at the 3.2-km scale.   

The final model set consisted of 19 models: 2 models based on habitat only (i.e., 

sagebrush, sagebrush plus tillage agriculture), 4 models with habitat plus power line 

variables, 4 models with habitat plus road variables, and 9 models with habitat plus 

CBNG variables (Table 3).  Goodness-of-fit testing using the global model revealed no 

evidence of lack of fit (P = 0.49).  Our estimate of the variance inflation factor based on 

the global model (ĉ = 0.96) indicated no evidence of overdispersion. 

Despite substantial model uncertainty, the top 8 of 19 models all included a 

moderate to strong positive effect of sagebrush habitat on lek persistence and a strong 

negative effect of CBNG development, measured either as proportion CBNG 

development within 0.8 km, proportion CBNG development within 3.2 km, or number of 

years in a CBNG field.  These 8 models were well supported, with a combined Akaike 

weight of 0.96.  Five of the 8 models were within 2 ΔAICc units of the best 

approximating model, whereas all habitat-plus-infrastructure and habitat-only models 

showed considerably less support (> 6 ΔAICc units lower).  Evidence ratios indicate that 

the best habitat-plus-CBNG model was 28 times more likely to explain patterns of lek 

persistence than the best habitat-plus-infrastructure model and 50 times more likely than 

the best habitat-only model.  Models 1 and 2 both included a negative effect of proportion 
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CBNG development within 0.8 km.  Models with negative effects of number of years in 

CBNG (model 3) and proportion CBNG development within 3.2 km (model 4) also had 

considerable support.  Although regression coefficients suggested that CBNG within 6.4 

km also had a negative impact on lek persistence (Table 4), models with CBNG at 6.4 km 

showed considerably less support (~5-7 ΔAICc units lower).  Tillage agriculture appeared 

in 1 well-supported model (model 2), and the coefficient suggested that tillage agriculture 

had a strong negative effect on lek persistence.  However, this effect was poorly 

estimated, and the same model without tillage agriculture (model 1) was more 

parsimonious.  Models containing effects of roads unrelated to CBNG development 

received little or no support in our analysis.  Regression coefficients suggested negative 

effects of proximity to power lines and of proportion power line development within 6.4 

km, but models with power line effects were only weakly supported (~6-8 ΔAICc units 

lower).  Coefficients for interaction terms did not support an interaction between habitat 

and CBNG variables.  The best approximating model accurately predicted the status of 

79% of 79 active leks and 47% of 31 inactive leks.  The summed Akaike weight for 

CBNG variables (0.97) was nearly identical to that of sagebrush habitat (1.00) and 

greater than that for the effects of tillage agriculture (0.26), power lines (0.02) or non-

CBNG roads (0.01).  Unconditional, model-averaged estimates and 95% confidence 

limits for beta estimates and odds ratios show that loss of sagebrush habitat and addition 

of CBNG development had effects of similar magnitude (Table 4).   

The model-averaged estimate for the effect of CBNG within 0.8 km was close to 

those of the best approximating model (model 1, βCBNG 0.8 km = -3.91 ± 1.11 SE) (Table 4).  

Thus, we illustrate the effects CBNG within 0.8 km on lek persistence using estimates 
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from that model (Figure 5a).  We also illustrate results from model 3, which indicated 

that leks disappeared, on average, within 3-4 years of full CBNG development (Figure 

5b).  The current 0.4-km stipulation for no surface infrastructure leaves 75% of the 

landscape within 0.8 km and 98% of the landscape within 3.2 km open to CBNG 

development.  In an average landscape around a lek in our analysis (i.e., 74% sagebrush 

habitat, 26% other land cover types), 75% CBNG development within 0.8 km would drop 

the probability of lek persistence from 86% to 24% (Figure 5a).  Similarly, 98% CBNG 

development within 3.2 km would drop the average probability of lek persistence from 

87% to 5%.  Lek persistence was projected to increase with larger no-surface-

infrastructure buffers around leks.  Background rates of lek persistence in areas without 

CBNG development were ~85%.  The estimated minimum buffer size required to 

maintain average lek persistence at >50% (i.e., to allow a 35% drop in average lek 

persistence) ranged from 2.6-5.2 km (Figure 6 a, b).  In contrast, maintaining average lek 

persistence at >75% is estimated to require a 3.0-6.0 km lek buffer (Figure 6 a, b).  

Similar results are illustrated by  models with varying levels of CBNG development and 

different sizes of NSO buffers around leks (Figure 7 a, b). 

Secondary analyses.  Analysis of reduced datasets did not meaningfully change 

model fit, model selection, or interpretation, nor did it alter the magnitude or direction of 

estimated CBNG effects.  After excluding leks affected by WNv, the top 8 of 19 models 

and all 3 models within 2 ΔAICc units included a positive effect of sagebrush within 6.4 

km and a negative effect of CBNG development.  Model-averaged estimates of CBNG 

effects were similar to those from the original analysis (βSagebrush 6.4 km = 3.96 ± 1.97 SE; 

βCBNG 0.8 km = -3.48 ± 1.15 SE; βCBNG 3.2 km = -4.39 ± 1.52 SE; βCBNG 6.4 km = -4.57 ± 2.06 
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SE; βYears in CBNG = -1.30 ± 0.61 SE).  After excluding leks with ≥5% tillage agriculture, 

the top 4 of 11 models and 4 of 5 models within 2 ΔAICc units included a positive effect 

of sagebrush within 6.4 km and a negative effect of CBNG development.  Estimates of 

CBNG effects were again similar to the original model-averaged values (βSagebrush 6.4 km = 

4.03 ± 2.29 SE; βCBNG 0.8 km = -3.34 ± 1.41 SE; βCBNG 3.2 km = -4.83 ± 2.06 SE; βCBNG 6.4 km 

= -4.76 ± 3.21 SE; βYears in CBNG = -2.44 ± 1.25 SE). 

 

Discussion 

Coal-bed natural gas development appeared to have severe negative effects on 

sage-grouse breeding populations as indexed by male lek attendance and lek persistence.  

Although the small number of transitions (n = 4) in the trend analysis limited our ability 

to detect differences between trends, effect sizes were nonetheless large and suggest more 

rapidly declining breeding populations in CBNG fields.  Effects of CBNG development 

explained lek persistence better than effects of power lines, pre-existing roads, WNv 

mortality, or tillage agriculture, even after controlling for availability of sagebrush 

habitat.  Approximate development thresholds suggest that the current density of 

development may be several times greater than that which allows sage-grouse leks and 

their associated breeding populations, to persist.  Strong support for models with negative 

effects of CBNG at both the 0.8-km and 3.2-km scales indicate that the current restriction 

on surface infrastructure within 0.4 km is insufficient to protect breeding populations.  

Support for a lag time between full CBNG development and lek disappearance indicates 

that monitoring effects of a landscape-level change like CBNG may require several years 

before changes in lek status are detected. 
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In our study, non-CBNG roads did not appear to influence lek persistence, even 

though vehicle collisions and disturbance of leks near roads can have negative impacts on 

sage-grouse (Lyon and Anderson 2003, Holloran 2005).  This may be because most roads 

in the PRB prior to CBNG development were rarely-traveled dirt tracks rather than the 

shaled, all-weather roads associated with CBNG development.  Alternatively, negative 

impacts of roads may have been masked by the tendency for male sage-grouse to be 

attracted to roadways as display sites, for leks near roads to have higher detectability, or 

because areas in which males display (e.g., broad ridgetops, valley bottoms) are also 

good for building roads (Schroeder et al. 1999, Rowland 2004).  Although models with 

power line effects were only weakly supported, coefficients nonetheless suggested that 

power lines (including those associated with CBNG) had a negative effect on lek 

persistence.  Because CBNG development requires construction of both roads and power 

lines, impacts of CBNG could involve impacts from both features.  West Nile virus also 

has contributed to local lek extirpations in the PRB (Walker et al. 2004).  However, 

unless CBNG development facilitates the spread of WNv into sage-grouse habitat, 

impacts of the virus should be similar in areas with and without CBNG.  Thus, the impact 

of WNv by itself cannot explain declining breeding populations in CBNG.  Rather, 

increased WNv-related mortality may be an indirect effect of CBNG development (Zou 

et al. 2006).  Other indirect effects, such as increased livestock grazing due to newly-

available CBNG water, or changes in predator abundance caused by addition of ponds or 

power lines, may also indirectly influence sage-grouse populations. 

Although CBNG development and loss of sagebrush habitat both contributed to 

declines in lek persistence, much more of the landscape in the PRB has potential for 
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CBNG than for tillage agriculture, suggesting that CBNG will have a greater impact on 

populations at the regional scale.  In our analyses, we were unable to distinguish between 

conversion of sagebrush to cropland that would have occurred in the absence of CBNG 

development and that which occurred because CBNG water became available for 

irrigation following development.  Although sage-grouse sometimes use agricultural 

fields during brood-rearing (Schroeder et al. 1999, Connelly et al. 2000b), large-scale 

conversion of sagebrush habitat to irrigated cropland in conjunction with CBNG 

development would clearly be detrimental to populations (Leonard et al. 2000, Smith et 

al. 2005), particularly because birds in agricultural areas likely experience elevated 

mortality due to pesticides and WNv (Connelly et al. 2000b, Doherty 2007). 

Accumulated evidence across studies suggests that sage-grouse populations 

typically decline following energy development (Braun 1986, Remington and Braun 

1991, Braun et al. 2002, Holloran 2005), but our study is the first to quantify and separate 

effects of energy development from those of habitat loss.  Our results are similar to those 

of Holloran (2005), who found that “natural gas field development within 3-5 km of an 

active greater sage-grouse lek will lead to dramatic declines in breeding populations,” 

that leks heavily impacted by development typically became inactive within 3-4 years, 

and that energy development within 6.2 km of leks can decrease male attendance.  As in 

other parts of their range, sage-grouse populations in the PRB likely have declined due to 

cumulative impacts of habitat loss caused by anthropogenic change and other unknown 

population stressors (Crawford et al. 2004, Connelly et al. 2004).  New threats, such as 

WNv, have also emerged (Naugle et al. 2004, Walker et al. 2007).  Nonetheless, our 

analysis indicates that energy development has contributed to recent population declines 
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in the PRB.  More importantly, the scale of future development in the PRB suggests that, 

without more effective mitigation, CBNG will continue to impact populations over an 

even larger area. 

It is unclear whether declines in lek attendance within CBNG fields were caused 

by impacts to breeding birds at the lek, reduced survival or productivity of birds in the 

surrounding area, avoidance of developed areas, or some combination thereof.  We 

simultaneously observed greater support for CBNG models but decreasing magnitude of 

CBNG coefficients at smaller scales around leks, and model uncertainty precluded us 

from identifying the specific mechanism by which development causes impacts.  

Although sage-grouse appear to avoid areas with CBNG development in the PRB in 

winter (Doherty et al. 2008), birds may also avoid CBNG development in the spring and 

summer.  Kaiser (2006) and Holloran et al. (2007) found that yearling females avoided 

nesting in portions of their natal areas with natural gas development, and yearling males 

were recruited to leks inside developed fields at lower rates, suggesting displacement to 

leks on the periphery.  Birds breeding within gas fields may also show lower productivity 

(Lyon and Anderson 2003) or reduced survival compared to birds in natural habitats 

(Holloran 2005), either of which could result in reduced population growth (see Chapter 

5).  Experimental research using a before-after, control-impact design with radio-marked 

birds would be required to identify the relative importance of each mechanism in driving 

population declines within CBNG.  Although this would allow us to identify mechanisms 

underlying declines, based on our findings and those of others (e.g., Holloran 2005, 

Aldridge and Boyce 2007, Doherty et al. 2008), such an experiment would likely be 

detrimental to the affected populations.  Nonetheless, ongoing development provides an 
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opportunity to test mitigation measures in an adaptive management framework, with the 

ultimate goal of determining how to maintain robust sage-grouse populations in areas 

with CBNG development.  The current pace and scale of CBNG development suggest 

that effective mitigation measures should be implemented quickly to prevent impacts 

from becoming more widespread. 

 

Management implications 

Our analysis indicates that maintaining extensive stands of sagebrush habitat over 

large areas (6.4 km or more) around leks is required for sage-grouse breeding populations 

to persist.  This recommendation matches those of all major reviews on sage-grouse 

habitat requirements (Schroeder et al. 1999, Connelly et al. 2000b, Connelly et al. 2004, 

Crawford et al. 2004, Rowland 2004).   

Our findings also refute the idea that prohibiting surface infrastructure within 0.4 

km of the lek is sufficient to protect breeding populations, and indicate that increasing the 

size of no-development zones around leks would increase the probability of lek 

persistence.  The buffer size required depends on the amount of suitable habitat around 

the lek and the level of impact deemed acceptable.  For example, to maintain lek 

persistence at 50% would require a buffer size of at least 1.6-2.5 km (based on models 

with CBNG within 3.2 km and 6.4 km), an area 16-39 times larger than that provided by 

the current 0.4-km buffer.  The need for larger buffer sizes is supported by several lines 

of reasoning.  First, impacts from CBNG infrastructure (e.g., avoidance, collisions, 

increased raptor predation) can affect all seasonal habitats year-round (e.g., nesting, 

brood-rearing, summer, fall, and winter), not just birds attending leks during the breeding 
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season.  Second, although timing restrictions likely reduce disturbance during the 

breeding season in the year the field is developed, they do not prevent impacts of 

infrastructure at other times of the year (e.g., winter; Doherty et al. 2008) or during the 

production phase, which may last several decades.  Morevoer, based on lek-to-nest 

distances, a 0.4-km buffer is likely to protect <2% of all nesting females (Figure 1 in 

Holloran and Anderson 2005).  Because leks in CBNG also have fewer males per lek, 

buffer sizes estimated solely from data on lek persistence may be too conservative.  In 

practice, estimates of required buffer sizes may be less if buffers from adjacent leks 

overlap.   

A new strategy may be necessary to maintain sage-grouse populations in regions 

with extensive CBNG development.  I suggest a three-tier strategy of establishing core 

areas with little or no development, implementing more stringent on-site mitigation, and 

requiring off-site mitigation when on-site mitigation efforts fail.  Protecting areas of 

undeveloped, high-quality sage-grouse habitat in the project area should be top priority.  

At present, there is little evidence that restrictions other than no surface occupancy allow 

sage-grouse to persist in CBNG landscapes, that former CBNG fields can or will be 

restored to a condition that meet year-round sage-grouse habitat requirements, or that 

populations can be easly reestablished in areas where they have been extirpated.  

Protected areas need only be maintained until gas production has ceased, until 

populations in former CBNG fields are reestablished, or until mitigation measures are 

identified that avoid major impacts to populations.  Population goals in conservation 

plans for four of the five states (Wyoming, Colorado, North Dakota, and Montana) and 

two Canadian provinces (Alberta and Saskatchewan) experiencing oil and gas 
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development in the eastern half of the species’ range  all focus on maintaining the current 

distiribution of greater sage-grouse and maintaining or increasing abundance (WGFD 

2003, MFWP 2005, NDGFD 2005, CDOW 2007).  Currently, 83% of federal minerals 

within the eastern range of greater sage-grouse in the U.S. have already been leased with 

current 0.4-km lek buffer and timing stipulations (Naugle et al. 2008).  The severity of 

impacts observed under current stipulations (Holloran 2005, Doherty et al. 2008, this 

study) and the current pace and extent of leasing suggests that the potential for impacts 

from oil and gas impacts throughout this species’ eastern distribution is rapidly 

increasing.  Establishment of large core areas without energy development may be 

required to maintain greater sage-grouse populations large and robust enough to meet 

state and provincial population targets and that will continue to sustain historical land 

uses, such as livestock grazing, hunting, and agriculture. 

Improved mitigation within sage-grouse seasonal habitats may also allow 

improved persistence of breeding populations.  Previous research suggests that a more 

effective mitigation strategy would include, at minimum, burying power lines (Connelly 

et al. 2000b), minimizing road and well pad construction, vehicle traffic, and industrial 

noise (Lyon and Anderson 2003, Holloran 2005), and managing CBNG-produced water 

to prevent the spread of mosquitos that vector WNv (Zou et al. 2006, Doherty 2007, 

Walker et al. 2007).  Habitat improvement projects within CBNG fields may not improve 

population persistence if such areas act as population sinks.  Because sage-grouse use 

large areas of mixed land ownership, a lack of regulation of CBNG in some areas may 

undermine mitigation efforts on adjacent federal, state, or private lands.  For that reason, 

implementation of enhanced mitigation measures by operators regardless of mineral 
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ownership would be valuable, but will require broad-based support among stakeholders.  

Regardless, adaptive management will be required to to determine if and how robust 

sage-grouse populations can be maintained in CBNG fields.  Off-site mitigation may be 

necessary if enhanced mitigation measures within CBNG fields cannot be implemented 

fast enough or broadly enough to meet overall population targets.   

Successful conservation of sage-grouse populations in the PRB depends on the 

strategy adopted.  Stakeholders must also establish acceptable population targets for areas 

with coal-bed natural gas development.  The success or failure of conservation strategies 

for sage-grouse in the PRB may set a precedent for how impacts of are mitigated as 

energy development increases throughout the west. 
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Figure 1. Distribution and status of active, inactive, and destroyed greater sage-grouse 

leks, coal-bed natural gas wells, and major highways in the Powder River Basin, Montana 

and Wyoming, U.S.A.  The dashed line shows the extent of SPOT-5 satellite imagery.  

This map excludes leks that went inactive prior to 1997 and leks whose status in 2004-

2005 was unknown.  The status of leks within a lek complex are depicted separately.  Dot 

sizes of active leks represent the final count of displaying males in 2004 or 2005, 

whichever was the last year surveyed: small = 1-25 males, medium = 26-50 males, large 

= 51-75 males. 

 

Figure 2.  Population indices based on male lek attendance for greater sage-grouse in the 

Powder River Basin, Montana and Wyoming, U.S.A., 2001-2005 for: (a) all leks 

combined, and (b) leks categorized as in coal-bed natural gas fields or outside coal-bed 

natural gas fields on a year-by-year basis. Sample sizes in parentheses above each year-

to-year transition indicate the number of leks available for calculating rates of increase 

for that transition. 

 

Figure 3.  Number of male sage-grouse per active lek in coal-bed natural gas (gray) and 

outside (black) coal-bed natural gas in the Powder River Basin, Montana and Wyoming, 

U.S.A., 2001-2005.  Error bars represent 95% confidence intervals (error bars for leks 

outside CBNG are too small to be visible).  Sample sizes in parentheses above each index 

indicate the number of active leks available for calculating males per active lek in each 

year. 
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Figure 4.  Timing of greater sage-grouse lek disappearance relative to coal-bed natural 

gas development in the Powder River Basin.  Small dot = 1 lek, medium dot = 2 leks, 

large dot = 3 leks.  Twelve of 13 inactive leks in coal-bed natural gas fields for which the 

year when the lek disappeared could be accurately determined became inactive after or in 

the same year as development reached ≥40% within 3.2 km (or >25% development 

within 3.2 km with ≥1 well within 350 m of the lek center). 

 

Figure 5.  Estimated lek persistence as a function of proportion sagebrush habitat within 

6.4 km and either (a) proportion coal-bed natural gas (CBNG) development within 0.8 

km or (b) number of years within a CBNG field for greater sage-grouse leks in the 

Powder River Basin, Montana and Wyoming, U.S.A., 1997-2005.  Means and 95% 

confidence intervals (dashed lines) are based on parametric bootstrapping.  In (a), black 

lines are estimated lek persistence with no CBNG development, and gray lines are 

estimated lek persistence with 75% CBNG development within 0.8 km.  Seventy-five 

percent CBNG development within 0.8 km is equivalent to full development under the 

Bureau of Land Management’s current restriction on surface infrastructure within 0.4 km 

of active sage-grouse leks.  In (b), black lines are estimated lek persistence prior to 

CBNG development, and gray lines are estimated lek persistence after 3 years in a 

developed CBNG field (i.e., ≥40% CBNG within 3.2 km or ≥25% CBNG and ≥1 well 

within 350 m of the lek center). 
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Figure 6.  Estimated lek persistence as a function of the size of a no-surface-infrastructure 

buffer around leks for greater sage-grouse leks in the Powder River Basin, Montana and 

Wyoming, U.S.A., 1997-2005.  Means and 95% confidence intervals (dashed lines) are 

based on model-averaged coefficients and standard errors presented in Table 4.  All 

results are for leks in an average landscape (74% sagebrush habitat, 26% other cover 

types within 4 miles of the lek) and assume full coal-bed natural gas (CBNG) 

development outside the lek buffer (i.e., all areas outside the buffer are within 350 m of a 

CBNG well).  Results in (a) assume that lek persistence is only affected by CBNG 

development within 3.2 km of the lek.  Results in (b) assume that lek persistence is 

affected by CBNG development within 6.4 km of the lek.  The minimum buffer size 

considered (0.4 km) is the Bureau of Land Management’s current standard lease 

stipulation. 

 

Figure 7.  Estimated lek persistence as a function of the size of a no-surface-infrastructure 

buffer around leks and the extent of coal-bed natural gas development outside that buffer 

for greater sage-grouse leks in the Powder River Basin, Montana and Wyoming, U.S.A., 

1997-2005.  Means and 95% confidence intervals (dashed lines) are based on model-

averaged coefficients and standard errors presented in Table 4.  All results are for leks in 

an average landscape (74% sagebrush habitat, 26% other cover types within 4 miles of 

the lek).  Results in (a) assume that lek persistence is only affected by CBNG 

development within 3.2 km (2.0 mi.) of the lek.  In (a), buffer sizes are 0.4 km (0.25 mi.; 

pale gray), 1.0 km (0.6 mi.; medium gray), and 1.6 km (1.0 mi.; dark gray).  Results in 

(b) assume that lek persistence is affected by CBNG development within 6.4 km (4.0 mi.) 
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of the lek.  In (b), buffer sizes are 1.0 km (0.6 mi.; pale gray), 1.6 km (1.0 mi.; medium 

gray), and 3.2 km (2.0 mi.; dark gray).  The minimum buffer size considered in (a) was 

0.4 km, which is the Bureau of Land Management’s current standard lease stipulation. 
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Table 1.  Status of greater sage-grouse leks in the Powder River Basin, Montana and 

Wyoming, U.S.A as of 2004-2005 including only leks active in 1997 or later. See text for 

definitions of active and inactive leks and for how leks were categorized as in coal-bed 

natural gas development (In CBNG) vs. outside coal-bed natural gas (Outside CBNG).  

Lek complexes were considered as a single lek. 

  In CBNG  Outside CBNG 

Lek status  No.  %a  No.  %a

Active  10  38  211  84 

Inactive  16  62  39  16 

Unknown  1    43   

Total active + inactive  26    250   

a Percentages are based on the total number of active + inactive leks only. 
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Table 2. Univariate model selection summary for different classes of landscape variables 

influencing greater sage-grouse lek persistence in the Powder River Basin, Montana and 

Wyoming, U.S.A., 1997-2005.  Models within each class are listed in order of decreasing 

maximum log-likelihood (LL). 

Modela LL K n ΔAICc wi Estimate SE 

Sagebrush        

6.4 km -60.05 2 110 0.00 0.70 5.20 1.68 

3.2 km -60.95 2 110 1.81 0.28 4.38 1.53 

0.8 km -63.43 2 110 6.77 0.02 2.26 1.15 

Tillage Agriculture        

6.4 km -55.52 2 110 0.00 0.79 -20.98 6.02 

3.2 km -56.83 2 110 2.63 0.21 -19.31  6.30 

0.8 km -60.92 2 110 10.81 0.00 -10.44 4.59 

Power Lines        

6.4 km -58.69 2 110 0.00 0.52 -6.06 1.76 

3.2 km -58.81 2 110 0.24 0.46 -4.92 1.43 

0.8 km -62.12 2 110 6.84 0.02 -2.51 0.99 

Roads        

3.2 km -64.59 2 110 0.00 0.50 -2.50 1.99 

6.4 km -65.20 2 110 1.21 0.27 -1.52 2.35 

0.8 km -65.41 2 110 1.63 0.22 -0.08 0.87 
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Table 3. Model selection summary for greater sage-grouse lek persistence in the Powder 

River Basin, Montana and Wyoming, U.S.A., 1997-2005.  Maximum log-likelihood 

(LL), number of parameters (K), ΔAICc values, and AICc weights (wi) listed for each 

model in order of increasing ΔAICc units, starting with the best approximating model.  

All models shown.  The AICc value of the best approximating model in the analysis was 

108.54.  

No. Modela LL K n ΔAICc wi

1 Sagebrush 6.4 + CBNG 0.8  -51.16 3 110 0.00 0.24

2 Sagebrush 6.4 + Agriculture 6.4 + CBNG 0.8 -50.48 4 110 0.80 0.16

3 Sagebrush 6.4 + Years in CBNG -51.56 3 110 0.80 0.16

4 Sagebrush 6.4 + CBNG 3.2 -51.70 3 110 1.09 0.14

5 Sagebrush 6.4 * CBNG 0.8 -50.98 4 110 1.81 0.10

6 Sagebrush 6.4 * Years in CBNG -51.32 4 110 2.48 0.07

7 Sagebrush 6.4 + Agriculture 6.4 + CBNG 3.2 -51.52 4 110 2.88 0.06

8 Sagebrush 6.4 + CBNG 6.4 -53.69 3 110 5.07 0.02

9 Sagebrush 6.4 + Agriculture 6.4 + Dist. Power Line2 -53.39 4 110 6.63 0.01

10 Sagebrush 6.4 + Agriculture 6.4 + CBNG 6.4 -53.48 4 110 6.81 0.01

11 Sagebrush 6.4 + Agriculture 6.4 -55.08 3 110 7.84 0.00

12 Sagebrush 6.4 + Power Lines 6.4 -55.08 3 110 7.84 0.00

13 Sagebrush 6.4 + Agriculture 6.4 + Power Lines 6.4 -54.07 4 110 7.99 0.00

14 Sagebrush 6.4 + Agriculture 6.4 + Dist. Road2 -54.47 4 110 8.78 0.00

15 Sagebrush 6.4 + Agriculture 6.4 + Roads 3.2 -54.49 4 110 8.83 0.00

16 Sagebrush 6.4 + Dist. Power Line2 -57.36 3 110 12.41 0.00
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17 Sagebrush 6.4 -60.05 2 110 15.67 0.00

18 Sagebrush 6.4 + Roads 3.2 -59.39 3 110 16.46 0.00

19 Sagebrush 6.4 + Dist. Road2 -59.46 3 110 16.62 0.00

a CBNG = coal-bed natural gas development.  Numbers refer to the radius (km) around 

the lek at which the variable was measured. 
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Table 4.  Model-averaged estimates of regression coefficients (β) and standard errors 

(SE), odds ratios, and lower (LCL) and upper (UCL) 95% confidence limits on odds 

ratios for effects of landscape variables on greater sage-grouse lek persistence in the 

Powder River Basin, Montana and Wyoming, U.S.A., 1997-2005. 

Variablea  β SE Odds Ratio

Odds Ratio 

LCL  

Odds Ratio 

UCL 

Intercept  -1.25 1.40 - -  - 

Sagebrush  4.06 2.03 58.241 1.083  3131.682 

Agriculture  -8.76 8.73 1.57 x 10-4 5.81 x 10-12  4.22 x 103

CBNG 0.8 km  -3.67 1. 18 0.026 0.003  0.257 

CBNG 3.2 km  -4.72 1.50 0.009 0.001  0.169 

CBNG 6.4 km  -5.11 2.04 0.006 0.0001  0.328 

Years in 

CBNGb
 -1.41 0.58 0.244 0.078  0.761 

a CBNG = coal-bed natural gas development. 

b The estimated regression coefficient for Years in CBNG could only be derived from 

one model. 

 

 47



#

#

#

###

###

#
###

#
##
###

#

##
###

# #####
##

##

#####

#

####
#

#

###

#
#### ###

###### #######

#####
#####

#
#

#

#

#######

# #
#######
######
##

#

#

#######

#

#

#
### ### ### #### ####

##
###
######

#

#

### #############################

#######
##############
#######

#

#####
##
#

#

#

##

##
#

# #
#

# ###

##
# #

### ##

# ##

## #

######
######

#

#
####### ###

#

####

#

# #

##### ##

#

#

##

#

#

# #

##

#
#######

## #
####

#

#
#

#

#

#

#

#

#

#

##
#

#

#

#

#

##
########
#

## ####### ######
#####
### ######

##

### ### ## ## ########
# #########
## #

#

#

# ##### ###########
# ### #### ## ####

# ######

####

#
#

##

##### #

#

## #####
# ###

############# ## ## #

#

##
##
##

#
#

#

#

#

####

##
#

##

# #
## ### ####

###

##
###

###

# ## #
# #

#

##
#

#
#

#

#
#

###

###

#

#

#

## ###############
########

#
#

##
####

#####

##

##
##

#

###
#

##

#

#######

#

## ###

#

#

#

#

##

#### ##

###

####
#

# ##
##

#

#

#

#

## #

#

# #

# ###

#

#
#

#

#

##
#

#
#

#

##
#

#

#

#

##

#

#

####

#

##

#

#

#

########

####

#

#

#

##

###

#

###

#

#

#

####

#
#

#

#

#

#

#

#
#

#

#

#
#

#

###

####

#

#

#

#
##

####

#

#
##
###
#
###

###

#
##

#

###

##

########

#
##

#

#

#### ### ## ## ###
#### #### ########

############
#####

#

##

#

##
########
#

#
# ###
##
#### ######

##
##

#

#

#
#

###
#

#

#

#######

####
#
#

#

###
###
#########
##

# ####
#######
### #####

#### ###

########
##

#
#

########
##########
####

#
#

####

##
#

##
#
##
## ## #### ###

##################

#### #### ### ### ### #### # #####
#
####

###
##############

##### ############
#### ### ##

#####
##
#

## #######

######
#######
#####
##### ##### ##########

#

#### #

#
# #####
#

# ######## ##### ############ ####
# ##### #########

#

## ##### #####
#
#

# ## ### ### ###
#

#
#### #########

# ### ### # # ####### # ## #### ### #####
###########

### ## ## #### ## ###### ##### ###### ##### #### ######### ####
# ############# ########## ## ##### ### ### ###### ##### # #### #### ## ### #### ######

##### #### ## ### ## ### ## ##########
#########

###

# ##
# ###

#####
####

# #
#
#####
## ## #### ##### ######### ########## ######## #### ####### # # ## ###### #### ### ##### ####

# # #
# ###

#

#

# ##

###

# #####
# #############

##
#

#

#

# #### #### ####### ## ##### ### ######

# # ##
########### ### ####

## ## ######
# ### ## #### #### ## ##### ####### ######## ###### #### ### ## ###### # #### ## ### #### ##### ##### ## ###### # ##### ##### #########

###### ## ### ##### # # #### # ## # ### ## ### ########
# ####

## ### # #### ### ##
###### ############

# ## #### ## #####


#
## ## ## ####### ##### #### ### ## ###### ## ## #### ## ######### ##### ### # ####### # ## # ### ############## ## ### #### ## #### ###### ## ### ### #### # ### ### ############## ### ###### ## ##### ## ### ### ##### ## ## ##### #### ## ######### ###### ## ### ##### ###### # ##### ## ### ###### # #### ### #### ############ # ########## #### ##### ## ## ############### ###### ## ## #### ## ########### ##### ### ### ##### ###### #####
########### ####### ##

#########
# # ###### ######### ##### ##### ##### ##############

###### ######
## #### ###############

#### #### ##### #### #### ########### ####### ### ## #### ### # ######### ######## ########### ############ ## ############## ######## ########## ############ ################ ### ####### ########################
###### ###########
## #

#
###

#########
#########

#### ##
## ############### ########## ##### ######## ######
################################ ####################### ########## ############## ### ############ ########### ##

#

#

# #
# #

# # ##
####### #### ### ## ### ## #### # ###### # # ## ## ## ### ## # ##### ### #### # ###### ## ###### ########## ######### ########### ##### ###### ## ### ##### ### ## ## ## ## ## ####### # ######## ###### ### # ### #### ## #### ###### ### ## # ## ####### ## ### ### # ##### ### ### ## # ## #### ### #### ## ##### ### ### #### ###### # #### #### #### ## ## ## ### ### ## # #### #### ### #### ### ###### ###### ##### # ## ##### ## # ## # ###### # ###### ## ###### #### # #### ## ### # ## # # ### # # ## #### ## # ### # #### # ### # #### ## # ### ##### # # ## ###### # ##### ##### #### ####### # ## ######### ### ####### # ##### ###### ########### ## ##### ## ## #### # ##### #### ### ## ##### ## # ### # ## ##### ### ### #### ## # ## ## ########### # ####### ## ### ## ###### ######## #### ####### # ###### # ###### ## #### ## # ### #### ## ######## ### # ## # ## # ### ## ###### # ## ## # # ##### ## # ### ### ## ## ## ## ## ## # #### ## ## ## ## ## #### # #### ### ### #### # ## ######## ## ## # ### ## ## ### ### ### ## ### ##### ### ### ##### ### # ### ### ## # ## #### # ## ### # # ## ### ## ### # #### ## ### #### # # #### ## ## #### # ###### ### ##### #### ## ###### ## #### ## # ## ## #### ## ## ####### ### ## ### ## ### ###### ### ### ### ##### ##### ### ### ## ## # # ##### ##### ## ## ### #### ### # #### ### #### # ## ## ## ## ###### # ## ## ####### #### ### ######### ### ### ##### ### ## ### ## ## ## ########## ###### ######## # ## ## ### #### ##### ### ##### ### # ############ ## ####### ##### ### ### #### ### ## # #### ######### ##### ### # #### ### #### # ### # ## ## ### #### #### ## # ## ###### #### ### ### ###### ## ## ###### ### ##### ## # ###### ### ## ### ## ## ## ###### ## ### ## ## ### ##### ### #### ### ###### ## #### # ########### ### #### #### ########## # ##### # ## # ######## ### ###### ## ## # # #### #### ## ### #### #### ## ## # ## #### #### ### #### # ### ## ### ## ### ##### ## ## ### ## # ## ## ## ## # #### ## ## ## # # ########## ### # # ## ######### ## #### #### ### ## ### #### ##### ## ## ### ## # ### ####### #### ## # ##### ##### ## ### ### ####### ###### ### ## # ###### ### ### # ## ##### ###### ## #### # #### ###### ## ## #### #### # # #### ##### # #### ### ### # ### ## ## # # ## #### ### # ### ###### ### # ## ## ## ## ##### ### ### ##### ## ## ####### # ### # ### ## ## # ### ###### ### ### ### ### # ### ##### ## ### ## ### # ### # ##### ## # ### ## ### #### # ###### # #### ## ######## ##### # ### ### ##### ## ##### ###### ## ########### ##### ####### ###### ###### # ###### ####### # ## ## #### ## ######## ### # ### #### ## ### ##### ### ##### ### ####### #### ### ### ## ####### ## # ###### #### # ########## ## ### ## ## ### ####### # ## ### ###### # ####### # ######## #### # # ###### ### ############# ## ############ # ######### # ####### ######## ## ### #### ####### ### #### ### ## ########## ## ######## ######### #### ## #### ##### ## ## ### # #### ## # ######### ## ############### ## ## ### #### ######## ##

## ## ### ############# ############ #### ## ####################


# #### # # ## ## # ### #### ###
# ## ##### ### ## #### ### ## ##

###### ## #
#

##### ## #### ## ######### ## ### # #### #
#

## ##### ## ### ### ##### ### ##### ####### ### # ## ## ######## ## ## #
##

# #
##

######## ## ## ## #### ###### ##### ######### ### ### ###### ## ## ### # ######## ## ## # ### # #### ### ######## ###### ##### #### ## #### ## ### ### ### #### #### ###### ######### #### ###### ## ## #### ## ### #### ### #### # ## ## ############## ### ## ### ### # ### ################## ## ## ### ###### ### ## ### ## ## ## ### #### ## #### ############## ## ####### #### #### # ########### ### ### ### #### ##### ########### #### ## ### ## ##### ## ############# # ####### ######## ############ ### ## # ###### ### ######### ## ##### ## ## ## ######### ## ####### ### ####
#

##
# ############## ### ## ##### ########

#
#################
######################################## ########### ## ########## ##### ########### ######## ############################ ###### ############# ############ ######### ## ########## ##

###########
##

####### ### #### ##
############### ###### ############## ############## ##### ### ############################# ######### ####### ##### ###### ############ ################
###

###

######

#

#
######
#########

# ### ### ###### ## ### ### #######
# #### ### #### # ######


# # ######### ## ## ## ##### ### ## ##### #### ## ##

## #### ## ### ### ##### ### ## ## ### # # ## #### ### ##### ## ## ### #### ###### ###### ## ##### ### ### ##### ##### ###### ## ##
## #### ##### #### ### ####### ## # ## # ##### ## ## # ### ### #### # # ## ### ## #### # ###### ###### #### ## ##### ## ## ## # ### ### #### ## #### #### # # ### # ### ### ##### ## ## ######## ### ## #### ##### ### #### ######## ### ## # # ########### #### ### ## # #### ## ### ##### ## ##### ### # ## # #### ########### # ### ##### ######## # ######### ######### ## # ######### ### #### ##### ## # ## ## ## # ## ###

# ##### ### ###### # ## ###### ## #### ## # ########### ## ## ## ######## ##
#

##
# # ## ### ## # #####

##### ### ### ## # # # ## ##### #### ### ##
# ## ##### ######### ### ####### ####### ### ##### ######## ##### ############ ### ###
## ## # ########## ### ### # ###### # # ####### # ## ## ## ## ### ##### # ############ ########## ##### ##### ## ## ### ### ## ## ## #### #### #

#
####### # # ## ### ## ##### # ####### ### ########### # ######

# # #### ## ##### ####### #### # ###### # ## ########### ########## # ## ### ##### #### # #### ## ####### ## #### # ###### #### ####### ## # ### ### ######## ####### ####### # # ######## # ### ## ## ##### ##### ### ## ##### ## ##### ####
#

### # ###### # ######## ########## ### ### # ######
######

########
## ############# ###### #
###

##
#

#
##### ###### ##### ##

#####
########

## ####### # ####
###

# #
#

#######
#

###### ##
## ###### ## ## # ## #
# ##### ## ########

#
###

#
### ###### ### ## #
##

#
### ### # ##

##### #### ## #
##

##### # ###
## #
###### ########### #######################


##############

#

#

## #### ### # #####

### # ### ####### # ### ### #### ### #

#### ### #### ### # ## ## ###### ###### # #### ## # ## #### ##
############## ##### ### #### #### #### ## ## ## #### ### ### #### ###### ## #### ##### ########
## ### # ## ## ### # ###### #### ## ### ### #### ##### ### ## #### # # ## ## #### ######## ## ##### ## ## ## # ### ##### ### #### #### ### #### ## ## ####### ## ####### ## ## #### # ## ######### ### #### ######## ########## ## #### ### #### # # # ##### #### ### # ## #### ### # #### ## #### # ### ###### ### ### ### #### ## ## ### ####### ### ###### #### ## ##### ### ## ## # ## ## ## ###### # ##### # ### ## ### #### ## ### ## ## ##### ###### # #### ####### ### ##### # ######## ##### #################

## ## ## #### ####### ## ## #### #### # ### ### #### ################### #### ### #### ### #### ### #### ##### ### ### #
# # # #### ## #### # ###### # #### ### ### ##### #### ## ##### ##

##### ######### # ##### ## ###### ### #
### #### # ####### #### ### ####### ## ###### ### ## ##### #
### # ## ### ######## # ########## ## ######### ## ####### ####### # ### ######### ############### ####### #

##
# ## ##### # ##### ## ##### ## ##### ## ## ### ###

# ######## # # #### # ## # #
# # ## # ## ## ### ## ########### ##### #### #### ###### ### ## ######## ### ### ########### ############ ### ##### #### #### # ###

## ## ##### ##### ## ### # ## ### ##### ## ##### # ### ######### ####### #################
# #

# ###
# #
## #
############ ### ### ### #### ## ######### #### ## ## ###

#
###### ############### ######### # ###### ### #### ##############

##### ####### ## #### ### ### #### ###### ## ## #### # ###### ### ###### ### # ### # #### ### ########### ### #### # ### ### # ####### ## ##### ### ## ##### ### ## ### #### ## ##### ### ## ###### ######### ####### ############# ### #### ##### ##### ## #### ######## ## #### ################## ##### ######
#

##


## ###### #### ## ## ##### # ## ## ##### ## ## ### ## ##### ## ## ## # ### #### #### ## # ## # ### ## ### # ## ### #### #### ###### ######### ## #### ## ### ####### ## #### ## # ###### ## # ## ## ## ### ####### ### # ######## ## #### ### ### ### ## #### ####### # ##### # ######## ### #### ### ### ### ## ### # #### ## ## # ### ### ### ### ### ## ## ### ## ###### ## ### # # ##### #### #### ## # ## ### ## # ### ## ## ### ###### ########## ### #### ######### ### ##### ##### ##

### #### ##### ## # #### ###### ### # ###### ## ############ ###
## ##
##

####
## ### ### ###### ###### # ### # ## ### ##### # ### #### ### #### # ## #### ##### #######

# ## #####


##### ############ ####
###### ################# #### ###

# # ## ## ## #### ### #### # ###
# #### ####### #
### #### ##
# ### #### ######## ## ### #### #### ############### ######## ####### ####### ### ### ## ## #### ## ## #### # # #### ## #### ### ##### ## ### ### #### ##### ######### #### ## ### # ###

# #
##

####
# ## ### ########## ### ##

# # ### #### ## ## ##
##

####### ## ## ##
# ### ## # ### ## ### # ### ### ####### ## ## ### ##### ### ## ## ### ### ## ### #### ##### # ## #### ########## #####

# # # #
#

##### # # #
#### # ### ##

#
##### #

#
#

#
#

##### ###########
####### #####

# ################### ### ######## ###### #### #### #### ##### # ####### ######### # # #### ### ######## ### ## #### #### ## ## ## ## ###### ############ ## ### ### ### # ## # ## ## #### ########## ### ### ## ########### ##### #
### ######### ## ##### ##### ###### ### # ##### #### ######## ####### ## ### ######## ## #### ### ### ### ###### ######## ### ########## ###### ########## ############ ########## ############## ############# ############### ############ ## ## ### ################## ##################

# #
#

##
##

#

####


## ###### ## #### #### ####### # ###### ## ###### ## # ####### # # ######## ##### ### ###### ### #### # ##### # ## # #### ## # # ## ##### # # ### # ## ## # ###### #### #### ## #
# # ####

# #
###
##########
####### ## ##### ### ##### ###### ### ### ## ## # ### # #### # ## ### ### #### ## ## #### ######### ## ## ### ## ##### ## ### ## #### ## ### # ##### # ## #### # ## ##### #### # ## ##### ###### ### ## ##### # ## ##### # ### ### ## #### ### ##### ### # #### ## ## ## #### # # ### # ##### ###### # # ##### ## ######### # ### ### # ## ### ## # ### #### ## #### ## ## # ### ## # #### ### # ## # #### ### ## ### #### # ## ### ###### # ### ##### #### ## ### # ####### # ## # ## # ### #### #### #### ### # ## ##### ## ##### # ## ##### # # ## # #### ### # ##### ## ## # ## #### #### ###### ### ####### ##### #### ##### ### #### ###### # ###### ### #### ## ###### ## ## ### ### ## ## ##### # ## ##### ###### ## #### #### ##### ### #### ####### ##### ##### ##### ## ### ## ## ## ### # ## ## #### #### ## ## #### # ## #### # ###### ### ###### #### ### ## # ######### ######### ### ## # ## ####### ### ## ####### # ## ### #### ### #### ### #### # #### ### ### ## ## ## ## ### ## # ##### # ## # ## # # ###### ### ##### ######## ######### #### ##### ####### ##### ## ###### ### ## #### ## ## ### ### # ### ## ### ## ###### #### ###### #### ## ####### ###### ### #### ##### ### ##### ###### ###### ##

#### ## # ### #######
# ## ### ##
## ##### ##### ######### ## ##### ###### ## ### ####### ###### ### ## ## # ## #### ### ###### ### ## ### ## ## #### ##### #### ###

# # ### ## ## ######## ###
# ### ##

#
# ### #

#
########### # ######### ## ## # ##### ## ## ### # ##### ######## ## ### ### ####### ###### #

#
##

# # ## #### # ##### ### ## ####
#

## ## #### # ## ## #### # ## #### ### ### ## ### #### ### ## ####### #### #### ## ##
#

##### # #### ## #### # ### # #### # #### ### ## #
# ## ### # ### ### #### ## ## ## ### ## ## ### #
#

##### #### ### # #### ############ #
# ## ### ### ###### ### # #### # ## ### #

#
#### ### ## ### ## ### # #### # ####

# ### ## #
###

###### ######## # #
# ###

#
## ## ##### ## ####
# ## ## #

#
#

## #
# ### ## ## #

## ### #
#

###
## ## ##

##
##### #

###
###

###
#

#
#

#
##

# ###### ###
#

##
#

### ####### ###
####

#
###

#
##### #

##
## #### ## ##

#
# #########

#
# ## ## ##

#
#

#
# ### ### ## ###

## ###
###
####

#
####

# ##### # #
# # ### ## #
### ## ### ## # ### #### # ###### ## ## # ##

######## ## ######
## ##

### ### #### ### ### ## #### ### # ##
### ## ## ### ###### ##### ### # ## # ## #

#### ## ### ### ### ## ## ###
#####

#### ### ## ####### # # # # ### # ##
## ##### # ### ######
# #### ### # ## # #
# ## ### # #### ### #### ## ##### ###

### # ##### ## ###### ###### # ## ##### ###### #### ###### ############ ### ####### ###### ##### ##### ### ####### ### ########## ######### ### #### ### ############## ####### ##### #### ######### ######## ###### ## #
#
##

#

%U

%U

%U

%U

%U%U

%U

%U

%U %U

%U

%U
%U

%U

%U%U

%U

%U

%U

%U

%U%U
%U

%U

%U

%U

%U

%U

%U
%U

%U

%U

%U

%U

%U

Ñ

%U%U%U

%U
%U

%U

%U

%U

%U
%U

%U%U

%U

%U

%U

%U

%U
%U

%U%U

%U

%U

%U %U %U%U

#

# #

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#
#

#

#
#

#

#

#

##

#

#

#

#

#

#

#

#
#

# #

#
#

#

#

#

#

#

#

#

#
#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#
#

#

#

#

#

#

#

#

#

# #

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#
#

#

#

#
#

#

#

#

#

#

# #
#

#

#

#

#

#

#

#

#

#

#

# #

#

#

#

#

##

#

#

#

#

##

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

# #

#

#

#
#

#

#

#

#

#

#

#

#

#

#
#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

# #

#

#

#

#

#

#

#

#
#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

Montana

Wyoming

N

0 50 100 km

I-25

I-90

I-90

16

14

16

14

85

Study area

Coal-bed natural gas wells
Boundary of SPOT-5 satellite imagery

Active lek:

Inactive lek

- Small (1-25 males)
- Medium (26-50 males)
- Large (51-75 males)

Destroyed lek

48



   

Figure 2  
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6. 
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CHAPTER 3. WEST NILE VIRUS AND GREATER SAGE-GROUSE: ESTIMATING 

INFECTION RATE IN A WILD BIRD POPULATION 

 

Abstract.  Understanding impacts of disease on wild bird populations requires knowing 

not only mortality rate following infection, but also the proportion of the population that 

is infected.  Greater sage-grouse (Centrocercus urophasianus) in western North America 

are known to have a high mortality rate following infection with West Nile virus (WNv), 

but actual infection rates in wild populations remain unknown.  We used rates of WNv-

related mortality and seroprevalence from radio-marked females to estimate infection 

rates in a wild greater sage-grouse population in the Powder River Basin (PRB) of 

Montana and Wyoming from 2003-2005.  Minimum WNv-related mortality rates ranged 

from 2.4-13.3% among years and maximum possible rates ranged from 8.2-28.9%.  All 

live-captured birds in 2003 and 2004 tested seronegative.  In spring 2005 and spring 

2006, 10.3% and 1.8% respectively, of newly-captured females tested seropositive for 

neutralizing antibodies to WNv.  These are the first documented cases of sage-grouse 

surviving infection with WNv.  Low to moderate WNv-related mortality in summer 

followed by low seroprevalence the following spring in all years indicates that annual 

infection rates were between 4-29%.  This suggests that most sage-grouse in the PRB 

have not yet been exposed and remain susceptible.  Impacts of WNv in the PRB in the 

near future will likely depend more on annual variation in temperature and changes in 

vector distribution than on the spread of resistance.  Until the epizootiology of WNv in 

sagebrush-steppe ecosystems is better understood, we suggest that management to reduce 

impacts of WNv focus on eliminating man-made water sources that support breeding 
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mosquitos known to vector the virus. Our findings also underscore problems with using 

seroprevalence as a surrogate for infection rate and for identifying competent hosts in 

highly susceptible species. 

 

Keywords: Centrocercus urophasianus, coal-bed natural gas, energy development, 

flavivirus, greater sage-grouse, infection rate, sagebrush-steppe, West Nile virus. 

 

Assessing risks posed by emerging infectious disease is an important part of 

conservation planning and management for avian species of concern (6, 9, 20).  Human 

modifications to wildlife habitat often facilitate the spread of infectious diseases (6, 8, 

20), and disease outbreaks may undermine efforts to maintain viable or harvestable 

populations (21, 26, 35, 39). 

Predicting impacts of emerging infectious disease and identifying suitable strategies 

to control its spread requires knowing both the prevalence of disease and the mortality 

rate of infected individuals (16, 17).  Mortality rate is typically estimated by 

experimentally infecting wild-caught animals in the laboratory (e.g., 4, 16).  Ideally, 

prevalence (i.e., exposure) would be measured by infection rate, defined as the proportion 

of the population that is exposed to the pathogen during an outbreak and becomes 

infected.  Unfortunately, infection rates in wild populations are difficult to estimate (17, 

18, 21).  For that reason, most studies instead report seroprevalence as a surrogate for 

infection rate (e.g., 1, 2, 9, 11, 19, 28, 33).  Drawing inferences regarding exposure based 

solely on seroprevalence assumes a linear relationship between the two.  However, 

because seroprevalence estimates exclude infected individuals that die prior to sampling, 

 56



seroprevalence may underestimate infection rate in susceptible species with high disease-

related mortality (13, 17).  Estimates of host competence that rely on seroprevalence 

suffer from the same problem.  If infected hosts die soon after transmitting the virus, 

measures of seroprevalence after the outbreak will underestimate true disease prevalence 

and the importance of that host in the transmission cycle.  Thus, to fully understand the 

prevalence, impacts, and epizootiology of disease in wild bird populations requires that 

we estimate not only mortality rate and seroprevalence, but also actual disease-related 

mortality, which in turn allows estimation of infection rates.   

Knowing infection rate is also crucial for identifying potential strategies for 

mitigating disease impacts to susceptible species.  If infection rates are low, it suggests 

that exposure is uncommon, and that it may be possible to further reduce exposure by 

managing vectors, alternative hosts, or both.  In contrast, if infection rates are uniformly 

high, then focusing on other management strategies, such as vaccination, may be more 

effective. 

The recent spread of West Nile virus (WNv) in North America represents an 

important potential stressor on native bird populations, including greater sage-grouse 

(Centrocercus urophasianus) (hereafter “sage-grouse”).  Sage-grouse are gallinaceous 

birds native to western semi-arid sagebrush (Artemisia spp.) habitats (30).  Previously 

widespread, the species has been extirpated over almost half of its original range due to 

loss, fragmentation, and degradation of sagebrush habitat (5, 15, 29).  The species’ 

conservation status has precipitated a coordinated effort to assess risks to populations and 

implement conservation and management actions to mitigate those risks (5).  West Nile 

virus was first detected in dead sage-grouse in 2002.  By 2003, WNv-related mortality 
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had reduced late-summer survival of adult females by 25% (22) and resulted in near-

extirpation of a local breeding population in northeastern Wyoming (36).  In summer 

2004, survival was 10% lower (86%) at sites across the species’ range with confirmed 

WNv mortalities than at sites without (96%) (23).  The extreme susceptibility of sage-

grouse was confirmed in 2004 when, in separate laboratory trials, all non-vaccinated 

birds (n=44) experimentally infected with WNv died within 6-8 days, regardless of 

dosage (4, T. Cornish, unpublished data).  As of fall 2006, sage-grouse mortalities 

positive for WNv have been confirmed in 11 of 13 states and provinces where the species 

still occurs (23, 34).  Despite concern over impacts of WNv on sage-grouse, actual 

prevalence of the virus in wild populations remains unknown. 

Recent reviews of West Nile virus (WNv) have identified a lack of data on infection 

rates from wild populations as a major hindrance to understanding impacts of this 

recently-arrived pathogen on North American birds (21, 26).  To better understand the 

prevalence and potential impacts of WNv on sage-grouse, we used rates of WNv-related 

mortality and seroprevalence from radio-marked females to retrospectively estimate 

annual WNv infection rates in a wild population from 2003-2005.  We also examine 

implications of low infection rates for managing WNv risk in sage-grouse conservation 

and management strategies. 

 

Materials and Methods 

Female sage-grouse were captured and radio-marked from 2003-2006 as part of a 

study assessing impacts of coal-bed natural gas development on sage-grouse populations 

in the Powder River Basin (PRB) of southeastern Montana and northeastern Wyoming, 
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USA (elevation 1000-1400m).  Study sites primarily consisted of semi-arid sagebrush-

steppe and shortgrass prairie interspersed with mesic shrubland, greasewood (Sarcobatus 

vermiculatus) bottomlands, irrigated and dry-land crops, riparian woodland, and conifer 

forest.  Dominant plant species in sagebrush-steppe included Wyoming big sagebrush 

(Artemisia tridentata wyomingensis) and Plains silver sagebrush (A. cana cana) with an 

understory of native and exotic grasses and forbs. 

We monitored radio-marked females every 2-4 days during the peak WNv 

transmission period (1 July - 15 September) in each year (36).  Dead birds that yielded 

testable carcasses (i.e., carcasses with brain, wing or leg bones, internal organs, or spinal 

column present) underwent complete necropsies and microscopic examination of tissues 

by histopathology at the Wyoming State Veterinary Laboratory (Laramie, WY).  Each 

carcass was tested for WNv using real-time polymerase chain reaction (31) and 

immunohistochemistry (14).  Select cases positive for WNv were confirmed by isolation 

of the virus from one or more tissues (brain, heart, kidney, or bone marrow) in Vero cell 

cultures (32). 

We used a Kaplan-Meier product limit estimator with staggered-entry design to 

estimate mortality in each year from 2003-2005 (38).  Because 40% of 50 mortalities 

over the three years did not yield testable carcasses, mortality estimates based only on 

carcasses that tested positive for WNv infection may have underestimated actual WNv-

related mortality.  For that reason, we calculated both minimum WNv-related mortality 

based on mortalities confirmed positive for WNv and maximum possible WNv-related 

mortality based on total mortalities minus those confirmed negative for WNv.  The 

maximum possible estimate included mortalities for which no carcass (e.g., only a radio-
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transmitter) was recovered, the carcass was not testable (e.g., too decomposed), or if tests 

were inconclusive.  Individuals captured after 1 July were left-censored on the date of 

capture, and individuals that disappeared prior to 15 September (i.e., fate unknown) were 

right-censored on the last date they were located (38).  We estimated dates of mortality as 

the mid-point between last date observed alive and the first date observed dead.  In some 

cases, we estimated timing of mortality more accurately from the condition of the 

carcass. 

To determine whether sage-grouse survived infection with the virus, we collected 

blood samples from live-captured birds in August-September 2003 (n = 55), March-April 

2004 (n = 66), August-October 2004 (n = 46), March-April 2005 (n = 58), and March-

April 2006 (n = 109).  Blood samples were refrigerated, centrifuged, and serum decanted 

within 12 hours of capture, then frozen until testing.  Serum samples were tested for 

neutralizing antibodies to WNv using a micro plaque reduction neutralization test 

(PRNT) (37).  All samples positive for WNv were also tested for St. Louis encephalitis 

virus, the only other flavivirus in this region known to cross-react serologically with 

WNv (3).  We report seroprevalence as the proportion of females that tested positive 

(PRNT titer 1:100) for antibodies to WNv and calculated 95% confidence intervals using 

logistic regression. 

We used rates of WNv-related mortality during the WNv season and observed 

seroprevalence the following spring to calculate infection rates in each year from 2003-

2005.  We based our calculations on the mathematical model of Komar et al. (17), who 

showed that infection rate, I, can be expressed in terms of post-epizootic seroprevalence, 

S, and mortality rate following WNv infection, M, as follows: 
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I = S / [1 - M + (S * M)]   (1) 

Because mortality rate, M, can be expressed as WNv-related mortality, ΔP, divided by 

infection rate (i.e., M = ΔP / I), substituting for M and rearranging the equation allowed 

us to calculate infection rate from WNv-related mortality rate and post-epizootic 

seroprevalence: 

I = ΔP + S - (S * ΔP)   (2) 

Because WNv-related mortality reduces post-epizootic population size and inflates the 

seroprevalence estimate, the S*ΔP term in Equation 2 is used to adjust the post-epizootic 

seroprevalence estimate to reflect seroprevalence based on population size prior to, rather 

than following, the outbreak.  Our method assumes: (1) that additional WNv-related 

mortality did not occur between the end of the WNv transmission period and when serum 

samples were collected the following spring, and (2) that birds seropositive in spring 

were infected the previous summer.  Coal-bed natural gas development may facilitate the 

spread of WNv by increasing the amount of surface water available to support breeding 

mosquitos (40).  To better understand background rates of WNv mortality and infection 

in the absence of coal-bed natural gas development, we estimated rates with and without 

data from birds in or near areas with extensive coal-bed natural gas development. 

To assess the accuracy of seroprevalence as a measure of actual infection rates, we 

also examined the relationship between infection rate and post-epizootic seroprevalence 

over a range of observed susceptibilities across species (4, 16). 
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Results 

Estimated minimum WNv-related mortality was low in all years, ranging from 2.4% 

in 2005 to 13.3% in 2003 (Table 1).  Maximum possible WNv-related mortality was low 

to moderate, ranging from 8.2% to 28.9% (Table 1).  WNv-related mortality was higher 

in 2003, the 6th warmest summer on record in the PRB, than in 2004 and 2005, the 86th 

and 41st warmest, respectively (24).  Rates of WNv mortality and infection were 

substantially lower for 2003 and slightly lower for 2004 when data from birds in areas 

with extensive coal-bed natural gas development were removed (Table 2). 

All serum samples through fall 2004 (n = 167) tested negative for WNv.  In spring 

2005, six of 58 (10.3%) females captured tested seropositive.  In spring 2006, two of 109 

(1.8%) females tested seropositive.  All females seropositive for WNv tested negative for 

St. Louis encephalitis virus (PRNT titers <1:10).  Of the six seropositive females in 2005, 

four were yearlings (i.e., hatched in 2004) and two were adults (i.e., hatched in 2003 or 

earlier).  Of the two seropositive females in 2006, one was a yearling (i.e., hatched in 

2005), and one was an adult (i.e., hatched in 2004 or earlier).  All birds were of normal 

mass for their age (mean ± SE; adult: 1.64 ± 0.05 kg, n =3; yearling: 1.44 ± 0.04 kg, n = 

5) and exhibited no overt signs of WNv-related disease at capture (e.g., morbidity, ataxia, 

tilted head, drooping wings, or impaired flight) (4, 18, 36).  Seropositive females also 

initiated nests at the same time as other hens and had normal clutch sizes.  The presence 

of neutralizing antibodies to WNv in yearlings captured in spring indicates that antibodies 

were detectable for at least 5 months following exposure.  Seropositive females were 

distributed across six leks at four different study sites.  Microsatellite analyses 

demonstrated that none of the eight females were related and thus can be considered 
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independent replicates for seroprevalence calculations (K. L. Bush, University of Alberta, 

unpublished data). 

Estimates of both minimum and maximum possible infection rates in the PRB were 

low to moderate in all three years (Table 1).  Estimates of minimum infection rate ranged 

from 4.2-13.6% and maximum possible infection rate from 9.9%-28.9%.  Infection rates 

were higher in 2003 than in 2004 or 2005.  Sample sizes were insufficient to provide 

precise estimates of mortality, seroprevalence, or infection rate on a site-by-site basis. 

In this study, seroprevalence estimates underestimated infection rate by a small 

amount in all three years of the study (Table 1).  However, the relationship between 

infection rate and post-epizootic seroprevalence was increasingly non-linear with 

increasing susceptibility, and the difference between the two metrics for susceptible 

species was largest at intermediate infection rates (Figure 1). 

 

Discussion 

This study presents the first empirically-derived estimate of actual WNv infection rate 

reported for any wild bird population.  In this study, estimates of seroprevalence and 

infection rate were similar.  However, this is to be expected when infection rates and 

seroprevalence are both low (Figure 1).  Because of the extreme susceptibility of sage-

grouse, had actual infection rates been higher, the difference between observed 

seroprevalence and estimated infection rates would likely have been much greater.  For 

susceptible species, seroprevalence may substantially underestimate both the prevalence 

and impacts of disease and confound inferences regarding exposure (e.g., habitat- or 

species-specific exposure rates).  For example, in Rock Pigeons (Columba livia), which 
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are largely resistant to WNv (16), seroprevalence likely provides a reliable measure of 

exposure (e.g., 1; Figure 1).  In contrast, for susceptible species (e.g., corvids, sage-

grouse, American White Pelican [Pelecanus erythrorhyncos], and Ring-billed Gull 

[Larus delawarensis]; [4, 16, 18]), the value of seroprevalence data for making inferences 

about infection rates in the absence of information on mortality is suspect (Figure 1).  

Inferences regarding exposure in species with unknown susceptibility – including the vast 

majority of Nearctic and Neotropical species – may also be called into question.  Despite 

low observed seroprevalence, sage-grouse are also considered competent amplifying 

hosts for WNv (4).  The duration of infectious viremia in captive sage-grouse (3-5 days) 

was comparable to other avian species considered competent reservoirs, such as corvids, 

blackbirds, and raptors (16).  Together, these findings underscore problems inherent with 

using seroprevalence as a surrogate for infection rate and for identifying competent hosts 

in the absence of data on disease-related mortality. 

The discovery of WNv-specific antibodies in live sage-grouse also represents the first 

documented evidence that individuals of this species can survive WNv infection.  

Seropositive birds in our study likely survived because they successfully mounted an 

immune response to infection.  However, it is also possible that seropositive birds 

acquired antibodies via passive vertical transmission from their mothers (12, 33).  

Although we observed no overt evidence of sub-lethal effects, if overwinter survival of 

infected birds was reduced compared to their uninfected counterparts, we may have 

underestimated infection rates. 

How WNv will affect sage-grouse populations in the PRB in the future is unclear.  

Over the next decade, we suspect that impacts will depend less on resistance to disease 
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than on variation in temperature (23, 27, 41) and changes in vector distribution (40).  

First, resistance appears to be neither widespread nor common.  Low infection rates 

indicate that most sage-grouse in the PRB probably have not been exposed to WNv and 

remain susceptible.  Second, temperature strongly affects physiological and ecological 

processes that influence WNv transmission (7, 27, 41), and outbreaks are typically 

associated with prolonged periods of above-average temperature and drought (10).  In our 

study, timing and extent of mortality across years were consistent with this hypothesis, 

with lower mortality rates and later peaks of mortality in years with lower June-August 

temperatures (2004-2005) (23).  Third, construction of ponds associated with coal-bed 

natural gas development increased larval mosquito habitat by 75% from 1999-2004 over 

a 21,000-km2 area of the PRB (40).  Coal-bed natural gas development is anticipated to 

continue in the PRB for the next 10-15 years in occupied sage-grouse habitats. 

Estimates of both seroprevalence and infection rate in our study were generally lower 

than seroprevalence estimates for many species in suburban, forested, farmland, urban, or 

wetland sites in other parts of the U.S. (e.g., 1, 2, 11, 17, 28, 33) but similar to those in 

desert regions of California (27).  Due to seasonal drought in summer, sagebrush-steppe 

may support fewer avian or mammalian hosts or fewer mosquito vectors than other, more 

mesic habitats.  Reservoir and amplifying hosts for WNv in this ecosystem remain 

unknown and likely cannot be managed over large geographic scales.  For this reason, we 

suggest that management to reduce impacts of WNv in sage-grouse habitat focus on 

eliminating mosquito breeding habitat in anthropogenic water sources, particularly coal-

bed natural gas ponds. 
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Table 1.  Mortality and West Nile virus (WNv) testing of radio-marked female sage-grouse during the peak WNv transmission 

period (1 July - 15 September) and seroprevalence the following spring in the Powder River Basin, 2003-2005, including birds 

from areas with extensive coal-bed natural gas development.  Estimated minimum and maximum possible mortality (ΔP), 

seroprevalence (S), and minimum and maximum possible infection rates (I) given as mean (95% CI).  Two typographical errors 

were discovered after publication of Walker et al. (2007).  The lower confidence limit in 2004 was 0.110, not 0.011, and the 

number of females monitored in 2003 was 59, not 46. 

Yr 

No.  

sites 

No.  

females 

No.  

deaths 

No. 

tested 

+ /- 

tests 

Median date 

WNV deaths ΔP (min) ΔP (max) S I (min) I (max) 

2003 3 59 15 10 6/4 
8/03  

(7/24-8/05) 

0.133 

(0.048-0.219) 

0.289 

(0.178-0.399) 

0.000 

(-) 

0.133A

(0.048-0.219) 

0.289 A

(0.178-0.399) 

2004 6 118 17 9 4/5 
8/23  

(8/03-9/04) 

0.037 

(0.003-0.071) 

0.094 

(0.042-0.147) 

0.103 

(0.047-0.212) 

0.136  

(0.070-0.202) 

0.187  

(0.110-0.265) 

2005 6 123 18 11 3/8 
8/6 

(7/28-8/07) 

0.024 

(0.000-0.053) 

0.082 

(0.033-0.132) 

0.018 

(0.005 – 0.070) 

0.042 

(0.011-0.074) 

0.099  

(0.047-0.150) 

      A Seroprevalence was 0.0 in fall 2003 and spring 2004, so the estimated infection rate in 2003 equaled estimated mortality. 
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Table 2.  Mortality and West Nile virus (WNv) testing of radio-marked female sage-grouse during the peak WNv transmission 

period (1 July - 15 September) and seroprevalence the following spring in the Powder River Basin, 2003-2005, excluding birds 

from areas with extensive coal-bed natural gas development.  This allows estimation of background infection rates in the 

absence of coal-bed natural gas development.  Estimated minimum and maximum possible mortality (ΔP), seroprevalence (S), 

and minimum and maximum possible infection rates (I) given as mean (95% CI). 

Yr 

No.  

sites 

No.  

females 

No.  

deaths 

No. 

tested 

+ /- 

tests ΔP (min) ΔP (max) S I (min) I (max) 

2003 2 49 7 4 0/4 
0.000 

(-) 

0.143 

(0.047-0.239) 

0.000 

(-) 

0.000A

(-) 

0.143 A

(0.047-0.239) 

2004 4 110 14 7 2/5 
0.020 

(0.000-0.046) 

0.081 

(0.030-0.131) 

0.103 

(0.047-0.212) 

0.121  

(0.060-0.182) 

0.175  

(0.104-0.246) 

2005 6 123 18 11 3/8 
0.024 

(0.000-0.053) 

0.082 

(0.033-0.132) 

0.018 

(0.005 – 0.070) 

0.042 

(0.011-0.074) 

0.099  

(0.047-0.150) 

      A Seroprevalence was 0.0 in fall 2003 and spring 2004, so the estimated infection rate in 2003 equaled estimated mortality. 
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Figure 1.  Predicted non-linear relationships between observed post-epizootic 

seroprevalence (S) and actual infection rate (I) over a range of mortality rates following 

infection (M) for representative species (4, 17).  Abbreviations: AMCR = American Crow 

(Corvus brachyrhyncos), GSGR = Greater Sage-grouse (Centrocercus urophasianus), 

BLJA = Blue Jay (Cyanocitta cristata), FICR = Fish Crow (Corvus ossifragus), HOSP = 

House Sparrow (Passer domesticus), COGR = Common Grackle (Quiscalus quiscula), 

EUST = European Starling (Sturnus vulgaris), ROPI = Rock Pigeon (Columba livia).  

Divergence between post-epizootic seroprevalence and infection rate increases with 

susceptibility and is highest at intermediate infection rates. 
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CHAPTER 4.  DEMOGRAPHICS OF GREATER SAGE-GROUSE IN THE POWDER 

RIVER BASIN, 2003-2006. 

 

Abstract:  Obtaining reliable estimates of demographic rates and their variability over 

time and space is crucial for assessing and modeling the effects of potential stressors on 

long-term population growth for sensitive or declining wildlife species.  We used 

maximum-likelihood methods to generate year and age-specific estimates of greater sage-

grouse (Centrocercus urophasianus) nest, brood, and female survival rates in three 

regions of the Powder River Basin (Decker, MT; Buffalo, WY; Spotted Horse, WY)from 

2003-2006.  To assess the effect of West Nile virus (WNv) on female survival, we ran 

female survival analyses with and without WNv-related mortalities.  We also compared 

maximum-likelihood estimates of nest success against values of apparent nest success 

and “quick” estimates of nest success derived from apparent nest success.  We observed 

consistently high rates of nest initiation and hatching success.  We also documented 

higher renesting rates and clutch sizes among adult females than among yearlings.  Daily 

survival rates for nests were high during laying (0.993 ± 0.007) and higher for adult 

females than for yearlings.  We also documented a pattern of higher daily nest survival 

rates earlier and later in the incubation period than in the middle.  Spring precipitation the 

previous year had a positive effect on daily nest survival.  Nest success and brood success 

showed parallel patterns within each region.  Nest and brood success near Buffalo were 

lower in 2004 and high in 2005 and 2006; nest and brood success near Decker were 

higher in 2003 and 2004 than in 2005 and 2006.  We observed the highest estimates of 

nest success ever reported for this species (95%) near Buffalo in 2006.  Nest success 
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estimates obtained using the “quick” method were generally comparable with estimates 

derived from maximum-likelihood estimators, suggesting that the “quick” method is 

useful for correcting previously published estimates of apparent nest success.  Parallel 

patterns of nest and brood survival suggest that these vital rates are influenced by similar 

suites of predators, or in similar ways by annual environmental (e.g., precipitation), 

habitat (e.g., grass height), or ecological conditions (e.g., predator abundance).  Female 

survival was lowest in the Spotted Horse region in 2003 due to an outbreak of WNv and 

consistently lower in the Buffalo region than near Decker.  We observed the lowest 

estimate of annual adult female survival (35%) ever reported for this species near Buffalo 

in 2005.  Unexplained variation in nest, brood, and female survival across regions suggest 

that further investigation of local- or landscape-level habitat and anthropogenic features 

influencing sage-grouse and their major predators is warranted.  On average, WNv-

related mortality during the summer reduced annual female survival by 5% (range = 0-

27%).  Mortality due to WNv was an important new source of mortality in the Powder 

River Basin.  The potential for detrimental effects of WNv on sage-grouse populations 

caused by landscape-level increases in anthropogenic water sources (e.g., coal-bed 

natural gas ponds) needs to be considered in resource management plans. 

 

Keywords: Centrocercus urophasianus, coal-bed natural gas, demographics, greater sage-

grouse, mortality, Powder River Basin, sagebrush, vital rates, West Nile virus. 

 

Obtaining reliable estimates of demographic rates and their variability over time 

and space is important for assessing and modeling the effects of potential stressors on 
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long-term population growth.  All studies of greater sage-grouse published prior to 2003 

reported demographic rates based on capture-recapture data (Zablan et al. 2003) or using 

traditional metrics such as apparent nest success and apparent survival.  A “quick” 

method of estimating daily nest survival (Johnson and Klett 1985) has also been used to 

study regional patterns of nest success in sage-grouse (Holloran et al. 2005).  However, 

numerous advances have been made in analysis techniques for demographic rates, 

particularly in the application of group- and time-specific covariates to survival data 

(Dinsmore et al. 2002, Rotella et al. 2004, Shaffer 2004), and these techniques have 

provided new insights into sage-grouse ecology and management (Hausleitner 2003, 

Moynahan 2004, Aldridge 2005, Holloran 2005, Sika 2006).  Due to potential 

discrepancies between nest success estimates obtained from different estimation methods 

(Moynahan et al. 2006a), it is also important to test whether estimates of apparent nest 

success can even be used in population modeling.  Assessing the role of potential 

stressors such as West Nile virus (WNv) on long-term population growth also requires 

estimating the effect of that stressor on vital rates, after controlling for the effects of other 

important factors. 

The objectives of this study were to: (1) generate robust year and age-specific 

estimates of greater sage-grouse nest, brood, and annual female survival based on 

maximum-likelihood methods in three regions of the Powder River Basin from 2003-

2006; (2) compare estimates of nest success obtained from maximum-likelihood methods 

versus traditional metrics such as apparent nest success and those calculated using 

Johnson and Klett’s (1985) “quick” method; (3) assess the influence of WNv-related 

mortality on annual female survival; and (4) assess how variation in nest and brood age, 
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female reproductive status, and precipitation influence vital rate estimates.  Our estimates 

rates also provide baseline data for future comparisons of how vital rates change as coal-

bed natural gas development expands into previously undeveloped landscapes in the 

Powder River Basin. 

 

Study Area 

We conducted research in three regions of the Powder River Basin in southeastern 

Montana and northeastern Wyoming: (1) three sites near Decker, Montana (Bighorn Co.) 

from 2003-2006, (2) six sites near Buffalo, Wyoming (Johnson Co.) from 2004-2006, and 

(3) one site near Spotted Horse, Wyoming (Campbell Co.) in 2003-2004 (Figure 1).  We 

studied the Spotted Horse site only in 2003-2004 because sage-grouse populations in the 

area were largely extirpated by an outbreak of WNv in summer 2003 (Walker et al. 

2004). 

These three regions vary in elevation from 1100-1600 m.  They experience cold, 

dry winters, cool, wet springs, and hot, dry conditions in summer and fall.  Average 

annual precipitation varies from 11-15 in with most precipitation coming in the form of 

winter snow (19-57 in annually) and rain in April - June (Western Regional Climate 

Center, Reno, Nevada, USA).  Natural landscapes consisted of rolling uplands with 

sagebrush-steppe, mixed-grass prairie, and badlands, occasional stands of conifers, and 

valleys with alkali bottoms, riparian shrubs, and woodland.  Sagebrush-steppe was 

dominated by Wyoming big sagebrush (Artemisia tridentata wyomingensis) with an 

understory of native and non-native grasses and forbs.  Plains silver sagebrush (A. cana 

cana) and black greasewood (Sarcobatus vermiculatus) co-occurred with Wyoming big 
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sagebrush in alkali bottoms.  Land use was primarily cattle ranching with limited dry-

land and irrigated tillage agriculture.  The Spotted Horse region had widespread coal-bed 

natural gas development and large blocks of non-native pasture and tillage agriculture 

during 2003-2004.  In the other two regions, the extent of coal-bed natural gas 

development expanded during the course of the study (Figure 1). 

Sage-grouse inhabited areas of sagebrush-steppe from October-June.  From July-

September, birds used sagebrush-steppe, mixed-grass prairie, and areas with irrigated and 

dryland agriculture.  Sage-grouse in the Decker region were largely non-migratory, 

showing average movements between breeding, summering, and wintering areas of <5 

km.  Many females in the Buffalo region were migratory, moving up to 30 km between 

nesting, summer, and winter areas (Doherty et al. 2008).  Too few birds remained alive in 

the Spotted Horse region to draw conclusions about migratory status. 

 

Methods 

Field Methods 

We  captured and radio-marked females by rocket-netting (Giesen et al. 1982), 

spotlighting and hoop-netting (Wakkinen et al. 1992), and running modified walk-in traps 

(Schroeder and Braun 1991) on or near leks from mid-March through early April in each 

year.  In the Decker and Spotted Horse regions, we also captured females by spotlighting 

and hoop-netting in brood-rearing areas in July-August and in sagebrush habitats in 

September and October.  Upon capture, females were fitted with 21.6-g necklace-style 

radio collars with a 4-hour mortality switch (Model A4060, Advanced Telemetry 

Systems, Inc., Isanti, Minnesota) and address label.  They were then banded with a size 
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20, individually-numbered, inscribed aluminum band (National Band and Tag Co., 

Newport, KY), aged by primary feather color, shape, and wear as juvenile, yearling, or 

adult (Eng 1995, Crunden 1963) and sexed by plumage, size, and tarsus length. 

Nest monitoring.  We  used radio-telemetry to track marked females to nests 

during the nesting period (i.e., early April through the end of June).  When we found a 

nest, we recorded its location using a hand-held global positioning system unit (eTrex 

Legend model, Garmin International, New York, New York) and monitored its status 

every 2-6 d until the eggs hatched or failed.  The incubation period (i.e., the time between 

when the last egg is laid until hatch) for greater sage-grouse is 25-29 d (Schroeder et al. 

1999).  To eliminate the possibility of predators using markers to locate nests, we left no 

markers of any type.  In 2003, we initially flushed females from the nest on the first visit 

to determine clutch size, but found that it increased the probability of nest abandonment.  

Thus, for the remainder of 2003, and in 2004-2006, we eliminated this problem by 

locating nesting females visually without flushing them.  In many cases, mimicking the 

mooing sounds and slow, loud movement of cows while tracking females allowed close 

approach to nests and prevented females from flushing.  Following the initial visit, we 

monitored the status of nests from a distance of 10-30 m using binoculars or by 

triangulating females to known nest locations using radio telemetry from 20-50 m away.  

If a hen was off the nest at the time of the visit, we checked the nest contents to determine 

nest status.  Estimating clutch size is required to measure hatching success and apparent 

chick survival.  In 2003-2005, we obtained a minimum estimate of clutch size based on 

the number of eggs counted following depredation or hatch.  However, the number of 

eggs counted after hatch was sometimes less than that number counted and confirmed 
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prior to hatch.  Therefore, in 2006, we conducted clutch counts by flushing the hen from 

the nest 21-24 d after the estimated incubation start date.  Flushing females late in 

incubation caused no nest abandonment. 

We considered a nest successful if ≥1 egg hatched; hatched eggs were identified 

by detached egg membranes (Klebenow 1969).  One nest with an infertile clutch 

incubated for 54 d was considered successful.  Nests were classified as unsuccessful if 

they were depredated, naturally abandoned, if the hen died during incubation.  Because 

nest contents are not always reliable indicators of nest fate in sage-grouse (Coates 2007), 

if the nest appeared to have been depredated close to the predicted hatching date or if nest 

fate was unknown, we searched for evidence of chicks with radio-collared females for at 

least 3 visits following nest termination. 

Although sage-grouse females generally do not begin incubation until the clutch 

is complete (Schroeder et al. 1999), they sometimes are found on nests during laying 

(Moynahan et al. 2006a).  For nests that hatched, we estimated incubation start date by 

backdating 28 d from the estimated (or known) hatch date.  Unless the hatch date was 

known more accurately, we estimated actual hatch date as the midpoint of the interval 

between visits before and after the nest hatched.  For nests that did not hatch, we assumed 

that incubation started at the midpoint of the interval immediately preceding the first of 

two consecutive nest visits in which the hen was on the nest.  We tested the validity of 

this assumption by comparing predicted hatch dates using the midpoint method against 

actual hatch dates of successful nests.  Because the difference between predicted and 

actual hatch dates for successful nests averaged only 0.21 ± 0.15 d (mean ± SE; n = 219), 

estimates of incubation start date, and therefore nest age, were minimally biased.  For 
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unsuccessful nests in which the female was already on the nest the first time she was 

located, we approximated incubation start date based on when the nest was depredated if 

it had been active for >21 d.  Incubation start dates for some unsuccessful nests were 

classified as unknown.  We estimated clutch initiation dates by subtracting the estimated 

number of days laying from the estimated incubation start date.  Number of days laying 

was calculated as clutch size multiplied by a laying rate of 1.5 d per egg (Schroeder et al. 

1999).  When clutch size was unknown, we calculated initiation dates using the median 

clutch size for known-aged birds for each attempt (i.e., 8 for first nests of adults, 7 for 

renests of adults, 7 for first nests of yearlings, and 6 for renests of yearlings). 

Brood monitoring and survival.  We  monitored females with broods every 3-5 d 

until 35 d post-hatch.  On each visit, we attempted to determine whether or not she had a 

brood by approaching the hen, searching for chicks, and observing hen behavior.  We 

classified a hen as having a brood if chicks were observed or heard near the hen, if the 

hen gave a wing-dragging or flutter-hopping display, walked or ran away from the 

observer while vocalizing rather than flying, or aggressively approached the observer.  At 

approximately 35 d post-hatch, we conducted both a night-time spotlight count and a day-

time flush count to determine whether the brood survived and how many chicks survived 

to 35 d.  Chicks typically roost in the immediate vicinity of the hen at night, which 

increases detectability by 40% over day-time flush counts (B. Walker, unpublished data).  

We chose 35 d post-hatch as a cut-off because most chick mortality has already occurred 

by this age (Burkepile et al. 2002, Huwer 2004, Aldridge 2005, Gregg et al. 2007), chicks 

younger than 25 d old are difficult to detect roosting underneath the hen, and most 

females with broods have not yet congregated in flocks.  We classified broods as having 
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survived to 35 d  if ≥1 chick was found with the hen on either the spotlight count or flush 

count and the hen had not been seen with other adults prior to 35 d.  Brood survival was 

classified as unknown if the brood hen could not be followed for the full 35-d period or if 

the brood hen was found in a flock with other adults and juveniles prior to 35 d post-

hatch.  We considered a brood to have failed if the female flew long distance before 

chicks were 10 d old or if she was located in an adult-only flock prior to 35 d post-hatch. 

Female survival.  We attempted to monitor female survival every 2-5 d from 

April through mid-September in each year from 2003-2006, every 45 d during fall-winter 

2003-2004, 2004-2005, and 2005-2006, and approximately every 90 d during fall-winter 

2006-2007.  From April-September, most checks were visits by ground crews, whereas 

most checks during fall and winter were from the air.  We attempted to locate and 

confirm mortality of radio-marked females as soon as practicable following detection of a 

mortality signal.  Because aging radio-transmitters began to malfunction after reaching 2-

3 times their guaranteed battery life (i.e., they produced weak, irregular signals or 

unpredictably switched back and forth between mortality and live mode), we right 

censored these individuals the last time their status as alive or dead was visually 

confirmed after unusual signals were first noted.  To eliminate potential bias due to 

capture-related stress or injury, we censored the first interval following capture.   

 

Analyses 

Nest initiation, renesting rate, clutch size, and hatching success.  We estimated 

age-specific nest initiation rates as the proportion of females found on a nest divided by 

the number of females alive and adequately monitored during the nesting period (i.e., 
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early April through the last known clutch completion date for first nests) in that year for 

each age class (yearling vs. adult).  We considered females to have been adequately 

monitored if they were visually located at least once every 7 d during the nesting period.  

We estimated renesting rate as the proportion of females found on a second nest divided 

by the number of females alive and adequately monitored from the failure of their first 

nest through the end of the renesting period in any given year for each age class.  We 

estimated clutch size only from clutches in which clutch size was confirmed.  Because of 

our nest-monitoring protocol, we were not always able to obtain accurate clutch count 

data for nests depredated prior to the clutch count or hatching date.  We measured age-

specific hatching success as the total number of successfully hatched eggs in all nests 

divided by the total number of eggs laid in nests with known clutch size for each age 

class.  We calculated standard errors for nest initiation, renesting rate, and hatching 

success as the square root of the theoretical variance of a proportion (σ2 = pq/n), where p 

= proportion that nested, renested, or hatched, q = 1 – p, and n = number of sample units 

included in the analysis. 

Apparent nest, brood, and female survival.  We calculated apparent nest success as 

the number of successful nests divided by the total number of nests of known fate.  

Similarly, we calculated apparent brood success as the number of successful broods 

divided by the total number of broods of known fate and apparent chick survival as the 

total maximum number of chicks counted on the 35-d spotlight or flush count divided by 

the total number of chicks that hatched among broods of known fate.  Brood fate was 

considered unknown if females with chicks flocked with other females prior to 35-day 

chick counts or if hens died when chicks were 15-35 d of age.  Many brood females in 
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the Buffalo region were not monitored throughout the 35-d brood-rearing period because 

they crossed onto inaccessible property or could not be relocated.  Therefore, estimates of 

apparent brood success and apparent chick survival are based on only a subset of broods 

in the brood-survival analysis. Broods were assumed to have failed if hens died when 

chicks were ≤ 15 d of age.   

“Quick” estimates of daily nest survival.  We used the “quick” method of Johnson 

and Klett (1985) to generate estimates of nest success for yearling and adult females in 

each region in each year.  This method uses information about the average nest age when 

first discovered (f) and length of the incubation period (h) to estimate an approximate 

daily nest survival rate (S) as the (h-f) root of apparent nest success.  From that, an 

approximate value for nest success is calculated as Sh.  Because nests of radio-marked 

sage-grouse are typically discovered on the first visit after the start of incubation, we 

estimated average nest age when nests were discovered as one-half the length of the 

average monitoring interval in each year.  In our study, these intervals were 5 d in 2003 

and 3-4 d from 2004-2006. 

Nest, brood, and female spring-summer daily survival rates.  We used an 

information-theoretic approach (Burnham and Anderson 2002) to evaluate sets of a priori 

candidate models describing variation in daily survival rate (DSR) of nests, of broods, 

and of females during the spring-summer season.  We evaluated relative support for each 

candidate model using the generalized linear model method described by Rotella et al. 

(2004) in Statistical Analysis Software (SAS), version 9.1.  For most models, we used the 

logit link to avoid convergence problems and constrain estimates to a (0, 1) interval 

(Rotella et al. 2004).  However, we used the sine link in female survival models where 
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100% survival among a subset of individuals caused problems with convergence.  This 

method allows staggered entry and right-censoring, variation in interval lengths between 

visits, and makes no assumptions about when nest failure, brood failure, or death of the 

female occur during an interval (Rotella et al. 2004).  The method assumes: (1) 

homogenous DSRs within a set of covariate conditions; (2) fates are correctly classified; 

(3) visits do not influence survival; (4) fates are independent; (5) all visits in which fate is 

determined are recorded; (6) checks are conducted independently of fate, and (7) all 

nests, broods, and females are correctly aged (Dinsmore et al. 2002, Rotella et al. 2004).  

In each analysis, we assessed relative support for each model in the model set by 

comparing Akaike Information Criterion values adjusted for small sample size (AICc) 

and AICc weights (Burnham and Anderson 2002).  To assess support for different 

variables, we examined maximum-likelihood estimates of coefficients and associated 

standard errors for each model.   Due to model uncertainty, we used model-averaging to 

obtain unconditional estimates and standard errors for regression coefficients.  We used 

the ESTIMATE command within SAS PROC NLMIXED to calculate nest success as the 

product of all DSRs for specific models of interest over a 28-d incubation period for 

nests, a 35-d period for broods, and over the spring-summer period for females (Rotella et 

al. 2004).  These commands generate an approximate standard error for nest and brood 

success based on the Delta method (Seber 1982, Billingsley 1986).  Tests for goodness-

of-fit and overdispersion are not yet available for these types of models (Rotella et al. 

2007).  We estimated annual female survival as the product of spring-summer and fall-

winter survival rates.  Season lengths for spring-summer and fall-winter varied slightly 

among years depending on nesting phenology.  Because we wished to make inferences 
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regarding natural processes that influence nest failure, especially predation, we 

considered a nesting interval successful if the nest was intact at the end of the interval and 

the female was alive or had been killed while away from the nest.  If the female was 

killed by a predator while on the nest, we classified the nest as having failed.  To estimate 

what female survival would have been in the absence of WNv mortality, we ran the 

analysis again after removing all females known to have died from WNv.  This may 

underestimate the effect of WNv because only 40% of mortalities during the WNv season 

yielded testable carcasses (Walker et al. 2004). 

Fall-winter female survival rates.  Due to relatively high fall-winter survival rates and 

long intervals between visits (45-90 d), maximum-likelihood methods failed to converge.  

Therefore, we estimated fall-winter female survival rates over the entire fall-winter 

period using Kaplan-Meier analysis (Winterstein et al. 2001) rather than estimating daily 

or monthly survival rates.  Kaplan-Meier analysis allows staggered entry and right-

censoring.  We assumed that females died at the midpoint of the interval prior to 

detecting a mortality.   

Observer effects.  To meet assumption (3) in the nest-survival analysis, we excluded 

14 nests (nine in 2003, three in 2005, and two in 2006) that were abandoned due to 

research activities.  Also, brood fate could not be determined on all visits.  Therefore, to 

meet assumption (2) in the brood-survival analysis, we eliminated from the analysis all 

visits in which brood fate could not be determined. 

Hypotheses.  Each of the candidate models in the model set represented a specific 

hypothesis for how female characteristics, season, and environmental variables, either 

alone or in combination, influenced daily nest, brood, and female survival.  In the nest-
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survival analysis, we constructed models as combinations of Nest age, Hen age, Nest 

attempt, Julian date, Previous spring precipitation, Previous spring drought index, 

Region, and Year.  In the brood-survival analysis, we constructed models using Brood 

age, Hen age, Nest attempt, Julian date, Spring precipitation, Region, and Year.  For the 

female survival analysis, we constructed models with effects of Hen age, Nesting status, 

Brooding status, WNv season, Region, and Year.  We outline the biological hypotheses 

for running models with each of these variables below. 

Nest age.  Daily survival rate (DSR) of nests may increase with nest age for two 

reasons.  Increasing grass and forb growth around nests over time (Hausleitner et al. 

2005) may decrease the detectability of nests to predators and lead to a pattern of 

increasing DSR with nest age (Holloran et al. 2005, Moynahan et al. 2006a).  Increasing 

nest survival with nest age may also result from heterogeneity among nests in 

detectability to predators because easily detected nests are likely to be depredated earlier 

(Klett and Johnson 1982, Martin et al. 2000, Dinsmore et al. 2002).  To control for this 

phenomenon, we first examined the influence of Nest age on DSR.  Because the 

relationship between DSR and Nest age may be non-linear, we also considered a model 

with both Nest age and Nest age + Nest age2.  We defined nest age as the number of days 

since the estimated start of incubation.  Because females spend most of their time off the 

nest during laying (Schroeder et al. 1999), a behavior that may decrease detectability of 

nests and influence estimates of DSR, we estimated DSR during laying and during 

incubation separately. 

Brood age.  We hypothesized that DSR of broods would increase with brood age for 

the same reasons as nest age.  In addition, broods become more mobile with age and 
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begin to fly at ~15 d (Schroeder et al. 1999).  To allow for either linear or nonlinear 

responses of DSR to brood age, we considered models with Brood age and with Brood 

age + Brood age2.  We defined brood age as the number of days elapsed since the 

estimated hatch date. 

Hen age.  Age of breeding females influences reproductive effort and reproductive 

success in a broad array of bird species, including sage-grouse, with older birds often 

having higher nest survival than younger birds (e.g., Holloran 1999, Hausleitner 2003).  

Older, more experienced females may be better able to select safe nest and brood-rearing 

locations than naïve breeders (i.e., yearlings).  Alternatively, because nesting may put 

females at greater risk, females that place nests and raise broods in safe locations may 

simply be more likely to survive their first breeding season and be recruited into the adult 

age class.  Yearlings also spend more time off the nest, and leave the nest more 

frequently during the day than adults, which may expose nests to greater predation from 

diurnal predators, such as common ravens (Corvus corax) (Coates 2007).  Thus, we 

hypothesized that older females would have a higher DSR than yearlings for nests and 

broods.  In contrast, female survival in sage-grouse generally declines with increasing age 

(Zablan et al. 2003, Hagen et al. 2005), possibly due to trade-offs caused by greater 

reproductive effort.  Zablan et al. (2003) estimated annual survival for yearlings as 0.72-

0.75, compared with 0.57-0.61 for adults.  Thus, we anticipated lower survival among 

adult females than among yearlings.  We also estimated age-specific nest and brood 

survival estimates to produce estimates that could be included in age-structured 

population models. 
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Season effects. Previous studies of sage-grouse have documented that late-season 

nests have higher survival than early-season nests (Sveum 1995, Popham 2000, 

Moynahan et al. 2006a, Sika 2006).  Although this pattern has not been documented for 

broods, both later nests and later broods may also show higher survival because of 

changes in predator abundance, shifts in predator foraging strategies, increasing 

abundance of alternative prey over the course of the nesting season, or because increased 

grass cover decreases predation risk later in the season (Schroeder et al. 1999).  To 

examine the hypothesis that nest and brood DSR increases over the course of the season, 

we compared the predictive value of two different variables: (a) Nest attempt included as 

a categorical nest- or brood-specific covariate, and (b) Julian date as a time-specific 

covariate.  We predicted that nest and brood survival would be higher for second nesting 

attempts and nesting attempts later in the season.  To allow for the possibility of a non-

linear relationship between DSR and Julian date in the nest-survival analyses, we also 

included models with Julian date + Julian date2.  Another possibility is that brood 

survival could decrease over the course of the season (after controlling for brood age), 

especially in dry years when a lack of precipitation dries up mesic sites on which broods 

depend for insects and forbs or forces females and their broods to concentrate in what 

suitable brood-rearing habitat remains (Moynahan 2004).  Thus, brood survival may 

decrease with increasing Julian date, or perhaps only in dry years.  To examine this 

possibility, we considered models with a Julian date * Spring precipitation interaction in 

the brood-survival analysis. 

Precipitation.  We considered three variables describing different mechanisms for 

how precipitation affects DSR of nests.  Seven nests were known to have failed due to 
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flooding and mudslides following a major snowstorm in mid-May 2005.  To control for 

this phenomenon, we included an effect of extreme precipitation events in all models.  

We also compared the effect of winter plus spring precipitation versus winter plus spring 

precipitation the previous year.  Grass and forb growth in sagebrush-steppe habitat are 

largely controlled by winter and spring precipitation, with greater herbaceous production 

in wetter years (Skinner et al. 2002).  Increased grass and forb growth is typically 

preferred by females for nesting and brood-rearing (Hagen et al. 2007) and is commonly 

associated with higher nest success (Schroeder et al. 1999; Connelly et al. 2000, 2004).  

Thus, above-average spring precipitation may lead to increased nest survival (Holloran et 

al. 2005, also see Martin 2007).  However, because birds often begin nesting in April 

before most new grass and forb growth has occurred, residual cover from the previous 

year may be more important (Schultz 2004, Holloran et al. 2005).  In the Powder River 

Basin, birds nest from early April through mid-June.  Thus, we measured the influence of 

spring precipitation on nest DSR by including normalized February-May precipitation in 

the current year and normalized February-July precipitation in the previous year.  In 

contrast, because broods appear well after grass and forb growth has started, brood 

survival should depend on current year precipitation rather than residual grass cover.  

Thus, we only considered current spring precipitation in brood survival models.  We 

calculated percent normal precipitation for each region in each year of our study (2003-

2006) by dividing precipitation totals for each time period (Feb-May and Feb-July) by the 

long-term averages for those same periods based on precipitation data from 1957-2006 

(Western Regional Climate Center, Reno, Nevada, USA).  For the Decker region, we 

used precipitation data from the Sheridan Field Station, WY weather station (no. 
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488160).  For the Buffalo region, we used data from the Buffalo, WY station (no. 

481165).  For the Spotted Horse region, we used precipitation data from the Clearmont, 

WY station (no. 481816). 

Reproductive status.  We hypothesized that female survival may depend on current or 

previous reproductive effort.  Breeding-survival trade-offs are common in birds (Martin 

1995, Clark and Martin 2008).  In sage-grouse, nesting females are sometimes depredated 

while on nests (Schroeder et al. 1999), and previous studies have documented lower 

survival among nesting vs. non-nesting females (Sika 2006, contra Moynahan et al. 

2006b).  Females also actively defend young broods against predators with conspicuous 

and potential risky behaviors such as wing-dragging displays and active aggression 

(Schroeder et al. 1999).  The tendency of brooding females to seek out wet meadows with 

high forb and insect abundance in mid-summer may also expose them to higher predation 

or mosquitos that vector WNv.  Finally, residual effects of breeding may decrease 

subsequent survival if individuals that bred are in poorer body condition and 

consequently spend more time foraging than being vigilant.  To test these ideas, we 

included two different reproductive effort terms in the female survival analysis.  We 

coded intervals during the breeding season according to whether a female was or was not 

incubating a nest (OnNest) and whether a female was or was not with a brood younger 

than 35 d old (WBrood), with the expectation that nesting and brood-rearing females 

would have lower survival than non-breeding females. 

Region. Nest, brood, and female survival may vary geographically due to ecological 

differences between study regions that we did not or could not measure (e.g., predator 

communities, grazing pressure), differences in life-history strategies (i.e., resident vs. 
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migratory populations), or differences in land use that influence risk of mortality (e.g., 

extent of coal-bed natural gas development, agricultural development, roads and 

powerlines, etc.) (Connelly et al. 2000, Zou et al. 2006a, Walker et al. 2007a).  

Therefore, we included a dummy-coded, group-level covariate for region to account for 

geographical variation unexplained by differences in other variables. 

West Nile virus. We included a WNv variable in the female survival analysis.  Sage-

grouse are highly susceptible to WNv (Clark et al. 2006).  The WNv variable denotes 

whether each day during the interval was, or was not, during the WNv transmission 

period for that region in that year based on temperature.  West Nile virus transmission is 

regulated on an annual basis by temperature and the availability of suitable breeding 

areas for mosquitos (Reisen et al. 2006, Zou et al. 2006a).  Zou et al. (2006b) developed a 

degree-day model to predict WNv transmission events based on temperature.  However, 

the model underpredicted WNv transmission in our area because temperatures at the 

weather stations were lower than those at our study sites.  Therefore, we revised the 

model to be more inclusive based on the earliest and latest confirmed WNv-related 

mortalities at our study sites (i.e., only a 64 degree-day threshold required for WNv 

transmission), then estimated the WNv transmission period in each year at each site using 

the revised criterion.  We do not suggest that only 64 degree-days are required for within-

host WNv amplification and transmission, only that a 64 degree-day threshold at the 

closest weather stations (10-40 miles away) coincided with WNv transmission events on 

our study sites.  We included a WNv*Region interaction to allow the severity of WNv 

mortality to vary among regions because of greater availability of surface water from 

coal-bed natural gas development and irrigated agriculture in the Spotted Horse and 
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Buffalo regions than near Decker (Walker et al. 2004, Zou et al. 2006a, Doherty 2007).  

We also included models with a WNv*WBrood interaction to test whether females with 

broods were more vulnerable during the WNv transmission season than because broods 

typically require more mesic habitats in late summer than non-brooding females. 

Year. Nest, brood, and female survival in sage-grouse can vary dramatically on an 

annual basis (Schroeder et al. 1999; Moynahan et al. 2006 a, b).  Therefore, we included 

an effect of Year to account for annual variation in nest, brood, and female survival 

unexplained by other year-specific covariates (e.g., precipitation). 

 

Results 

Nest initiation, renesting rate, clutch size, and hatching success.  Females 

typically began laying in late March or early April (Table 1).  The latest date a nest was 

initiated in any year was 2 June.  Nest initiation rates were consistently high (range = 

0.89-1.00) across all sites, years, and age classes (Table 2 a).  In almost all cases, the only 

females not found on nests were those that were not adequately monitored during the 

nesting season.  Adults and yearlings showed similar rates of nest initiation rate (0.99 ± 

0.008 SE for adults vs. 0.97 ± 0.013 SE for yearlings).  Renesting rate was higher for 

adults (0.54 ± 0.054 SE) than for yearlings (0.19 ± 0.049 SE) (Table 2 a, b).  Renesting 

rates were lower for both adults and yearlings in 2004.  Over the course of four years, one 

of 14 adult females whose second nest failed attempted a third nest, whereas no yearling 

females attempted a third nest.  Mean clutch size of first nests was consistently higher 

than that of renests, and clutch size was consistently higher for adults than for yearlings 

(Table 3).  Observed clutch size varied from as many as 14 eggs (in an adult’s first nest) 
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to only 2 eggs (in a yearling’s renest).  Hatching success was uniformly high, varying 

from 0.87-1.00 across all regions, years, and age classes (Table 3).  There was no obvious 

relationship between hatching success and hen age or between hatching success and nest 

attempt (Table 3). 

Apparent nest success and causes of nest failure.  Apparent nest success varied by 

region and year from 0.46 to 0.85 (Table 4).  Fifteen nests (ten in 2003, three in 2005, 

and two in 2006) were abandoned after the hen was flushed from the nest by observers 

during laying or early in incubation.  Seventy-eight percent of 175 nests that failed due to 

natural causes were depredated (Table 5).  Nest predators could not be identified in most 

cases, but mammals, birds, and snakes were all known to have depredated nests based on 

sign at nests.  A major snowstorm on 11-12 May 2005 caused seven females to abandon 

first nests due to drifting snow, flooding, and mudslides (Table 5).  Natural abandonment 

was otherwise uncommon; only three other nests were abandoned, all for unknown 

reasons.  Mortality of females during incubation was the cause of failure for 

approximately 11% of 175 nests that failed due to natural causes (Table 5).  Of these, 

only seven female were killed while on the nest.  In these cases, the nest was also 

depredated.  In contrast, 11 females were killed during the incubation period while away 

from their nests, which remained intact.  The cause of failure for 10 nests was unknown.  

Quick estimates of nest success for each region, year, and age class were similar to 

maximum-likelihood estimates, except when sample sizes were low (Table 6). 

Hatching dates, apparent brood success, and apparent chick survival.  Almost 

one-quarter of females with broods in the Buffalo region could not be monitored for 35-d 

post-hatch because they crossed onto inaccessible property or moved long-distance and 
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could not be relocated, so the fate of many broods and chicks was unknown (Table 7).  

Therefore, inferences regarding brood and chick survival are based on only a subset of 

those broods that hatched.  We did not monitor broods in Spotted Horse in 2004 because 

the only nest monitored at that site in 2004 failed.  Hatching dates across regions ranged 

from 9 May through 3 July (Table 7).  Apparent brood success ranged from 0.66-0.93 and 

was similar among regions (Table 7). Apparent chick survival ranged from 0.33-0.55 

(Table 7), and was lowest in 2004 (0.33-0.38), highest in 2005 (0.51-0.55), and 

intermediate in 2006 (0.40-0.48). 

Causes of female mortality.  We could not determine cause of death for 40% of 

217 hens that died during the study (Table 8).  Among the remaining mortalities, 

suspected proximate causes of death, in order from most common to least common, 

included predation (104), infection with WNv (19), collisions with vehicles and power 

lines (4), other diseases (2), and legal harvest (1) (Table 8). 

Daily nest survival during laying.  We estimated DSR during laying using data 

from 34 nests found prior to the start of incubation.  Only one nest failed during this 

period.  Due to small sample size, we estimated survival from a constant-survival model 

only.  Daily survival rate during laying was estimated as 0.993 ± 0.007 (mean ± SE).  

Assuming females 2 eggs every 3 days (Schroeder et al. 1999), we estimated nest success 

for a 12-d laying period as 0.916 ± 0.08 (mean ± SE).  Thus, we estimated that 

approximately 8% of nests were depredated during laying. 

Daily nest survival during incubation.  We included 428 nests from 289 

individual females in the nest-survival analysis (Table 9).  All eight models for DSR of 

nests with model weight >0.01  (i.e., those within 5 AICc units of the best-approximating 
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model) included a Region by Year interaction (Table 10).  Because coefficients for 

Region*Year effects in the top 6 models were similar, we illustrate them using results 

from the best-approximating model (Figure 2).  Daily nest survival estimates from the 

Decker region were higher than in Spotted Horse in 2003 and similar to those near 

Buffalo in 2004, but much lower than near Buffalo in 2005 and 2006 (Figure 2).  Hen age 

was in four of six models within 2.8 AIC units of the best approximating model (Table 

10).  As predicted, daily nest survival was higher among adults than among yearlings 

(Figure 3).  A seasonal effect was also strongly supported, with all models within 2.2 AIC 

units including a positive effect of either Julian date or Nest attempt.  As predicted, nests 

initiated earlier in the season (i.e., first nests) had lower survival than those initiated later 

(i.e., renests) (Figure 3).  Previous spring precipitation had a positive effect on DSR in all 

cases (model-averaged ß ± SE = 0.79 ± 0.28), but compared to models with unspecified 

region and year effects, those with precipitation terms received essentially no support 

(>19 AICc units lower).  The Region*Year interaction in the top model masks the effects 

of previous spring precipitation because these effects are confounded (i.e., previous 

spring precipitation is both region- and year-specific).  Current spring precipitation 

showed no relationship with daily nest survival.  The effects of Nest age were 

unexpected; nests had higher survival early and late during the incubation period rather 

than simply increasing with Nest age (Figure 4).  A Region*Year*Hen age+Nest attempt 

model was used to produce estimates of nest success for comparison with other methods 

and for use in population modeling (Figure 5, Table 6). 

Daily brood survival.  We included 246 broods from 206 individual females in the 

brood-survival analysis (Table 9).  As predicted, brood survival increased with brood age 
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(Figure 6).  All models for DSR of broods within 8 AICc units of the best-approximating 

model included an effect of Region (Table 11), and estimates indicated higher brood 

survival in the Buffalo region than near Decker (Figure 6).  Brood survival was also 

higher in Spotted Horse, but the effect was imprecisely estimated (Figure 6).  The 

second-best approximating model (ΔAICc = 0.40) included a Region*Year interaction.  

Results from this model suggest that the Buffalo region experienced intermediate brood 

survival in 2004 (0.68) and high brood survival in 2005 (0.92) and 2006 (0.93) (Figure 

7).  In the Decker region, brood survival was intermediate in 2003 (0.63), high in 2004 

(0.84), intermediate in 2005 (0.67) and 2006 (0.52), whereas the only estimate for 

Spotted Horse suggested high brood survival in 2003 (0.82) (Figure 7).  Effects of spring 

precipitation and hen age on brood survival were positive in all models but were 

imprecisely estimated.  There were no obvious effects of year, Julian date, or spring 

drought indices on brood survival. 

Daily spring-summer female survival.  We censored four females that incurred 

potentially life-threatening injuries during rocket-net captures (e.g., internal bleeding) and 

six females that were never relocated following capture prior to analyses.  In total, we 

included 343 individuals in the spring-summer female survival analysis (Table 9).  All 

five models within 2 ΔAIC units of the best approximating model included a 

Region*WNV interaction (Table 12).  Results from these models highlight the extremely 

low survival rates documented as a result of WNv mortality in Spotted Horse in 2003 

(Figure 8).  Model coefficients also suggest lower survival during 2003, during the WNv 

season, and in the Buffalo region, but all effects were imprecisely estimated.  The top 

model also included a weak positive effect on DSR of being with a young brood, but 
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because hens only have young broods for short periods of time (<35d), the influence on 

season-long survival was minimal (Figure 7).  There was no clear relationship between 

DSR and hen age or whether the hen was on a nest. 

Re-running the analysis without the 19 confirmed WNv mortalities resulted in a 

top model with Region + Year effects, plus a positive but poorly estimated effect of 

having a young brood (Table 12).  Results from this model indicate that, even in the 

absence of WNv impacts, female survival was lower near Buffalo than near Decker or 

Spotted Horse.  A Region*Year*Hen age model was used to produce region-, year-, and 

age-specific estimates (Figure 9, Table 13). 

Fall-winter female survival.  We included 233 individuals in the fall-winter 

Kaplan-Meier female survival analysis (Table 9).  Fall-winter survival for both age 

classes in the Buffalo region averaged lower in 2005-2006 than in other years.  Juvenile 

survival near Decker in 2003-2004 and 2004-2005 was comparable with that of yearlings 

and adults.  All yearlings near Decker in 2005-2006 and all adults near Buffalo in 2004-

2005 survived the fall and winter.  High fall-winter survival in Spotted Horse may be an 

artifact of small sample sizes  (n = 1-4) in both years. 

Annual female survival.  Mortality associated with WNv reduced survival 

estimates in Spotted Horse in 2003 and in the Buffalo region in 2004 (Table 15).  Effects 

of WNv mortality on survival were not detected in our sample of marked birds near 

Decker in 2003 or 2005, despite the documented outbreak near Spotted Horse.  Effects of 

WNv on survival were detected in all years (2004-2006) near Buffalo. 
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Discussion 

Nest initiation, renesting rate, clutch size, and hatching success.  High nest 

initiation rates in this study (0.97-0.99) contrast with substantially lower rates reported in 

several other parts of their range, particularly for yearlings (Wallestad and Pyrah 1974, 

Connelly et al. 1993, Heath et al. 1998, Lyon and Anderson 2003, Moynahan et al. 

2006a, Sika 2006, Robinson 2007), but are consistent with high initiation rates reported 

over 4 years in Washington (Schroeder 1997).  In some cases, this discrepancy may be 

due to other studies not monitoring birds early enough during the season (Connelly et al. 

1993) or intensively enough during the nesting season (Lyon and Anderson 2003, Sika 

2006) and therefore, having a higher likelihood of missing nests during laying or early in 

incubation.  However, it may also be due to natural annual or geographic variation in 

environmental conditions that influenced pre-laying forage quality, body condition, or 

both (Barnett and Crawford 1994, Gregg et al. 2006).  Estimates of nest initiation, 

including those reported here, are typically biased low because nests depredated during 

laying or during the first few days of incubation likely go undetected.  Similarly, nests of 

females killed during laying or early incubation may also have gone undetected.  Higher 

observed renesting rates among adults match findings from several previous studies 

(Sveum 1995, Heath et al. 1997, Moynahan et al. 2006a, Sika 2006, Gregg et al. 2006), 

suggesting that yearling reproductive effort is somehow constrained by developmental, 

physiological, or evolutionary factors. 

Similar year-to-year patterns in renesting rates between two geographically 

disjunct regions suggests that ecological processes occurring over large scales, such as 

regional precipitation patterns, drive annual variation in renesting rate.  Renesting was 
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low in 2004 in both the Decker and Buffalo regions, the only year with below-average 

winter-spring precipitation during the course of our study, yet higher in all other years 

(except when precluded by high first nest survival).  Studies of radio-marked greater 

sage-grouse farther north in Montana also documented low renesting rates in years with 

below-average winter-spring precipitation (2001 and 2004) and higher renesting rates in 

wetter years with greater grass and forb production (2002 and 2005) (except when high 

survival of first nests precluded renesting) (Moynahan 2004, Sika 2006). 

Clutch sizes in this study were consistent with range-wide estimates for this 

species, but we documented individual cases of larger clutch size (14 eggs; first nest) and 

smaller clutch size (2; renest) than previously reported (Schroeder et al. 1999, Connelly 

et al. 2004).  As in other studies, our data also indicate that, on average, adults lay ~0.5 

more eggs per clutch than yearlings (Petersen 1980, Moynahan 2004, Sika 2006) and that 

clutch sizes of first nests average ~1.5 eggs larger than renests (Moynahan 2004, Sika 

2006).  Hatching success in the Powder River Basin (0.92) was within the normal range 

for the species (0.76-0.99) (Schroeder et al. 1999). 

Nest and brood survival.  Our estimate of DSR during laying (0.993) was 

generally higher than estimates of DSR during incubation – with the exception of the 

Buffalo region in 2005 and 2006 – and higher than DSRs reported during incubation in 

other studies (~0.96-0.97, Moynahan 2004, Fig. 3; ~0.96-0.98, Sika 2006).  This supports 

the hypothesis that nests generally are at lower risk of predation during laying than during 

incubation, perhaps due to reduced scent or activity at the nest.  Like waterfowl, some 

female sage-grouse also sometimes cover their nests with feathers and dried grass prior to 

clutch completion (unpub. data), a behavior that may reduce detectability to predators. 
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Estimates of daily nest survival in our study (~0.963-0.979) were comparable to 

those reported previously by Moynahan et al. (2006a) and Sika (2006), again with the 

exception of Buffalo in 2005 (0.988) and 2006 (0.996).  Our estimate of nest success for 

first nests of adults over a 28-day period in Buffalo in 2006 (0.945) was the highest ever 

reported for this species. 

Estimates of daily brood survival are difficult to compare with studies that 

estimated survival over shorter or longer time periods (e.g., 28 d, 30 d, 56 d) because 

DSR increased with brood age (this study, Moynahan 2004).  Estimates of annual brood 

success to 35 d in our study (mean = 0.75, range = 0.52-0.93 across sites and years) were 

comparable with estimates to 35 d reported from Alberta based on radio-marked chicks 

(0.63; Aldridge 2005) but generally higher than those reported from central Montana 

based on day-time flush counts (~0.21-0.76; Moynahan 2004).  Our estimates were 

similar to those from south-central Montana that were based on a combination of day-

time flush counts and night-time spotlight counts (0.71-0.84; Sika 2006).  Our estimates 

of brood survival to 35 d near Buffalo in 2005 (0.92) and 2006 (0.93) are the two highest 

ever reported for this species.  Holloran (2005) also reported relatively high rates of 

brood survival (0.48-0.73) for broods 45-90 d of age (i.e., from hatch through 15 August). 

Estimates of apparent chick survival are tentative because we were unable to 

follow all broods to 35 d and unable to estimate detectability.  Estimates are likely biased 

low due to undercounting of chicks and because we were unable to conduct night-time 

counts on all brood hens.  In contrast, values for apparent chick survival may 

overestimate true values due to non-independence of fates among chicks within a brood 

(Aldridge 2005).  Our estimates of chick survival (range 0.33-0.55) were generally higher 
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than those reported from previous studies using radio-marked chicks.  Burkepile et al. 

(2002) reported 21-32% survival of chicks marked with 1.0 g transmitters to 28 d.  

Aldridge (2005, Figure 3-1) reported ~35% chick survival to 35 d, not accounting for 

non-independent fates.  Brood mixing is unlikely to have influenced estimates because 

brood switching is relatively uncommon during early brood-rearing (<1% ; Gregg et al. 

2007).  Apparent chick survival was lowest in both regions in 2004 (0.33-0.38), the only 

drought year during our study.  This matches the findings of Moynahan (2004), who 

found that very few chicks survived to 30 d during a severe summer drought in 2001.  

However, due to uncertainty in our estimates of chick survival, we were unable to test 

whether chick survival parallels that of brood survival within each region over time. 

Parallel, but opposite patterns of nest and brood survival within each region 

across years during our study suggest that substantial overlap occurs in nest and brood 

predators [American badger (Taxidea taxus), coyote (Canis latrans), weasels, common 

raven (Corvus corax), and snakes)], that nest and brood survival are both influenced by 

ecological processes that mediate predation, or both.  For example, environmental 

conditions that promote high nest survival, such as high previous spring precipitation and 

greater residual grass cover, may also promote high brood survival.  Predation was the 

major cause of nest failure in our study, and it is typically the major cause of nest and 

brood failure for this species range-wide (Schroeder et al. 1999). 

Causes of mortality and female survival.  As in most other studies, the proximate 

cause of most mortality was predation.  However, the second most important documented 

cause of mortality (approximately 9% of all mortalities) was WNv, which reinforces the 

idea that the virus is a significant new source of mortality in susceptible populations.  
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Documentation of only one legally harvested sage-grouse indicates that hunting was not a 

major mortality factor in our study area from 2003-2006.  This finding is consistent with 

a concurrent study that found little support for harvest as a major source of mortality 

further north in Montana in 2004-2005 (Sika 2006).  Unlike other studies, no deaths were 

reported from stock tank drowning (Sika 2006) or poisoning (Blus et al. 1989). 

The positive effect of having a young brood on female survival was contrary to 

our prediction that defending a brood increases risk for females.  However, because it 

resulted in only a marginal increase in season-long survival, this effect may not be 

biologically meaningful.  It is possible that females with broods could experience higher 

survival if predation risk diminishes as group size increases, particularly if surrounding 

individuals (chicks) are more vulnerable to predators (Pulliam 1973).  Females capable of 

successfully raising broods may also be of higher quality or in better condition. 

Sources of mortality and female survival.  Effects of WNv led to substantially 

lower estimates of female spring-summer survival, and effects of WNv on survival were 

apparent for adults and yearlings, in all three regions, and in all four years of the study.  

Overall, WNv mortality reduced annual survival of females by 4.7% (range 0-21%) for 

yearlings and 5.2% (range 0-27%) for adults.  The WNv outbreak near Spotted Horse in 

2003 resulted in the lowest estimate of spring-summer survival for adult females ever 

reported for this species (0.13 ± 0.09 SE) (Walker et al. 2004).  Annual female survival 

rates in the Buffalo and Decker regions were reduced by similar amounts due to WNv-

related mortality, although pending WNv test results on 4 birds may increase our estimate 

of WNv-related mortality from Buffalo in 2006.  Other sage-grouse studies have also 
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documented substantial negative effects of WNv on survival rates in late summer (Naugle 

et al. 2004, 2005; Moynahan et al. 2006b, Sika 2006, Kaczor 2008). 

Our study reinforced previous studies showing higher survival in fall-winter than 

in spring-summer (Moynahan et al. 2006b).  However, moderate spring-summer survival 

in Buffalo in 2005 (0.58± 0.08 SE) combined with low fall-winter survival (0.61 ± 0.02 

SE) led to the lowest region- and year-specific estimate of annual survival ever reported 

for this species, excluding those attributed to outbreaks of WNv (Walker et al. 2004, 

Moynahan et al. 2006b).  However, the cause of low fall-winter survival remains 

unknown.  The winter of 2005-2006 was mild, with above average temperatures and 

below average snowfall (Western Regional Climate Center data, Reno, NV), and fall-

winter survival rates in the Decker region were relatively high in 2005 (1.00 for 16 

yearlings, 0.77 ± 0.01 SE for 40 adults).  The pattern is also inconsistent with a 

reproductive trade-off hypothesis.  Females in the Buffalo region had high reproductive 

effort and high nest and brood success in both 2005 and 2006, yet fall-winter survival 

was only lower in 2005-2006.  We were unable to assess impacts of snow depth or winter 

storm events on overwinter female survival, even though these factors likely are 

important (Moynahan et al. 2006b).  All of our fall-winter survival estimates came from 

years with mild winters and no unusual snowfall or temperature events that would have 

restricted access to sagebrush for forage or cover.  Residual effects of WNv infection 

from the previous summer could have been one factor reducing overwinter survival of 

infected individuals in 2005-2006, but estimated infection rates in summer 2005 were 

relatively low (<10%) (Walker et al. 2007b). 
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The best-approximating models of nest, brood, and female survival rates all 

showed a large effect of region.  However, patterns of nest, brood, and female survival 

within each region were clearly different, with higher female survival in the Decker 

region (even after excluding WNv-related mortalities) and higher nest and brood survival 

in the Buffalo region.  Vital rates in the Decker region were close to range-wide averages, 

whereas in the Buffalo region, nest survival was the highest ever reported and female 

survival was one the lowest ever reported.  This raises the question of which ecological 

processes are influencing vital rates in dramatically different ways near Buffalo.  Data on 

local-scale vegetation characteristics and landscape-scale habitat and land-use patterns 

may help explain additional annual and geographic variation in vital rates.  Data on how 

nest, brood, and adult predators are responding to anthropogenic changes associated with 

energy development would also be valuable, but may be logistically difficult to obtain at 

scales appropriate for studies of sage-grouse. 

 

Management Implications 

Minimal differences between quick and maximum-likelihood estimates of nest 

success with sample sizes >10 suggests that the “quick” method of estimating nest 

success is a valuable tool for adjusting previously published data on apparent nest 

success.  Increased monitoring effort (i.e., decreased monitoring intervals) during the 

nesting period will result in improved estimates of nest initiation and renesting rates, and 

may reveal that sage-grouse initiate nests at higher rates than previously suspected.  

Parallel increases and decreases in annual renesting rates across regions and across 

studies suggest that renesting effort is strongly influenced by large-scale ecological 
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processes (e.g., regional precipitation patterns) that may be beyond the control of wildlife 

managers.  Parallel patterns of annual nest and brood success within regions across years 

suggest that nest and brood predators of this species either show substantial overlap in the 

Powder River Basin, or that predation on nests and broods is influenced in similar ways 

by temporal variation in precipitation or understory productivity.  Our finding of a 

positive effect of previous spring precipitation is consistent with previous 

recommendations to maintain residual grass cover as a way to improve habitat for nesting 

females and increase nest success (Connelly et al. 2000, Holloran et al. 2005, Hagen et al. 

2007).  Higher renesting rates, larger clutch sizes, and higher nest success among adult 

females, in combination with higher success of renests, underscores the importance of 

adult females for population growth.  Management to improve spring-summer survival of 

adult females at both a local and a landscape scale would likely be more beneficial 

demographically than managing habitat for other life stages (e.g., broods).  Management 

to reduce habitat for sage-grouse predators (e.g., powerlines for raptors) may also be 

beneficial, as predators were the main source of mortality for all life stages.  Our findings 

suggest that reducing mortality due to WNv, particularly from anthropogenic sources 

(e.g., irrigated fields, coal-bed natural gas ponds, stock tanks and impoundments), is an 

important management concern in the Powder River Basin.  The persistent, and in some 

cases, severe negative effects of WNv on sage-grouse in our study indicate that habitat 

“improvements” that create surface water in sage-grouse summer habitat may instead be 

detrimental to sage-grouse populations. 
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Table 1.  Timing of clutch initiation and clutch completion for adult (AD) and yearling (YR) female sage-grouse near Decker, MT 

from 2003-2006, near Buffalo, WY from 2004-2006, and near Spotted Horse (SH), WY in 2003.  Values presented as mean (range). 

 Clutch initiation date  Clutch completion date 

 AD  YR  AD  YR 

Region - Year 1st nests Re-nestsa  1st nests Re-nests  1st nests Re-nestsa  1st nests Re-nests 

Decker - 2003 
4/11 

(4/06-4/23) 

5/11 

(4/25-5/27) 
 

4/16 

(4/06-5/08) 

5/09 

(4/30-5/15) 
 

4/24 

(4/18-5/03) 

5/21 

(5/06-6/04) 
 

4/28 

(4/21-5/19) 

5/18 

(5/08-5/26) 

Decker - 2004 
4/08 

(3/30-5/01) 
4/29  

4/10 

(4/02-4/22) 
-  

4/20 

(4/11-5/12) 
5/10  

4/20 

(4/13-5/03) 
- 

Decker - 2005 
4/14 

(3/28-5/04) 

5/14 

(4/25-5/27) 
 

4/19 

(4/04-5/06) 
5/16  

4/25 

(4/09-5/16) 

5/24 

(5/07-6/05) 
 

4/29 

(4/15-5/12) 
5/24 

Decker - 2006 
4/12 

(4/04-4/29) 

5/7 

(5/01-5/17) 
 

4/18 

(4/09-4/26) 

5/03 

(4/25-5/10) 
 

4/24 

(4/15-5/10) 

5/16 

(5/12-5/27) 
 

4/29 

(4/21-5/06) 

5/12 

(5/06-5/19) 

Buffalo - 2004 
4/5 

(3/29-4/14) 
4/29  

4/12 

(4/02-4/27) 
-  

4/18 

(4/11-4/26) 
5/10  

4/23 

(4/16-5/04) 
- 
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Table 1 (cont.).  Timing of clutch initiation and clutch completion for adult (AD) and yearling (YR) female sage-grouse near Decker, 

MT from 2003-2006, near Buffalo, WY from 2004-2006, and near Spotted Horse (SH), WY in 2003.  Values presented as mean 

(range). 

 Clutch initiation date  Clutch completion date 

 AD  YR  AD  YR 

Region - Year 1st nests Re-nestsa  1st nests Re-nests  1st nests Re-nestsa  1st nests Re-nests 

Buffalo - 2005 
4/10 

(3/31-5/03) 

5/07 

(4/30-5/20) 
 

4/18 

(4/04-5/03) 

5/15 

(5/14-5/17) 
 

4/23 

(4/12-5/15) 

5/17 

(5/11-5/26) 
 

4/29 

(4/16-5/18) 

5/22 

(5/20-5/25) 

Buffalo - 2006 
4/12 

(4/08-4/23) 
5/02  

4/15 

(4/06-5/01) 
4/12  

4/23 

(4/19-5/05) 
5/13  

4/26 

(4/18-5/12) 
4/23 

SH - 2003 
4/20 

(4/11-4/26) 

5/07 

(5/03-5/11) 
 

4/20 

(4/14-4/30) 
-  

5/03 

(4/25-5/11) 

5/14 

(5/06-5/22) 
 

5/02 

(4/26-5/11) 
- 

a One successful third nest is included in adult renests from the Decker region in 2005.   
b Totals also include hatched nests from breeding females of undetermined age (i.e., after-hatching-year birds). 
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Table 2a. Nest initiation rates ± SE, renesting rates ± SE, and second renesting rates ± SE for adult (AD) and yearling (YR) female 

sage-grouse near Decker, MT from 2003-2006, near Buffalo, WY from 2004-2006, and near Spotted Horse (SH), WY in 2003.  

Sample size is in parentheses. 

  Nest initiation rate  Renesting rate  Second renesting rate 

Region – Year  AD YR All  AD YR All  AD YR All 

Decker - 2003  
1.00 ± 0.00 

(20) 

0.89 ± 0.07 

(19) 

0.95 ± 0.04 

(40) 
 

0.67 ± 0.14 

(12) 

0.56 ± 0.17 

(9) 

0.62 ± 0.11 

(21) 
 

0.00 ±  0.00 

(1) 

0.00 ±  0.00 

(3) 

0.00 ±  0.00 

(4) 

Decker - 2004  
0.94 ± 0.04 

(31) 

0.94 ± 0.05 

(18) 

0.94 ± 0.03 

(49) 
 

0.09 ± 0.09 

(11) 

0.00 ±  0.00 

(8) 

0.05 ± 

0.051 (19) 
 

0.00 ±  0.00 

(1) 
- 

0.00 ±  0.00 

(1) 

Decker - 2005  
0.98 ± 0.02 

(53) 

1.00 ± 0.00 

(15) 

0.99 ± 0.02 

(68) 
 

0.58 ± 0.10 

(26) 

0.10 ± 0.10 

(10) 

0.44 ± 0.08 

(36) 
 

0.33 ± 0.22 

(3) 

0.00 ± 0.00 

(1) 

0.25 ± 0.18 

(4) 

Decker - 2006  
1.00 ± 0.00 

(47) 

1.00 ± 0.00 

(21) 

1.00 ± 0.00 

(68) 
 

0.56 ± 0.18 

(18) 

0.33 ± 0.16 

(9) 

0.48 ± 0.10 

(27) 
 

0.00 ±  0.00 

(3) 

0.00 ±  0.00 

(2) 

0.00 ±  0.00 

(5) 

Decker -  

TOTAL 
 

0.98 ± 0.01 

(151) 

0.96 ± 0.02 

(73) 

0.97 ± 0.01 

(225) 
 

0.51 ± 0.06 

(67) 

0.25 ± 0.07 

(36) 

0.42 ± 0.05 

(103) 
 

0.13 ±  0.12 

(8) 

0.00 ±  0.00 

(6) 

0.07 ±  0.07 

(14) 

Buffalo - 2004  
1.00 ± 0.00 

(12) 

1.00 ± 0.00 

(35) 

1.00 ± 0.00 

(48) 
 

0.50 ± 0.35 

(2) 

0.00 ± 0.00 

(15) 

0.06 ± 0.06 

(17) 
 

0.00 ±  0.00 

(1) 
- 

0.00 ±  0.00 

(1) 
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Table 2a (cont.). Nest initiation rates ± SE, renesting rates ± SE, and second renesting rates ± SE for adult (AD) and yearling (YR) 

female sage-grouse near Decker, MT from 2003-2006, near Buffalo, WY from 2004-2006, and near Spotted Horse (SH), WY in 2003.  

Sample size is in parentheses. 

  Nest initiation rate  Renesting rate  Second renesting rate 

Region – Year  AD YR All  AD YR All  AD YR All 

Buffalo - 2005  
1.00 ± 0.00 

(36) 

0.94 ± 0.04 

(31) 

0.97 ± 0.02 

(68) 
 

0.80 ± 0.13 

(10) 

0.33 ± 0.19 

(6) 

0.63 ± 0.12 

(16) 
 

0.00 ±  0.00 

(1) 
- 

0.00 ±  0.00 

(1) 

Buffalo - 2006  
1.00 ± 0.00 

(21) 

0.98 ± 0.03 

(40) 

0.98 ± 0.02 

(61) 
 

0.50 ± 0.36 

(2) 

0.25 ± 0.22 

(4) 

0.33 ± 0.19 

(6) 
 

0.00 ±  0.00 

(3) 

0.00 ±  0.00 

(2) 

0.00 ± 0.00 

(5) 

Buffalo -  

TOTAL 
 

1.00 ± 0.00 

(69) 

0.97 ± 0.02 

(106) 

0.98 ± 0.01 

(177) 
 

0.71 ± 0.12 

(14) 

0.12 ± 0.07 

(25) 

0.33 ± 0.08 

(39) 
 

0.00 ±  0.00 

(5) 

0.00 ±  0.00 

(2) 

0.00 ±  0.00 

(7) 

SH - 2003  
1.00 ± 0.00 

(8) 

1.00 ± 0.00 

(4) 

1.00 ± 0.00 

(12) 
 

0.50 ± 0.25 

(4) 

0.00 ± 0.00 

(3) 

0.29 ± 0.17 

(7) 
 

0.00 ±  0.00 

(1) 
- 

0.00 ±  0.00 

(1) 

TOTAL  
0.99 ± 0.01 

(228) 

0.97 ± 0.01 

(173) 

0.98 ± 0.01 

(414) 
 

0.54 ± 0.05 

(85) 

0.19 ± 0.05 

(64) 

0.39 ± 0.04 

(149) 
 

0.07 ± 0.07 

(14) 

0.00 ± 0.00 

(8) 

0.05 ± 0.04 

(22) 
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Table 2b. Renesting rates ± SE (proportion of females that had an unsuccessful first nest and survived detected on a second nest) for 

adult (AD) and yearling (YR) female sage-grouse near Decker, MT from 2003-2006, near Buffalo, WY from 2004-2006, and near 

Spotted Horse (SH), WY in 2003, excluding birds that abandoned nests due to investigator disturbance.  Sample size is in parentheses. 

Region - Year  AD  YR  Combined 

Decker - 2003  0.50 ± 0.18 (8)  0.33 ± 0.19 (6)  0.43 ± 0.13 (14) 

Decker - 2004  0.09 ± 0.087 (11)  0.00 ±  0.00 (8)  0.05 ± 0.051 (19) 

Decker - 2005  0.58 ± 0.097 (26)  0.10 ± 0.095 (10)  0.44 ± 0.083 (36) 

Decker - 2006  0.56 ± 0.18 (18)  0.25 ± 0.15 (8)  0.46 ± 0.098 (26) 

Decker - TOTAL  0.48 ± 0.063 (63)  0.16 ± 0.064 (32)  0.37 ± 0.050 (95) 

Buffalo - 2004  0.50 ± 0.35 (2)  0.00 ± 0.00 (15)  0.06 ± 0.06 (17) 

Buffalo - 2005  0.78 ± 0.14 (9)  0.20 ± 0.18 (5)  0.57 ± 0.13 (14) 

Buffalo - 2006  0.50 ± 0.36 (2)  0.00 ± 0.00 (3)  0.20 ± 0.18 (5) 

Buffalo - TOTAL  0.69 ± 0.13 (13)  0.04 ± 0.043 (23)  0.28 ± 0.075 (36) 

SH - 2003  0.50 ± 0.25 (4)  0.00 ± 0.00 (2)  0.33 ± 0.19 (6) 

TOTAL  0.51 ± 0.056 (80)  0.11 ± 0.041 (57)  0.34 ± 0.041 (137) 

 122



Table 3.  Clutch size and hatching success for adult (AD) and yearling (YR) female sage-grouse near Decker, MT from 2003-2006, 

near Buffalo, WY from 2004-2006, and near Spotted Horse (SH), WY in 2003.  Clutch size values presented as mean ± SE (except 

where n = 1).  Hatching success data presented as a proportion (no. eggs hatched in successful nests of known clutch size / no. eggs 

laid in successful nests with known clutch size). 

  Clutch size  Hatching success 

  AD  YR  AD  YR 

Region - Year  1st nests Re-nests  1st nests Re-nestsa  1st nests Re-nests  1st nests Re-nests 

Decker - 2003  8.68 ± 0.21 6.63 ± 0.65  8.31 ± 0.26 6.00 ± 0.58  
0.79 

(62/69)b

0.90 

(27/30) 
 

0.92 

(57/62) 

0.77 

(10/13) 

Decker - 2004  8.00 ± 0.20 -  7.33 ± 0.29 -  
0.97 

(125/129) 
-  

0.97 

(34/35) 
- 

Decker - 2005  7.75 ± 0.25 6.53 ± 0.27  6.67 ± 0.60 5.00  
0.88 

(153/174) 

0.93 

(64/69) 
 

0.95 

(21/22) 
- 

Decker - 2006  8.37 ± 0.21 6.30 ± 0.40  8.08 ± 0.40 6.50 ± 0.50  
0.97 

(161/166) 

0.88 

(35/40) 
 

0.97 

(86/89) 

1.0 

(7/7) 
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Table 3 (cont.).  Clutch size and hatching success for adult (AD) and yearling (YR) female sage-grouse near Decker, MT from 2003-

2006, near Buffalo, WY from 2004-2006, and near Spotted Horse (SH), WY in 2003.  Clutch size values presented as mean ± SE 

(except where n = 1).  Hatching success data presented as a proportion (no. eggs hatched in successful nests of known clutch size / no. 

eggs laid in successful nests with known clutch size). 

  Clutch size  Hatching success 

  AD  YR  AD  YR 

Region - Year  1st nests Re-nests  1st nests Re-nestsa  1st nests Re-nests  1st nests Re-nests 

Buffalo - 2004  8.56 ± 0.41 -  7.40 ± 0.38 -  
0.90 

(64/71) 
-  

0.95 

(74/78) 
- 

Buffalo - 2005  8.55 ± 0.37 6.50 ± 0.56  7.50 ± 0.39 4.00  
0.93 

(148/159) 

0.8 

(28/35) 
 

 0.86 

(112/130) 

0.89 

(8/9) 

Buffalo - 2006  7.00 ± 0.29 7.00  7.13 ± 0.18 7.00  
0.89 

(119/133) 

1.0 

(7/7) 
 

 0.93 

(200/214) 

1.0 

(7/7) 

SH - 2003  8.67 ± 0.42 4.50 ± 2.50  8.33 ± 0.33 -  
0.94 

(32/34) 

1.0 

(2/2) 
 

0.75 

(6/8) 
- 

a Sample size n =1 for yearling renests with known clutch size for Decker in 2005 and Buffalo in 2005. 
b This estimate includes data from one nest that was incubated for 50+ days in which all 9 eggs failed to hatch. 
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Table 4.  Apparent nest success and number and fate for nests of adult (AD) and yearling (YR) female sage-grouse near Decker, MT 

from 2003-2006, near Buffalo, WY from 2004-2006, and near Spotted Horse, WY in 2003.  Apparent nest success is presented as a 

proportion (successful nests/total nests). 

  AD  YR  Combined 

Region - Year  1st nests Re-nestsa  1st nests Re-nests  Annual total 

Decker -  2003  
0.38 

(8/21) 

0.88 

(7/8) 
 

0.41 

(7/17) 

0.40 

(2/5) 
 

0.47 

(24/51) 

Decker - 2004  
0.62 

(18/29) 

0.00 

(0/1) 
 

0.41 

(7/17) 
-  

0.53 

(25/47) 

Decker - 2005  
0.45 

(23/51) 

0.69 

(11/16) 
 

0.27 

(4/15) 

0.00 

(0/1) 
 

0.46 

(38/83) 

Decker - 2006  
0.48 

(21/44) 

0.60 

(6/10) 
 

0.60 

(12/20) 

0.33 

(1/3) 
 

0.52 

(40/77) 

Decker - TOTAL  
0.48 

(70/145) 

0.69 

(24/35) 
 

0.43 

(30/69) 

0.33 

(3/9) 
 

0.49 

(127/258) 

Buffalo - 2004  
0.75 

(9/12) 

0.00 

(0/1) 
 

0.50 

(17/34) 
-  

0.56b

(27/48) 
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Table 4 (cont.).  Apparent nest success and number and fate for nests of adult (AD) and yearling (YR) female sage-grouse near 

Decker, MT from 2003-2006, near Buffalo, WY from 2004-2006, and near Spotted Horse, WY in 2003.  Apparent nest success is 

presented as a proportion (successful nests/total nests). 

  AD  YR  Combined 

Region - Year  1st nests Re-nestsa  1st nests Re-nests  Annual total 

Buffalo - 2005  
0.64 

(23/36) 

0.88 

(7/8) 
 

0.69 

(20/29) 

1.00 

(2/2) 
 

0.70b

(53/76) 

Buffalo - 2006  
0.95 

(19/20) 

1.00 

(1/1) 
 

0.79 

(31/39) 

1.00 

(1/1) 
 

0.85 

(52/61) 

Buffalo - TOTAL  
0.75 

(51/68) 

0.80 

(8/10) 
 

0.67 

(68/102) 

1.00 

(3/3) 
 

0.71b

(132/185) 

Spotted Horse - 2003  
0.50 

(4/8) 

0.50 

(1/2) 
 

0.25 

(1/4) 
-  

0.43 

(6/14) 

TOTAL  
0.57 

(125/220) 

0.70 

(33/47) 
 

0.57 

(99/175) 

0.50 

(6/12) 
 

0.57b

(265/457) 

a One successful third nest from the Decker region in 2005 is included in renests.   
b Totals include successful nests of unknown-aged females (i.e., after-hatching-year) near Buffalo in 2004 (n=1) and 2005 (n=1). 
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Table 5.  Apparent proximate cause of failure for nests of adult (AD) and yearling (YR) female sage-grouse near Decker, MT from 

2003-2006, near Buffalo, WY from 2004-2006, and near Spotted Horse (SH), WY in 2003. 

    Cause of nest failure 

Region - Year 

 

No. failed nests / total nests  Predation Weather Abandoned 

♀ killed  

on / off nest Research Did not hatch Unknown 

Decker - 2003  27 / 51  10 0 0 1 / 2 9 1 4 

Decker - 2004  22 / 47  18 0 1 0 / 2 0 0 1 

Decker - 2005  45 / 83  31 7 1 2 / 3 1 0 0 

Decker - 2006  37 / 77  28 0 1 1 / 3 1 0 3 

Decker - TOTAL  131 / 258  87 7 3 4 / 10 11 1 8 

Buffalo - 2004  21 / 48  21 0 0 0 0 0 0 

Buffalo - 2005  23 / 76  19 1 0 0 2 0 1 

Buffalo - 2006  9 / 61  3 0 0 3 / 1 1 1 0 

Buffalo - TOTAL  53 / 185  43 1 0 3 / 1 3 1 1 

SH - 2003  8 / 14  6 0 0 0 1 0 1 

TOTAL  192/457  136 8 3 7, 11 15 2 10 
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Table 6.  Comparison of “quick” estimates of nest success and nest success estimated from maximum-likelihood estimates of daily 

survival rate based on a Region*Year*Hen age + Nest attempt model for adult (AD) and yearling (YR) female greater sage-grouse 

near Decker, MT from 2003-2006, near Buffalo, WY from 2004-2006, and near Spotted Horse (SH), WY in 2003.  “Quick” nest 

success estimates (Johnson and Klett 1985) are for the incubation period only. 

  “Quick” estimate  Maximum-likelihood estimate (mean ± SE)  Absolute Difference 

  AD  YR  AD  YR  AD  YR 

Region - 

Year  

1st 

nests 

Re-

nestsa  

1st 

nests 

Re-

nests  

1st 

nests 

Re-

nestsa  

1st 

nests Renests  

1st 

nests 

Re-

nestsa  

1st 

nests 

Re-

nests 

Decker - 

2003 
 0.35 0.86  0.38 0.37  

0.72 

±0.11 

0.82 

±0.08 
 

0.48 

±0.15 

0.65 

±0.13 
 -0.37 0.04  -0.10 -0.28 

Decker - 

2004 
 0.60 0.00b  0.39 -  

0.61 

±0.09 
-  

0.55 

±0.12 
-  -0.01 -  -0.16 - 

Decker - 

2005 
 0.43 0.67  0.24 0.00b  

0.47 

±0.07 

0.64 

±0.08 
 

0.29 

±0.11 
-  -0.03 0.03  -0.05 -0.47b

Decker - 

2006 
 0.45 0.58  0.58 0.31b  

0.52 

±0.08 

0.68 

±0.09 
 

0.51 

±0.12 

0.67 

±0.11 
 -0.07 -0.10  0.07 -0.36b
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Table 6 (cont.).  Comparison of “quick” estimates of nest success and nest success estimated from maximum-likelihood estimates of 

daily survival rate based on a Region*Year*Hen age + Nest attempt model for adult (AD) and yearling (YR) female greater sage-

grouse near Decker, MT from 2003-2006, near Buffalo, WY from 2004-2006, and near Spotted Horse (SH), WY in 2003.  “Quick” 

nest success estimates (Johnson and Klett 1985) are for the incubation period only. 

  “Quick” estimate  Maximum-likelihood estimate (mean ± SE)  Absolute difference 

  AD  YR  AD  YR  AD  YR 

Region - 

Year  

1st 

nests 

Re-

nestsa  

1st 

nests 

Re-

nests  

1st 

nests 

Re-

nestsa  

1st  

nests 

Re-

nests  

1st 

nests 

Re-

nestsa  

1st 

nests 

Re-

nests 

Buffalo - 

2004 
 0.74 0.00b  0.48 -  

0.72 

±0.14 
-  

0.49 

±0.09 
-  0.02 -  -0.01 - 

Buffalo - 

2005 
 0.62 0.88b  0.67 1.00b  

0.69 

±0.08 

0.80 

±0.07 
 

0.79 

±0.08 

0.87 

±0.06 
 -0.07 0.07b  -0.12 0.13b

Buffalo - 

2006 
 0.95 1.00b  0.78 1.00b  

0.95 

±0.05 

0.97 

±0.03 
 

0.88 

±0.06 

0.92 

±0.04 
 0.00 -0.03  -0.10 0.08b

SH - 2003  0.47b 0.47b  0.22b -  
0.56 

± 0.19 

0.71 

±0.15 
 

0.28 

±0.25 
-  -0.09b -0.24b  -0.06b - 

a One successful third nest from the Decker region in 2005 is included in renests.  
b Values are based on sample sizes of nests ≤ 9. 

 129



Table 7.  Earliest and latest hatching dates, apparent brood survival, number and fate of broods, apparent chick survival, and minimum 

no. chicks surviving to 35d for adult (AD) and yearling (YR) female sage-grouse near Decker, MT from 2003-2006, near Buffalo, WY 

from 2004-2006, and near Spotted Horse (SH), WY in 2003.  Brood data presented as no. successful broods / no. broods of known fate 

/ no. broods of unknown fate.  Chick data presented as no. chicks that survived to 35d / no. chicks hatched in broods of known fate / 

no. chicks hatched in broods of unknown fate. 

  Hatching date  Apparent brood success  Apparent chick survival 

Region - 

Year  AD YR All   AD YR Alla  AD YR Allb

Decker - 

2003 
 5/15-7/03 5/19-6/25 5/15-7/03  

0.71 

(10/14/1) 

0.56 

(5/9/0) 

0.67 

(16/24/1) 
 

0.54 

(54/100/3) 

0.28 

(19/67/0) 

0.43 

(75/174/3) 

Decker - 

2004 
 5/11-6/10 5/13-5/28 5/11-6/10  

0.89 

(16/18/0) 

1.00 

(6/6/1) 

0.91 

(21/23/2) 
 

0.32 

(40/125/6) 

0.58 

(22/38/5) 

0.38 

(62/163/11) 

Decker - 

2005 
 5/10-7/03 5/18-6/12 5/10-7/03  

0.77 

(24/31/4) 

1.00 

(4/4/0) 

0.80 

(28/35/4) 
 

0.47 

(93/197/27) 

0.78 

(18/23/0) 

0.50 

(111/220/27) 

Decker - 

2006 
 5/13-6/23 5/20-6/03 5/13-6/23  

0.81 

(17/21/6) 

0.75  

(8/12/0) 

0.76 

(25/33/6) 
 

0.42 

(61/145/30) 

0.38 

(33/88/0) 

0.40 

(94/233/30) 
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Table 7 (cont.).  Earliest and latest hatching dates, apparent brood survival, number and fate of broods, apparent chick survival, and 

minimum no. chicks surviving to 35d for adult (AD) and yearling (YR) female sage-grouse near Decker, MT from 2003-2006, near 

Buffalo, WY from 2004-2006, and near Spotted Horse (SH), WY in 2003.  Brood data presented as no. successful broods / no. broods 

of known fate / no. broods of unknown fate.  Chick data presented as no. chicks that survived to 35d / no. chicks hatched in broods of 

known fate / no. chicks hatched in broods of unknown fate. 

  Hatching date  Apparent brood survival  Apparent chick survival 

Region - Year  AD YR All   AD YR Alla  AD YR Allb

Buffalo - 2004  5/09-5/24 5/14-5/29 5/09-5/29  
0.88 

(7/8/1) 

0.58 

(7/12/5) 

0.71 

(15/21/6) 
 

0.41 

(29/70/0) 

0.26 

(20/78/30) 

0.33 

(51/156/30) 

Buffalo - 2005  5/10-6/23 5/14-6/20 5/10-6/23  
0.96 

(27/28/3) 

0.95 

(18/19/3) 

0.96 

(46/48/6) 
 

0.51 

(84/164/Unk) 

0.63 

(67/107/13+) 

0.55 

(152/277/21+) 

Buffalo - 2006  5/19-6/06 5/16-6/06 5/16-6/06  
0.88 

(7/8/12) 

0.92 

(22/24/8) 

0.91 

(29/32/20) 
 

0.43 

(24/56/70) 

0.50 

(78/155/48) 

0.48 

(102/211/118) 

SH - 2003  5/23-6/08 5/31 5/23-6/08  
0.80 

(4/5/0) 

1.00 

(1/1/0) 

0.83 

(5/6/0) 
 

0.54 

(19/35/0) 

0.50 

(3/6/0) 

0.54 

(22/41/0) 

a Totals also include broods from females of undetermined age (i.e., after-hatching-year). 
b Totals also include chicks from females of undetermined age (i.e., after-hatching-year). 
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Table 8. Suspected cause of death of radio-collared female sage-grouse near Decker, MT from 2003-2007, Buffalo, WY from 2004-

2007, and Spotted Horse (SH), WY in 2003-2004. 

   Suspected proximate cause of death 

Region - Year  

No. 

mortalities  

Raptor 

kill 

Mammal 

kill 

Unknown 

predator WNv 

Vehicle 

collision 

Powerline 

collision 

Other 

disease 

Legal 

harvest Unknown 

Decker 2003-2004  21 1 0 13 0 0 1 0 0 6 

Decker 2004-2005  27 4 1 10 3a 0 0 0 0 9 

Decker 2005-2006  24 3 2 5 0 0 0 1b 0 13 

Decker 2006-2007  34 1 0 13 3 0 0 1c 0 16 

Buffalo 2004-2005  23 8 4 6 1 0 0 0 1 3 

Buffalo 2005-2006  39 7 4 9 3 2 0 0 0 14 

Buffalo 2006-2007  39 3 0 7 3d 0 0 1 0 25d

SH 2003-2004  10 1 0 2 6 0 1 0 0 1 

All regions - all years  217 28 11 65 19d 2 2 2 1 87d

a Two of the three mortalities positive for West Nile virus near Decker in 2004 occurred in alfalfa fields irrigated with water from coal-bed natural gas development. 
b Aspergillosus. 
c Metastatic mineralization of the kidney reported, cause unknown. 
d Four mortalities listed here as unknown cause of death may have died from West Nile virus and are currently being tested at the Wyoming State Veterinary Laboratory. 
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Table 9. Sample sizes for nest, brood, and female survival analyses and interval lengths (d) for female survival analyses in three 

regions of the Powder River Basin, 2003-2006.  Spring-summer survival was measured from the beginning of nesting (30 Mar - 6 Apr, 

depending on the year) to 10 Sept.  Fall-winter survival was measured from 10 Sept to the beginning of nesting the following spring. 

     Spring-summer  Fall-winter 

Region - Year  

No.  

nests 

No. 

broods  

No. 

yearlings 

No.  

adults 

Interval 

length (d)  

No.  

juveniles 

No. 

yearlings 

No. 

adults 

Interval 

length (d) 

Decker 2003  40 25  21 27 160  13 15 22 202 

Decker 2004  46 25  31 42 164  11 19 35 208 

Decker 2005  82 36  16 60 157  0 16 40 206 

Decker 2006  73 36  26 50 159  0 18 26 202 

Buffalo 2004  46 23  39 12 166  0 28 8 199 

Buffalo 2005  72 52  34 40 166  0 23 23 208 

Buffalo 2006  58 43  52 23 157  0 25 14 208 

SH 2003  11 6  4 10 162  0 2 1 203 

SH 2004  0 0  1 4 162  0 1 3 203 

All regions - all years  428 246  219 254   24 147 172  

No. individuals  289 206  343 (spring-summer)  233 (fall-winter) 
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Table 10.  A priori models of daily survival rate for greater sage-grouse nests in the 

Powder River Basin, 2003-2006.  Models are ranked by ΔAICc values. 

No. Model1 K AICc ΔAICc wi

1 Region*Year+Hen Age+Julian Date 13 1020.046 0.000 0.333

2 Region*Year+Hen Age+Attempt 13 1021.552 1.506 0.157

3 Region*Year+Julian Date 12 1021.887 1.841 0.132

4 Region*Year+Attempt 12 1022.155 2.109 0.116

5 Region*Year+Hen Age 12 1022.651 2.606 0.090

6 Region*Year+Hen Age+Julian Date+Julian Date2 14 1022.833 2.787 0.083

7 Region*Year 11 1023.990 3.944 0.046

8 Region*Year+Julian Date+Julian Date2 13 1025.051 5.006 0.027

9 Region+Year+Hen Age+Julian Date 11 1029.546 9.500 0.003

10 Region*Year*Hen Age+Julian Date 20 1029.962 9.916 0.002

11 Region+Year+Hen Age+Attempt 11 1030.545 10.499 0.002

12 Region+Year+Hen Age 10 1030.915 10.869 0.001

13 Region*Year*Hen Age+Attempt 20 1031.201 11.155 0.001

14 Region+Year+Attempt 10 1031.403 11.358 0.001

15 Region+Year+Julian Date 10 1031.462 11.417 0.001

16 Region+Year*Hen Age+Julian Date 14 1031.880 11.834 0.001
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17 Region*Year*Hen Age 19 1032.220 12.174 0.001

18 Region+Year*Hen Age+Attempt 14 1032.746 12.701 0.001

19 Region+Year+Hen Age+Julian Date+Julian Date2 12 1032.882 12.836 0.001

20 Region*Year*Hen Age+Julian Date+Julian Date2 21 1032.956 12.910 0.001

21 Region+Year*Hen Age 13 1033.316 13.270 0.000

22 Region+Year*Hen Age+Julian Date+Julian Date2 15 1035.146 15.100 0.000

23 Region+Year+Julian Date+Julian Date2 11 1035.284 15.239 0.000

24 Julian Date+Julian Date2+PrevSprPrecip 7 1038.522 18.477 0.000

25 Hen Age+Julian Date+Julian Date2+PrevSprPrecip 8 1040.175 20.129 0.000

26 Julian Date+PrevSprPrecip 6 1040.673 20.627 0.000

27 Attempt+PrevSprPrecip 6 1040.951 20.905 0.000

28 Attempt*PrevSprPrecip 7 1041.604 21.558 0.000

29 Hen Age+Julian Date+PrevSprPrecip 7 1041.771 21.726 0.000

30 Julian Date*PrevSprPrecip 7 1042.259 22.213 0.000

31 Hen Age+Attempt+PrevSprPrecip 7 1042.495 22.449 0.000

32 Hen Age+Attempt*PrevSprPrecip 8 1043.110 23.064 0.000

33 Hen Age+PrevSprPrecip 6 1043.389 23.343 0.000

34 Hen Age+Julian Date*PrevSprPrecip 8 1043.396 23.350 0.000

35 NestAge+NestAge2+ExtremePrecip 4 1044.653 24.608 0.000

 135



36 Hen Age+Julian Date+Julian Date2 7 1045.364 25.319 0.000

37 Julian Date+Julian Date2+SprPrecip 7 1045.388 25.342 0.000

38 Hen Age+Julian Date 6 1045.954 25.908 0.000

39 Attempt*SprPrecip 7 1046.154 26.108 0.000

40 Julian Date+SprPrecip 6 1046.177 26.131 0.000

41 Attempt+SprPrecip 6 1046.316 26.270 0.000

42 Hen Age+Attempt 6 1046.355 26.309 0.000

43 Hen Age+Julian Date+Julian Date2+SprPrecip 8 1047.361 27.315 0.000

44 Julian Date*SprPrecip 7 1047.500 27.454 0.000

45 Hen Age+Julian Date+SprPrecip 7 1047.924 27.878 0.000

46 Hen Age+SprPrecip 6 1048.049 28.003 0.000

47 Hen Age+Attempt*SprPrecip 8 1048.088 28.042 0.000

48 Hen Age+Attempt+SprPrecip 7 1048.242 28.197 0.000

49 Hen Age+Julian Date*SprPrecip 8 1049.254 29.208 0.000

1 All models include effects of nest age + nest age2 and extreme precipitation. 
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Table 11.  A priori models of daily survival rate for greater sage-grouse broods in the 

Powder River Basin, 2003-2006.  Models are ranked by ΔAICc values. 

No. Model K AICc ΔAICc wi

1 Brood Age+Region 4 304.106 0.000 0.225

2 Brood Age+Region*Year 9 304.509 0.403 0.184

3 Brood Age+Region+Hen Age 5 304.820 0.714 0.157

4 Brood Age+Region*Year+Hen Age 10 305.480 1.374 0.113

5 Brood Age+Region+Julian Date 5 306.061 1.955 0.085

6 Brood Age+Region*Year+Julian Date 10 306.494 2.388 0.068

7 Brood Age+Region+Hen Age+Julian Date 6 306.745 2.639 0.060

8 Brood Age+Region*Year+Hen Age+Julian Date 11 307.464 3.358 0.042

9 Brood Age+Region+Year 7 309.365 5.259 0.016

10 Brood Age+Region+Year+Hen Age 8 310.427 6.321 0.010

11 Brood Age+Region+Year+Julian Date 8 311.148 7.042 0.007

12 Brood Age+Region+Year*Julian Date 11 311.647 7.542 0.005

13 Brood Age+Region+Year+Hen Age+Julian Date 9 312.203 8.097 0.004

14 Brood Age 2 312.264 8.159 0.004

15 Brood Age+Region+Year*Julian Date+Hen Age 12 312.302 8.197 0.004

16 Brood Age+SprPrecip 3 313.017 8.911 0.003

 137



17 Brood Age+Julian Date 3 313.972 9.867 0.002

18 Brood Age+Julian Date+SprPrecip 4 314.163 10.057 0.001

19 Brood Age+SprPMDI 3 314.211 10.105 0.001

20 Brood Age+Hen Age 3 314.265 10.159 0.001

21 Brood Age+Hen Age+SprPrecip 4 314.980 10.874 0.001

22 Brood Age+Region+Year*Hen Age 11 315.073 10.967 0.001

23 Global 12 315.261 11.156 0.001

24 Brood Age+Julian Date+SprPMDI 4 315.755 11.649 0.001

25 Brood Age+Hen Age+Julian Date 4 315.975 11.869 0.001

26 Brood Age+Julian Date*SprPrecip 5 316.094 11.988 0.001

27 Brood Age+Hen Age+Julian Date+SprPrecip 5 316.127 12.021 0.001

28 Brood Age+Year 5 316.169 12.063 0.001

29 Brood Age+Hen Age+SprPMDI 4 316.209 12.103 0.001

30 Brood Age+Hen Age*SprPrecip 5 316.627 12.521 0.000

31 Brood Age+Region+Year*Hen Age+Julian Date 12 316.924 12.818 0.000

32 Brood Age+Julian Date*SprPMDI 5 317.356 13.250 0.000

33 Brood Age+Hen Age*SprPMDI 5 317.732 13.626 0.000

34 Brood Age+Hen Age+Julian Date+SprPMDI 5 317.754 13.648 0.000

35 Brood Age+Year+Julian Date 6 317.823 13.717 0.000
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36 Brood Age+Hen Age*SprPrecip+Julian Date 6 317.832 13.726 0.000

37 Brood Age+Julian Date*SprPrecip+Hen Age 6 318.058 13.953 0.000

38 Brood Age+Year+Hen Age 6 318.168 14.062 0.000

39 Brood Age+Year*Julian Date 9 318.767 14.661 0.000

40 Brood Age+Julian Date*SprPMDI+Hen Age 6 319.352 15.246 0.000

41 Brood Age+Hen Age*SprPMDI+Julian Date 6 319.364 15.258 0.000

42 Brood Age+Year+Hen Age+Julian Date 7 319.820 15.714 0.000

43 Brood Age+Year*Julian Date+Hen Age 10 320.773 16.667 0.000

44 Brood Age+Year*Hen Age 9 321.354 17.248 0.000

45 Brood Age+Year*Hen Age+Julian Date 10 323.106 19.000 0.000
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Table 12.  A priori models of daily spring-summer female survival rate for greater sage-

grouse in the Powder River Basin, spring 2003 - spring 2007.  Models are ranked by 

ΔAICc values. 

No. Model K AICc ΔAICc wi

1 Region*WNV+Year+With Brood 10 1611.503 0.000 0.221

2 Region*WNV+Year 9 1611.997 0.494 0.173

3 Region*WNV+Year+On Nest 10 1612.730 1.227 0.120

4 Region*WNV+Year+Hen Age+With Brood 11 1612.975 1.472 0.106

5 Region*WNV+Year+Hen Age 10 1613.595 2.091 0.078

6 Region+Year+With Brood+WNV 8 1614.247 2.744 0.056

7 Region*WNV+Year+Hen Age+On Nest 11 1614.391 2.887 0.052

8 Region+Year+WNV 7 1615.007 3.504 0.038

9 Region+Year+On Nest+WNV 8 1615.582 4.079 0.029

10 Region+Year+With Brood*WNV 9 1615.800 4.297 0.026

11 Region+Year+Hen Age+With Brood+WNV 9 1615.867 4.363 0.025

12 Region+Year+Hen Age+WNV 8 1616.739 5.235 0.016

13 Global 10 1617.267 5.764 0.012

14 Region+Year+Hen Age+On Nest+WNV 9 1617.366 5.862 0.012

15 Region+Year+Hen Age+With Brood*WNV 10 1617.427 5.924 0.011
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16 Region*Hen Age+Year+With Brood+WNV 11 1618.077 6.574 0.008

17 Region*Hen Age+Year+WNV 10 1619.003 7.500 0.005

18 Region*Hen Age+Year+With Brood*WNV 12 1619.638 8.134 0.004

19 Region*Hen Age+Year+On Nest+WNV 11 1619.660 8.157 0.004

20 Region+Year+With Brood 7 1621.341 9.838 0.002

21 Region+Year+Hen Age+With Brood 8 1623.057 11.553 0.001

22 Region+Year 6 1623.579 12.075 0.001

23 Region*Year 10 1623.943 12.439 0.000

24 Region+Year+Hen Age 7 1625.413 13.909 0.000

25 Region*Hen Age+Year+With Brood 10 1625.503 14.000 0.000

26 Region+Year+On Nest 7 1625.542 14.039 0.000

27 Region*Year+Hen Age+On Nest 12 1626.598 15.094 0.000

28 Region*Year*Hen Age 20 1627.251 15.748 0.000

29 Region+Year+Hen Age+On Nest 8 1627.367 15.864 0.000

30 Region*Hen Age+Year 9 1627.938 16.435 0.000

31 Region*Hen Age+Year+On Nest 10 1629.882 18.378 0.000

32 Region*Year+With Brood 11 1670.830 59.327 0.000

33 Region*Year+On Nest 11 1677.943 66.439 0.000

34 Region*Year*Hen Age+On Nest+WNV 22 1720.185 108.682 0.000
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35 Region*Year+Hen Age 11 1734.204 122.701 0.000

36 Region*Year*Hen Age+On Nest 21 1734.731 123.227 0.000

37 Region*Year*Hen Age+With Brood*WNV 23 1758.631 147.127 0.000

38 Region*Year*Hen Age+WNV 21 1770.376 158.873 0.000

39 Region*Year+Hen Age+With Brood 12 1782.309 170.806 0.000

40 Region*Year*Hen Age+With Brood+WNV 22 1785.598 174.095 0.000

41 Region*Year+Hen Age+WNV 12 1794.996 183.492 0.000

42 Region*Year+Hen Age+With Brood*WNV 14 1811.092 199.588 0.000

43 Region*Year+Hen Age+On Nest+WNV 13 1823.341 211.838 0.000

44 Region*Year+Hen Age+With Brood+WNV 13 1841.026 229.522 0.000
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Table 13.  A priori models of daily spring-summer female survival rate for greater sage-

grouse in the Powder River Basin, spring 2003 - spring 2007, excluding mortalities 

confirmed positive for West Nile virus.  Models are ranked by ΔAICc values. 

No. Model1 K AICc ΔAICc wi

1 Region+Year+With Brood 7 1454.115 0.000 0.312 

2 Region+Year 6 1455.091 0.976 0.192 

3 Region+Year+Hen Age+With Brood 8 1455.488 1.373 0.157 

4 Region+Year+Hen Age 7 1456.617 2.502 0.089 

5 Region+Year+On Nest 7 1456.762 2.647 0.083 

6 Global 9 1457.452 3.337 0.059 

7 Region+Year+Hen Age+On Nest 8 1458.329 4.214 0.038 

8 Region*Hen Age+Year+With Brood 10 1458.972 4.857 0.028 

9 Region*Year 10 1459.626 5.511 0.020 

10 Region*Hen Age+Year 9 1460.129 6.014 0.015 

11 Region*Hen Age+Year+On Nest 10 1461.857 7.741 0.007 

12 Region*Year*Hen Age+On Nest 21 1466.915 12.800 0.001 

13 Region*Year*Hen Age 20 1468.292 14.177 0.000 

14 Region*Year+With Brood 11 1500.477 46.362 0.000 

15 Region*Year*Hen Age+With Brood 21 1509.824 55.708 0.000 
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16 Region*Year+On Nest 11 1517.646 63.531 0.000 

17 Region*Year+Hen Age 11 1549.517 95.402 0.000 

18 Region*Year+Hen Age+On Nest 12 1568.049 113.933 0.000 

19 Region*Year+Hen Age+With Brood 12 1605.581 151.466 0.000 
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Table 14. Spring-summer survival estimates ± SE for adult (AD) and yearling (YR) 

female greater sage-grouse near Decker, MT from 2003-2006, near Buffalo, WY from 

2004-2006, and near Spotted Horse (SH), WY in 2003-2004, including and excluding 

mortalities confirmed positive for West Nile virus. 

  Survival (including WNv) Survival (excluding WNv) 

Region - Year  AD YR AD  YR 

Decker - 2003  0.680 ± 0.099 0.593 ± 0.117 0.680 ± 0.099  0.593 ± 0.117

Decker - 2004  0.808 ± 0.065 0.580 ± 0.100 0.808 ± 0.065  0.682 ± 0.099

Decker - 2005  0.732 ± 0.061 1.000 0.732 ± 0.061  1.000 

Decker - 2006  0.637 ± 0.070 0.731 ± 0.087 0.671 ± 0.069  0.764 ± 0.084

Buffalo - 2004  0.447 ± 0.216 0.644 ± 0.082 0.593 ± 0.231  0.668 ± 0.081

Buffalo - 2005  0.582 ± 0.079 0.639 ± 0.086 0.627 ± 0.078  0.671 ± 0.085

Buffalo - 2006  0.696 ± 0.103 0.589 ± 0.076 0.696 ± 0.103  0.647 ± 0.075

SH - 2003  0.125 ± 0.087 0.482 ± 0.249 0.392 ± 0.184  0.693 ± 0.254

SH - 2004  1.000 1.000 1.000  1.000 
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Table 15. Annual survival estimates for adult (AD) and yearling (YR) female greater 

sage-grouse near Decker, MT from 2003-2006, near Buffalo, WY from 2004-2006, and 

near Spotted Horse (SH), WY in 2003-2004, including and excluding mortalities 

confirmed positive for West Nile virus. 

 
 Annual survival 

(including WNv)

Annual survival  

(excluding WNv)

Region - Year  AD  YR AD  YR 

Decker - 2003  0.588  0.514 0.587  0.514 

Decker - 2004  0.740  0.519 0.740  0.610 

Decker - 2005  0.562  1.000 0.562  1.000 

Decker - 2006  0.563  0.606 0.594  0.634 

Buffalo - 2004  0.447  0.575 0.593  0.596 

Buffalo - 2005  0.354  0.472 0.381  0.496 

Buffalo - 2006  0.596  0.519 0.596  0.569 

SH - 2003  0.125  0.482 0.392  0.693 

SH - 2004  1.000  1.000 1.000  1.000 
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Figure 1.  Expansion of coal-bed natural gas development in the Powder River Basin 

from 1997-2005.  Approximate boundaries of study sites with radio-marked greater sage-

grouse in the Powder River Basin, 2003-2006 are outlined with black dashed lines.  Study 

regions are labeled in bold.  Gray dots represent active coal-bed natural gas wells.  

County names are in small font. 

 

Figure 2.  Daily survival rate (DSR) of nests (with 95% CIs) in three regions of the 

Powder River Basin, 2003-2006.  SH = Spotted Horse. 

 

Figure 3.  Daily survival rate (DSR) of nests (with 95% CIs) in relation to date and hen 

age based on nests in three regions of the Powder River Basin, 2003-2006. 

 

Figure 4.  Estimated daily survival rate (DSR) of nests during incubation (with 95% CIs) 

as nest age increases based on nesting data from three regions of the Powder River Basin, 

2003-2006.  We illustrate the effect with data from nests in the Decker region in 2003 

that began incubation on May 12, the average date of clutch completion in that region in 

that year in that region. 

 

Figure 5.  Estimated nest success (with 95% CIs) in three regions of the Powder River 

Basin, 2003-2006 for first nests and renests of (a) yearlings and (b) adults based on a 

Region*Year*Hen age + Attempt model.  SH = Spotted Horse. 

 

Figure 6.  Daily survival rate (DSR) of broods (with 95% CIs) in three regions of the 

Powder River Basin, 2003-2006.  Point estimates start at brood age of 1 d and are shown 
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for every other day through 35 d.  Point estimates and CIs are offset for clarity.  SH = 

Spotted Horse. 

 

Figure 7.  Estimated brood success (with 95% CIs) in three regions of the Powder River 

Basin, 2003-2006 based on a Region*Year model.  

 

Figure 8.  Estimated spring-summer survival (with 95% CIs) for greater sage-grouse 

females without broods (i.e., non-nesting females and females with unsuccessful nests) 

and those that raised broods to 35 d in three regions of the Powder River Basin, 2003-

2006, based on the best-approximating model (Region*WNv+Year+WBrood). 

 

Figure 9.  Spring-summer survival (with 95% CIs) for (a) yearling and (b) adult females 

in three regions of the Powder River Basin from 2003-2007, based on a 

Region*Year*Hen age model.  Estimates presented include (white bars) or exclude (gray 

bars) mortalities confirmed positive for West Nile virus.  SH = Spotted Horse. 

 

Figure 10.  Fall-winter juvenile, yearling, and adult female survival (with 95% CIs) in 

three regions of the Powder River Basin from 2003 - 2006.  Estimates refer to survival 

from fall to the following spring (e.g., 2003 means fall 2003 - spring 2004).  Survival 

data on juveniles were only collected in the Decker region in fall-winter 2003-2004 and 

2004-2005.  Survival estimates for Spotted Horse were based on only 2 individuals in 

2003-2004 and 4 individuals in 2004-2005. 
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Figure 11.  Estimated annual survival of (a) yearling and (b) adult females in three 

regions of the Powder River Basin, 2003 - 2006 based on a Region*Year*Hen age model.  

Estimates presented include (white bars) or exclude (gray bars) mortalities confirmed 

positive for West Nile virus.  Estimates refer to survival from fall in that year through the 

following spring.  Survival estimates for Spotted Horse were based on only 2 individuals 

in 2003-2004 and 4 individuals in 2004-2005. 
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Figure 1 
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Figure 2. 
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Figure 3. 
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Figure 4. 
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Figure 5. 

(a) 

Yearlings
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(b) 

Adults
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Figure 6. 

0.955

0.960

0.965

0.970

0.975

0.980

0.985

0.990

0.995

1.000

0 5 10 15 20 25 30 35
Brood Age (d)

D
SR

 - 
Br

oo
ds Buffalo

SH
Decker

 

 155



Figure 7.  

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

SH
2003

Decker
2003

Decker
2004

Buffalo
2004

Decker
2005

Buffalo
2005

Decker
2006

Buffalo
2006

Br
oo

d 
Su

cc
es

s

 

 156



Figure 8. 
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Figure 9. 

(a) 
  Yearlings 

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

SH
2003

Decker
2003

SH
2004

Decker
2004

Buffalo
2004

Decker
2005

Buffalo
2005

Decker
2006

Buffalo
2006

Es
tim

at
ed

 S
pr

in
g-

Su
m

m
er

 S
ur

vi
va

l  
WNv Morts Included
WNv Morts Excluded

 

(b) 
  Adults 
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Figure 10.  
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Figure 11. 

(a) 
  Yearlings 
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(b)  
 Adults 
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CHAPTER 5.  IMPACTS OF WEST NILE VIRUS ON POPULATION GROWTH OF 

GREATER SAGE-GROUSE. 

 

Abstract.  A new concern for conservation of greater sage-grouse (Centrocercus 

urophasianus) in western North America is the arrival and spread of West Nile virus 

(Flaviviridae, Flavivirus) (WNv).  Since 2003, declines in late-summer survival due to 

WNv-related mortality and mortality events have been reported in 11 of the 13 states 

within the species’ current range, and laboratory studies have documented 100% 

mortality following infection.  However potential long-term effects of WNv on 

populations have not been investigated.  We used life-stage simulation analysis models 

and empirical data on WNv-related mortality and infection rates from radio-marked sage-

grouse to explore potential impacts of WNv on population growth in the Powder River 

Basin of northeastern Wyoming and southeastern Montana, USA from 2003-2006.  

Observed levels of mortality indicate that WNv reduced estimates of population growth 

(i.e., finite rate of increase, λ) by -0.073 to -0.103 per year.  Simulated impacts based on 

current estimates of WNv infection rate suggested an average decline in λ of -0.073 to -

0.075 due to WNv.  Because of low annual infection rates, resistance to WNv disease was 

projected to increase gradually over time (assuming no changes in virulence).  Severe 

outbreaks of WNv may result in increased resistance in the population, but may also 

simultaneously reduce local abundance below thresholds for population persistence.  

Residual or sublethal (i.e., carryover) effects of WNv infection in surviving individuals 

have the potential to hinder the evolution of resistance.  Presently, carryover effects 

appear to have little influence on population growth because so few individuals survive 
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infection, but they may become relevant if infection rates or the proportion of resistant 

birds in the population increases.  Changes in the virulence or epizootiology of WNv and 

in the distribution and management of surface water from coal-bed natural gas 

development will play an important role in long-term impacts on greater sage-grouse 

populations in the Powder River Basin. 

 

Keywords: Centrocercus urophasianus, demographics, flavivirus, greater sage-grouse, 

population model, life-stage simulation analysis, Powder River Basin, sagebrush, vital 

rates, West Nile virus. 

 

Emerging infectious diseases can act as important new sources of mortality for 

populations of sensitive and declining wildlife species.  A major new concern for 

conservation of North American birds, including greater sage-grouse (Centrocercus 

urophasianus; hereafter “sage-grouse”), in North America is the arrival and spread of 

West Nile virus (WNv; Flaviviridae, Flavivirus) (McLean 2006, Koenig et al. 2007, 

LaDeau et al. 2007).  Recent studies have documented declines in sage-grouse survival 

attributable to WNv in wild (Naugle et al. 2004, 2005; Walker et al. 2004, 2007b) and 

laboratory populations (Clark et al. 2006).  West Nile virus first arrived within the current 

range of sage-grouse in 2002 (Kilpatrick et al. 2007), and WNv-related mortality in sage-

grouse was documented that year (Naugle et al. 2004).  In 2003, WNv-related mortality 

reduced late-summer survival rate of females by ~25% across much of the eastern half of 

the species’ range (Naugle et al. 2004), and resulted in near-extirpation of a local 

breeding population in northeastern Wyoming by spring 2004 (Walker et al. 2004).  From 
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2004-2007, annual WNv-related mortality and localized severe mortality events have 

been reported throughout the species’ range.  By the end of 2007, WNv-positive 

mortalities had been documented in 11 of the 13 states and provinces where the species 

still occurs, with the exception of Washington and Saskatchewan (U. S. Geological 

Survey 2006; Walker 2006; Walker et al. 2007b).  In northeastern Wyoming and 

southeastern Montana, WNv-related mortality during the summer resulted in an average 

decline in annual female survival of 5% (range 0-27%) from 2003-2006 (Chapter 4).  

Overall, estimates of WNv-related mortality among breeding-aged females during the 

summer WNv transmission period across the species’ range varied from 0-71% (Walker 

et al. 2004, Naugle et al. 2005, USGS 2006, Kaczor 2008).   

The spread and prevalence of resistance to WNv-induced disease over time also 

has important implications for effects of the virus on populations.  West Nile virus is now 

considered the predominant endemic arthropod-borne disease in North America (Gubler 

2007, Kramer et al. 2008), and it has been a persistent source of mortality in sage-grouse 

since 2003 (Walker 2006, Walker et al. 2007b).  However, managing WNv risk for sage-

grouse is a daunting task because of the scale at which reservoir and amplifying hosts 

(Kato et al. 2008), mosquito vectors (Doherty 2007), and sage-grouse are distributed 

during the summer transmission period (Connelly et al. 2000).  For that reason, most 

wildlife managers must simply hope that resistance to disease will increase over time.  To 

date, the combination of high mortality rates during severe WNv outbreaks, 100% 

mortality among experimentally infected birds from both eastern and western portions of 

the species’ range, and low seroprevalence among survivors (0-10%), suggest that 

resistance to WNv-induced disease in sage-grouse generally is low (Naugle et al. 2004, 
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2005; Walker et al. 2004, 2007b; Clark et al. 2006).  The first cases of sage-grouse 

surviving WNv infection were documented in 2005 and 2006 in northeastern Wyoming 

(Walker et al. 2007b), but live, seropositive birds have not yet been reported from other 

parts of the species’ range.  Exposure to the virus could increase resistance to WNv-

induced disease over time at the population level and improve the likelihood of long-term 

population persistence, but changes in resistance depend on annual infection rates and the 

fitness of individuals that survive infection compared to uninfected birds. 

Sublethal or residual (i.e., “carryover”) effects of WNv infection may also be 

important in determining population-level impacts of the virus.  As in other birds (e.g., 

raptors; Nemeth et al. 2006a, b) and in mammals (e.g., humans, horses; Hayes et al. 

2005, Hayes and Gubler 2006), sage-grouse that survive WNv infection may nonetheless 

suffer persistent symptoms (Clark et al. 2006).  In other species, non-lethal cases of WNv 

infection often result in chronic symptoms (e.g., reduced mobility, weakness, 

disorientation, muscle pain, etc.) and lengthy recovery periods (Marra et al. 2004, Hayes 

et al. 2005; Nemeth et al. 2006a, b).  These symptoms in turn, may decrease nutritional or 

body condition of individuals and influence fall-winter survival, reproductive effort, or 

both following infection.  In sage-grouse, nutritional condition prior to the breeding 

season is positively correlated with reproductive effort and success (Dunbar et al. 2005, 

Gregg et al. 2006).  Carryover effects of WNv infection on sage-grouse have not been 

studied because low infection rates and high mortality have left few infected survivors for 

observation (Walker et al. 2007b).  However, carryover effects might substantially 

influence population growth if the proportion of infected survivors increases over time. 

Understanding the consequences of increased risk of WNv on populations due to 
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changes in land use is also crucial for projecting potential impacts of the virus.  

Anthropogenic changes may increase disease risk by directly or indirectly altering the 

abundance and habitat use of vectors, reservoirs, and hosts during the transmission period 

(McSweegan 1996).  Of particular concern in the Powder River Basin are ponds 

associated with coal-bed natural gas (CBNG) development that increase the availability 

and distribution of larval habitat for mosquitos that vector WNv (Zou et al. 2006a, 

Doherty 2007) and increases in irrigated cropland and water impoundments for livestock 

due to increased availability of CBNG water.  Additional water sources may 

simultaneously attract sage-grouse in late summer (Connelly and Doughty 1989, 

Schroeder et al. 1999, Connelly et al. 2000), concentrate potential WNv reservoirs and 

amplifying hosts, and increase mosquito abundance (Doherty 2007). 

Understanding impacts of WNv on populations requires incorporating variation in 

all of these factors – mortality, resistance to disease, carryover effects, and anthropogenic 

changes to landscapes – into demographic models.  Matrix models, in particular, are 

valuable for understanding how the influence of impacts on vital rates translates into 

consequences of potential stressors for population growth.  Life-stage simulation analysis 

in particular, allows consideration of changes in both the mean and variance of specific 

vital rates on changes in population growth (Wisdom et al. 2000, Reed et al. 2002).  

However, assumptions associated with matrix models (e.g., populations at stable age 

distribution) suggest that such models are best used to identify changes in population 

growth rate under different scenarios, rather than absolute values for growth rates (Reed 

et al. 2002). 
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Overall, several lines of evidence suggest that WNv could be an important new 

stressor on sage-grouse populations, but the potential for long-term population-level 

effects of WNv has not been explored.  We used population projection models, degree-

day models for predicting WNv risk (Zou et al. 2006b), and empirical data on WNv-

related mortality rates from radio-marked females to explore potential impacts of WNv 

on population growth in the Powder River Basin of northeastern Wyoming and 

southeastern Montana.  We used stage-specific vital rates to parameterize a life-stage 

simulation analysis model to predict long-term population growth under eight different 

scenarios: (1) no WNv mortality, (2) observed WNv mortality; (3) simulated current 

WNv mortality; (4) simulated current WNv mortality with increasing resistance to WNv-

induced disease over time; (5) simulated current WNv mortality with increasing 

resistance to disease and carryover effects on infected survivors; (6) simulated elevated 

WNv mortality due to expansion of CBNG development; (7) simulated elevated WNv 

mortality with increasing resistance; and (8) simulated elevated WNv mortality with 

increasing resistance and carryover effects. 

 

Methods 

Analyses.  We conducted both analytical sensitivity and elasticity analyses and 

life-stage simulation analysis to test the importance of mean vital rate values and their 

variability in predicting λ for the Powder River Basin (Mills et al. 1999, Wisdom et al. 

2000,.  We then generated and compared means for λ for each impact scenario based on 

1000 simulations in MATLAB (version R2007a, The Mathworks, Inc., Natick, 

Massachusetts, USA). 
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Correlation among vital rates.  We used correlations between vital rates to 

generate sets of correlated random vital rates for simulations (Box 8.6 in Morris and 

Doak 2002).  We conducted analyses both with and without correlations to see how 

correlation structure influenced estimates of λ and interpretation of sensitivities, 

elasticities, and r2 values.  Incorporating correlation structure is important for generating 

realistic combinations of vital rates for simulations that are representative of typical 

values for the population of interest (Wisdom et al. 2000, Mills and Lindberg 2002, 

Morris and Doak 2002).  Estimating correlations among vital rates requires estimates of 

each vital rate over multiple years, preferably for as many years as there are vital rates 

(Morris and Doak 2002).  We were unable to generate a meaningful correlation matrix 

from the Powder River Basin data due to the short time-frame of the study (2003-2006) 

and because not all vital rates were estimated in all years.  Instead, we assigned pairs of 

vital rates a correlation coefficient of none (0.00), low (0.25), moderate (0.50), or high 

(0.75) based on whether published data indicated that both vital rates were regulated by 

the same biological mechanism(s) (Appendix A).  We also examined correlation 

coefficients between vital rates in the range-wide data to check for evidence for or against 

hypothesized correlations.  We then tested to make sure the final correlation matrix was 

valid (i.e., positive semi-definite) (Box 8.8 in Morris and Doak 2002). 

Sampling vs. process variance.  Total variance in survival and productivity 

estimates is comprised of an unknown mix of temporal, spatial, and sampling variation.  

Because variance can strongly influence population model results and interpretation 

(Wisdom et al. 2000), sampling variance must be removed from total variance to obtain 

an estimate of actual spatial and temporal (i.e., process) variance in each vital rate.  
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Because sampling variance was unlikely to be equal across years or across studies, we 

used the variance discounting method of White (2000) to remove sampling variance from 

total variance estimates for Powder River Basin and range-wide data.  In that analysis, 

estimates of variance for binomially-distributed vital rates in each year were estimated 

from the theoretical variance of a proportion (σ2 = pq/n), where p = proportion that 

survived, q = 1 – p, and n = number of sample units included in the analysis. 

Model structure.  We used a two-stage, female-based life-cycle model to 

summarize stage-specific rates of fertility and survival (Figure 1).  We used vital rates for 

each stage to calculate fertility and survival estimates for parameterizing a 2 x 2 stage-

specific population projection model (i.e., Lefkovitch matrix model) based on a pre-

breeding, birth-pulse census and a one-year projection interval, with birds “censused” on 

~1 April just prior to the initiation of nesting.  The two stages are yearlings (YR) and 

older adults (AD).  Stage-specific survival and fecundity values were considered the 

same for all individuals within each stage.  Female sage-grouse commonly breed as 

yearlings, so yearling females were allowed to reproduce in the model. Variables in the 

projection matrix included: 

fyr: fertility of yearlings (no. female juveniles produced per yearling female), 

fad: fertility of adults (no. female juveniles produced per adult female), 

syr: annual survival of yearlings from the start of the breeding season (~1 April) in 

their second calendar year through the start of the breeding season in their third 

calendar year, 

sad: annual survival of adults from the start of the breeding season (~1 April) through 

the start of the breeding season in following calendar year. 
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Vital Rates.  Whenever possible, we used mean vital rates and their associated 

variances from the Powder River Basin (Chapter 4) in the projection model.  However, 

because vital rates vary both temporarily and spatially, a 4-year study is insufficient to 

adequately characterize means and variances.  Moreover, data were not available for all 

vital rates in all years (e.g., juvenile survival, renest success).  Therefore, we also 

summarized year- and site-specific estimates of vital rates from published and 

unpublished literature sources from across the species’ range for comparison (Appendix 

B).  In the range-wide data, estimates based on combined data from several years were 

treated as a single estimate for that study location.  Estimates from the same study 

location in the same year were included only once, even if they appeared in more than 

one publication.  We excluded data that did not use reliable methods for obtaining or 

estimating vital rates and those with sample sizes <10 (Appendix B).  When data from the 

Powder River Basin were unavailable or too sparse to reliably estimate means or 

variances, we used range-wide means, variances, or both.  We also used range-wide data 

to establish upper and lower bounds and to identify appropriate sampling distributions for 

each vital rate. 

Nest initiation rate (INIT1) was defined as the proportion of females in each stage 

(i.e., yearling or adult) that were adequately monitored during the nesting season and 

initiated at least one nest (i.e., laid at least one egg).  Renesting rate (INIT2) is defined as 

the proportion of females whose first nests were unsuccessful that survived, were 

adequately monitored, and initiated a second nesting attempt.  Second renesting rate  

(INIT3) is defined as the proportion of females whose first and second nests were 

unsuccessful that survived, were adequately monitored, and initiated a third nesting 
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attempt.  Although rates of nest initiation and renesting are likely biased low because 

some nests fail before they can be discovered, no method exists to correct this bias. 

Clutch size was defined as the number of female eggs laid in the nest.  On 

average, adults lay ~0.5 eggs per clutch more than yearlings in first nests, and first nests 

(8.3) average ~1.5 eggs per clutch more than renests (Petersen 1980, Schroeder 1997, 

Moynahan 2004, Chapter 4).  Due to a lack of data on third nests, we assumed that clutch 

sizes of third nests (adults only) averaged one egg fewer than second nests.  Data on sex 

ratio at hatch were unavailable.  Therefore, instead of including sex ratio as a separate 

vital rate with unknown mean and variance, we instead assumed an equal ratio of males 

to females at hatch and multiplied clutch size means by 0.5 to generate stage-specific 

estimates of clutch size for female eggs only (CLUTCH1, CLUTCH2, and CLUTCH3). 

Nest success (SUCC1, SUCC2) was defined as the probability of a nest surviving 

from laying through hatching.  We considered a nest successful if ≥1 egg hatched.  We 

used exponentiated estimates of daily survival rates (DSR) of nests to estimate region, 

year, and stage-specific nest success for first and second nesting attempts for each region 

and year in the Powder River Basin (Chapter 4) and then calculated mean values across 

regions and years.  Data from second nesting attempts included one successful third nest 

of one female in 2005.  Yearlings have never been recorded attempting a third nest 

(Appendix B), so third nests were excluded from yearling fertility calculations.  For 

range-wide data, we estimated nest success during incubation by adjusting reported rates 

of apparent nest success using the “quick” method of Johnson and Klett (1985).  

Apparent nest success was defined as the proportion of nests that hatched at least one 

egg.  The “quick” method uses the average age of when nests are found (f) and average 
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age of nests at hatch (h) to calculate an approximate daily nest survival rate (S) as the (h-

f) root of apparent nest success.  Nest success is then calculated as Sh.  Nests of radio-

marked female sage grouse are typically found during the first visit following the start of 

incubation (Schroeder et al. 1999, Chapter 4).  Thus, we estimated the average age at 

which nests were found for each study as one-half the reported monitoring interval, 

where day 1 represented the first day of incubation (i.e., the date of clutch completion).  

Quick estimates of nest success during incubation were then multiplied by estimated nest 

success during laying, based on a daily survival estimate of 0.997 during laying (Chapter 

4) and laying intervals that varied by age and nest attempt (10.5 d and 9 d for yearling 

first nests and renests and 12 d and 10.5 d for adult first nests and renests, respectively). 

Hatchability (HATCH) was defined as the mean proportion of eggs that hatched 

across regions and years (i.e., no. of eggs in all clutches of known size divided by the no. 

of eggs that hatched from all clutches of known size).  For range-wide data, there were no 

published estimates of differences in hatchability of eggs between yearlings and adults, 

between first nests and renests, or between male and female eggs, so we used the same 

value (0.923) in all calculations. 

Chick survival (CHSURV) was defined as the proportion of chicks that survived 

from hatch to 35d based on a combination of night-time spotlight counts and day-time 

flush counts (i.e., apparent chick survival).  We were unable to distinguish between male 

and female chicks, so we assumed that chick survival estimates were representative of 

females.  Males are thought to survive at lower rates than females as juveniles (Swenson 

1986), but data on sex-specific survival of chicks <35 d old are not available.  Chick 
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survival estimates from range-wide data also did not distinguish males from females 

(e.g., Burkepile et al. 2002, Aldridge 2005, Gregg 2006, Gregg et al. 2007, Chapter 4).  

Juvenile survival was defined as the proportion of females that survive from ~35 

days old to the start of the breeding season (~1 April) in their second calendar year.  

Estimates of survival for juveniles produced by yearling vs. adult females were 

unavailable, so we used the same juvenile survival estimates in calculations for both 

stages.  Because the interval length for juvenile survival depends on when the chick 

hatches, we used data on average hatch dates for first and subsequent nesting attempts to 

calculate the approximate interval length required for first nests (9.1 mo [JUVSURV91]) 

and for renests (8.3 mo [JUVSURV83]).  In the Powder River Basin, estimates of juvenile 

survival were for the 6.67-month interval from 10 Sept through ~1 April.  Data on 

juvenile survival from 35 d of age through 10 Sept were unavailable.  Range-wide 

estimates of juvenile survival were only reported for 5-7 month long intervals (Sept-Nov 

through March).  Because most chick mortality occurs prior to 35 d (Burkepile et al. 

2002, Aldridge 2005, Gregg et al. 2007), we assumed that monthly survival rates for 

juveniles from 35 d of age to 10 Sept were similar to those over the fall and winter.   

Fertility and survival calculations.  Stage-specific fertility for yearlings (fyr) was 

calculated as:  

[INIT1YR x FCLUTCH1YR x SUCC1YR x HATCH x CHSURVYR x JUVSURV91] +  

[INIT1YR x (1-SUCC1YR) x INIT2YR x FCLUTCH2YR x SUCC2YR x HATCH x CHSURVYR X 

JUVSURV83]. 

Stage-specific fertility (fyr) for yearlings in the Powder River Basin averaged 0.569.  

Stage-specific fertility for adults (fad) was calculated as:  

[INIT1AD x FCLUTCH1AD x SUCC1AD x HATCH x CHSURVAD x JUVSURV91] +  
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[INIT1AD x (1-SUCC1AD) x INIT2AD x FCLUTCH2AD x SUCC2AD x HATCH x CHSURVAD x 

JUVSURV83] +  

[INIT1AD x (1-SUCC1AD) x INIT2AD x (1-SUCC2AD) x INIT3AD x FCLUTCH3AD x SUCC2AD x HATCH 

x CHSURVAD x JUVSURV83]. 

Stage-specific fertility (fad) for adults in the Powder River Basin averaged 0.846. 

 Yearling survival (syr) was defined as the proportion of yearling (i.e., “second-

year”) females that survived from the start of the breeding season (~ 1 April) in their 

second calendar year (i.e., their first breeding season) to the start of the breeding season 

(~ 1 April) in their third calendar year.  Yearling survival in the Powder River Basin 

averaged 0.639.   

Adult survival (sad) was defined as the proportion of adult (i.e., “after-second-

year”) females that survived from the start of the breeding season (~1 April) to the start 

of the breeding season (~ 1 April) the following year.  Adult survival in the Powder River 

Basin averaged 0.556.  In the range-wide survival data, we excluded estimates from 

studies that estimated annual survival rates from poncho or wing-tagged birds, as those 

types of marks likely increase detectability to predators and bias survival estimates.  We 

was unable to include data from studies that analyzed yearling and adult daily or monthly 

survival rates but failed to report stage-specific survival estimates. 

WNv impact scenarios.  Each scenario required adjusting juvenile, yearling, and 

adult survival rates to account for to WNv-related mortality.  Most chicks reach the 

juvenile stage (i.e., > 35 d old) prior to the onset of WNv transmission season in early 

July (particularly in years with high success of first nests and low renesting rates), so we 

made no adjustments to chick survival estimates.  This results in a conservative estimate 

of the impact of WNv.  Mortality from WNv may reduce chick survival directly, and 
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non-independent chicks and juveniles whose mothers die of WNv may also experience 

higher mortality.  Calculations for each scenario were as follows: 

(1) No impact.  We based estimated means and variances of juvenile survival and annual 

yearling and adult female survival on the Powder River Basin dataset that excluded 

WNv-related mortalities (Chapter 4). 

(2) Observed WNv mortality.  We based estimated means and variances of juvenile 

survival and annual yearling and adult female survival on the Powder River Basin 

dataset that included WNv-related mortalities (Chapter 4).  Juveniles are confirmed to 

have died from WNv (Naugle et al. 2004, Aldridge 2005), but we had too few 

juveniles collared during the WNv season in each year to estimate WNv-related 

mortality.  Because juveniles flock together with yearlings and adults during the 

summer, we assumed they would all experience similar exposure to WNv.  Therefore, 

we used observed reductions in adult and yearling spring-summer survival due to 

WNv (mean 5.3%, range 0.0 - 26.7%) to adjust estimates of juvenile survival for each 

region in each year as follows:  

JUVSURV83adj =  (JUVSURV83(0.12)) (6.67) x ((JUVSURV83(0.12)) (1.63) x (1-WNv mortality rate)) 

JUVSURV91adj =  (JUVSURV91(0.11)) (6.67) x ((JUVSURV91(0.12)) (2.43) x (1-WNv mortality rate)) 

We then calculated a mean and variance for juvenile survival from adjusted estimates. 

(3) Current WNv mortality.  In all remaining scenarios, we based estimated means and 

variances of juvenile, yearling, and adult survival on the Powder River Basin dataset 

that excluded WNv-related mortalities.  We then simulated impacts of WNv using 

empirical data on infection rates, WNv-related mortality rates, and predicted WNv 

transmission events from the Powder River Basin to adjust juvenile, yearling, and 

survival rates in response to WNv mortality.  West Nile virus infection rate is 
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regulated by temperature (Reisen et al. 2006, Zou et al. 2006b), distribution and 

abundance of breeding sites for mosquito vectors (Zou et al. 2006a, b; Doherty 2007), 

and distribution and abundance of infected reservoir and amplifying hosts (Kato et al. 

2008).  To estimate adjustments to survival rates due to WNv, we first examined 

relationships between annual WNv severity predicted from temperature data (Western 

Regional Climate Center, Reno, Nevada, USA) using a degree-day model (Zou et al. 

2006b) and actual reductions in annual survival due to WNv mortality for each of the 

three regions in the Powder River Basin from 2003-2006.  However, these 

relationships were inconsistent (Figure 2a, b), suggesting that temperature is not the 

only predictor of WNv severity in the Powder River Basin (Zou et al. 2006a, Doherty 

2007).  Instead, we randomly selected infection rates from a stretched beta 

distribution (mean = 0.07, SD = 0.0548, minimum = 0.005, maximum = 1.0; Box 8.3 

in Morris and Doak 2002) so that median infection rates matched the midpoint 

(~0.058) of observed annual minimum and maximum rates (Walker et al. 2007b).  

This SD allows most years to have low rates of WNv infection (e.g., median 0.055) 

and mortality (median 0.053).  The relatively low SD produces some years with 

extreme values for infection rate, but data from 10,000 simulations indicate that 

values generally do not exceed ~0.50.  This distribution resulted in a mean simulated 

annual infection rate of 0.069, a median simulated annual infection rate of 0.055 

(range 0.005-0.515), and a conservative distribution of infection rates (Figure 3).  The 

distribution of simulated infection rates contrasts with the distribution of annual 

predicted number of WNv events according to the degree-day model of Zou et al. 

(2006b) and a modified degree-day model based on actual dates of bird mortality 
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(Figure 4).  Mortality due to WNv (M) was calculated from infection rate (I) and 

resistance to WNv-induced disease (R) as: M = I – (I * R), which represents the 

proportion of the population infected minus the proportion infected but resistant.  In 

this scenario, we maintained resistance constant at 0.04, the mean spring 

seroprevalence value measured over three years of study (Walker et al. 2007b). 

(4)  Current WNv mortality with increasing resistance to WNv disease.  We assessed how 

an increase in resistance to WNv-induced disease would change population growth 

rate by calculating changes in the proportion of resistant individuals in the population 

under simulated vital rates and rates of WNv infection and WNv mortality.  Because 

not all birds that are exposed to the virus become infected, we define “resistance” as 

the ability to survive exposure, infection, or both, and we assume the individuals with 

neutralizing antibodies to WNv were at minimum, exposed to the virus.  Under this 

definition, resistant individuals may nonetheless experience sublethal or residual 

effects of WNv infection.  We assumed that resistance to infection and disease was 

heritable and that all female offspring of a resistant female inherited traits that 

conferred resistance (i.e., heritability of resistance = 1).  Seroprevalence data 

indicated that, on average, only 0.04 (range 0.00-0.10) of birds captured in spring had 

survived WNv infection from previous years (Walker et al. 2007b).  Therefore, we 

used 0.04 as our starting value for resistance.  We ran each simulation with 20 

replicates to simulate responses within a reasonable management timeframe of 20 

years, then ran the simulation 1000 times to generate means and standard deviations 

for λ over the 20-year period. 
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(5) Current WNv mortality with resistance and carryover effects.  We assessed how 

residual effects on overwinter survival and sublethal effects on reproductive effort 

might influence population growth rate by calculating changes in the proportion of 

resistant individuals in the population over time and by then reducing overwinter 

survival by 5%, nest initiation by 5% (adults) or 10% (yearlings), renesting rate by 

10% (adults) or 20% (yearlings), and all clutch sizes by ~1 egg (~0.5 female eggs) for 

surviving infected individuals.  We then ran each simulation with 20 replicates (i.e., 

20 years) and ran the simulation 100 times to generate means and SDs for λs over the 

20-year period. 

(6) Elevated WNv mortality (with and without resistance and carryover effects).  We 

estimated changes in population growth for a scenario in which average WNv-related 

mortality increases due to the expansion of CBNG development.  Coal-bed natural 

gas development is increasing the number and distribution of surface water ponds 

within sage-grouse habitat in the Powder River Basin (Zou et al. 2006a), and these 

ponds support breeding populations of the mosquito Culex tarsalis (Doherty 2007), a 

common, highly competent vector of WNv (Goddard et al. 2002, Turell et al. 2005).  

Zou et al. (2006a) estimated that CBNG development increased larval habitat for C. 

tarsalis by ~75% over a 21,000 km2 area between 1999-2004.  Coal-bed natural gas 

ponds likely increase exposure of sage-grouse to WNv in areas that otherwise would 

show low infection rates (Chapter 3, Walker et al. 2007b).  In 2003, WNv mortality in 

the Spotted Horse region, an area with abundant CBNG ponds (Doherty 2007), was 

much higher (~75%) than in undeveloped areas near Decker (0%) (Walker et al. 

2004), even though high summer temperatures predicted high rates of WNv 
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transmission throughout the Powder River Basin (Zou et al. 2006b).  Furthermore, 

five of six WNv-positive mortalities at that time occurred next to CBNG ponds.  In 

2004, a year of relatively low and later WNv mortality, two of three WNv-positive 

mortalities in the Decker region occurred in alfalfa fields irrigated with water from 

CBNG development (Table 7, Chapter 4).  Although mosquito control has been 

recommended for CBNG ponds (Doherty 2007, Walker et al. 2007b), there is no 

guarantee that control efforts will be consistently and appropriately implemented on 

all public and private lands.  For this reason, we simulated elevated mortality due to 

CBNG by increasing the mean of the beta distribution used to estimate WNv 

infection rates (mean = 0.10, SD = 0.0548).  This resulted in an average simulated 

annual WNv infection rate of 0.100 (range 0.007-0.380), a median simulated annual 

infection rate of 0.090, and average simulated annual WNv mortality of 0.096 (range 

0.007-0.365).  Although other, more complex CNBG scenarios are possible, an 

increase in average WNv-related mortality to ~10% throughout the Powder River 

Basin is plausible, and possibly too conservative, considering the established 

mechanistic links between CBNG, mosquitos, and WNv (Zou et al. 2006a, Doherty 

2007, Walker et al. 2007b), the proximity of previous WNv-positive mortalities to 

CBNG water, the rapid spread and large scale of development (Walker et al. 2007b), 

and documented population declines in areas with CBNG development (Walker et al. 

2004, 2007a). 
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Results 

Vital rates and their importance in population growth.  Vital rate means and 

process variance from the Powder River Basin were similar to range-wide values, with a 

few exceptions (Appendix B).  Results of life-stage simulation analysis suggested that 

different vital rates were important for λ than those based on analytical elasticity values 

(Figure 5).  Mean elasticity values suggested that rates of nest initiation, clutch size, and 

hatchability had an equally important influence on λ as nest success, and chick, juvenile, 

yearling, and adult survival.  However, because nest initiation, clutch size, and 

hatchability showed little variation in the Powder River Basin, life-stage simulation 

analysis identified other vital rates with greater potential to influence λ (Figure 6).  Vital 

rates most important for population growth identified using life-stage simulation analysis 

included nest success, chick survival, juvenile survival, yearling survival, and adult 

survival, in that order (Figures 5, 6).  Because vital rates require different management 

strategies, we also grouped vital rates subject to similar management actions (Figure 5).   

life-stage simulation analysis results for the Powder River Basin were similar to those 

from range-wide data (Figure 6). 

WNv impact scenarios.  The addition of WNv mortality resulted in a reduction in 

average estimated λ of -0.059 to -0.076 under scenarios with current mortality rates when 

vital rates were correlated and from -0.075 to -0.103 when vital rates were uncorrelated 

(Table 1).  For the most part, excluding correlations among vital rates had only minor 

effects on estimates of how WNv influences λ (Table 1) and did not change our overall 

finding of substantially lower values for λ due to WNv mortality.  Reductions in λ under 

scenarios with observed WNv mortality versus simulated WNv mortality were the same 
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(-0.73), suggesting that the distribution we selected for simulating infection rates was 

representative of actual WNv mortality.  Elevated levels of WNv mortality, as expected, 

resulted in substantially larger decreases in estimated λ, ranging from -0.085 to -0.119 for 

scenarios with correlated vital rates, and -0.97 to -0.115 to scenarios with uncorrelated 

vital rates.  However, substantial annual variation in vital rates resulted in wide variation 

in simulated values for λ in all scenarios (Figure 7).  Thus, population growth rates can 

vary substantially from year to year.   

Resistance to WNv disease was projected to increase only slightly during the 20-

year period we examined.  Low WNv infection rates, and consequently, low WNv 

mortality in most years, resulted in too few individuals exposed to the virus to quickly 

select for increased resistance.  Resistance was projected to increase from 0.04 (our 

starting value) to 0.151 (range 0.082 - 0.374) over 20 years under current estimates of 

infection rate (Figure 8 a, b) and to 0.245 (range 0.125 - 0.514) under scenarios with 

elevated mortality.  Increased resistance reduced annual WNv mortality rates from an 

average of 0.067 to 0.060 after 20 years (Figure 9) under current infection rates and from 

0.097 to 0.075 under elevated infection rates.  Increased resistance also reduced average 

declines in λ due to WNv (Table 1). 

Carryover effects on fall-winter survival and subsequent reproductive effort 

slightly eroded gains in resistance to WNv disease (Figure 8 a ,b) because infected 

individuals survived at lower rates and produced fewer offspring.  Resistance estimates at 

year 20 in the presence of carryover effects was 0.126 (range 0.074 - 0.253) under current 

infection rates and 0.198 (range 0.104 - 0.391) under elevated infection rates.  However, 

on average, carryover effects influenced < 1% of all individuals in the population in any 
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given year over the 20-year period we examined (Figure 10).  Carryover effects were 

projected to have only minor impacts on λ, and resulted in only slightly greater declines 

in λ (-0.01 to -0.02) than resistance-only scenarios (Table 1). 

 

Discussion 

West Nile virus was a persistent new source of mortality in greater sage-grouse in 

the Powder River Basin that has the potential to reduce annual population growth and 

cause severe local population declines during outbreaks.  Mortality from WNv resulted in 

a reduction in λ, regardless of whether impacts were based on observed or simulated 

WNv mortality rates.  However, in any given year, declines in λ caused by WNv can be 

masked by naturally large annual variation in vital rates.  For that reason, changes in lek 

counts are likely to detect only severe population reductions due to WNv (Walker et al. 

2004), and monitoring impacts of low to moderate levels of WNv mortality on 

populations will require tracking and testing of radio-marked individuals during the 

transmission season (Walker et al. 2004).  Without monitoring radio-marked individuals, 

impacts of WNv mortality, and even severe outbreaks, may go undetected and lead to the 

misperception among managers and policy-makers that WNv is no longer an issue for 

greater sage-grouse in the Powder River Basin.  Moreover, in the absence of radio-

marked birds, population declines due to severe or persistent WNv mortality may be 

incorrectly attributed to other potential stressors (e.g., weather, range management) and 

lead to inappropriate policy and management decisions. 

In our study, mortalities from WNv were an order of magnitude more common 

than power line collisions, vehicle collisions, or harvest (Chapter 4).  However, 
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occasional severe local outbreaks of WNv throughout the species’ range appear to have 

impacts of a magnitude similar to organophosphate pesticide poisoning (Blus et al. 1989) 

and intensive, active energy development (Holloran 2005, Walker et al. 2007a).  Whether 

populations heavily impacted by WNv (e.g., Spotted Horse, Wyoming) (Walker et al. 

2004) can recover to previous levels will not be known for several years. 

Resistance to WNv disease in simulations increased relatively slowly over time, 

in part because annual infection rates were low in most areas in most years.  Estimating 

change in resistance to disease over time is complicated by several factors, including the 

potential for competition among viral strains (Davis et al. 2005) and rapid selection for 

changes in virulence (Davis et al. 2004).  Paradoxically, the phenomenon that would 

promote increased resistance – high rates of WNv infection – can also lead to large 

reductions in local population size, which in some cases, may be problematic for 

population persistence.  A parallel is found in insects in agricultural systems, in which 

only massive mortality events (e.g., pesticide spraying) that select for resistant 

individuals are capable of promoting the rapid spread of pesticide resistance.  Even so, 

low rates of WNv transmission and infection in undeveloped sage-grouse habitats have 

almost certainly prevented more severe outbreaks and local extirpations.  Naturally high 

variation in population growth rates in this species may allow populations to rebound 

quickly from impacts of WNv if consecutive years have high survival, high productivity, 

or both as seen in portions of the Powder River Basin from 2003-2006.  The impact of 

WNv during a string of low-survival or low-productivity years may be severe.   

Carryover effects are unlikely to substantially influence population growth except 

under conditions of high infection rates or high levels of resistance.  Because carryover 
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effects were simulated based on best guess estimates rather than empirical data, they may 

or may not represent realistic values.  Even so, it appears that so few infected individuals 

typically survive infection, such that resistant infected birds constitute only a small 

fraction of the fall or spring population in any given year.  Carryover effects of WNv 

infection may be more important in areas with high infection rates (i.e., high exposure) 

caused by differences in land use (e.g., irrigated agriculture, CBNG development; Zou et 

al. 2006 a, Doherty 2007, Walker 2007b) or they may become more important several 

decades from now if resistance to WNv increases within and among sage-grouse 

populations. 

Our model for the Powder River Basin may over- or underestimate impacts of 

WNv on populations in the Powder River Basin.  Sage-grouse mortalities from WNv 

have occurred as early as 14 June in the Powder River Basin, which overlaps with chick 

survival from renests (Chapter 4).  If mortality due to WNv commonly occurs among 

late-hatched chicks <35 d of age, among brooding females, or both, the scenarios 

presented may have substantially underestimated WNv impacts.  Positive or negative 

density-dependent effects not included in our model could also influence impacts of WNv 

on population growth.  In sage-grouse, the potential for negative density-dependent 

effects on population growth has been recognized (Connelly et al. 2003, LaMontagne et 

al. 2002, Sedinger and Rotella 2005), but no empirical evidence exists to evaluate 

whether the phenomenon occurs.  Negative density-dependence may allow populations to 

recover more quickly from annual effects of WNv mortality.  Positive density-

dependence may also be an issue.  For example, survival and population growth may be 

inhibited if severe WNv outbreaks greatly reduce local abundance, or if population size is 
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already reduced by other stressors (e.g., habitat loss and fragmentation, fire, weeds; 

Connelly et al. 2004).  Positive density-dependent effects may occur if smaller flock sizes 

result in reduced overwinter survival (Courchamp et al. 1999, Stephens and Sutherland 

1999), or if reduced lek size due to WNv mortality is associated with reduced female 

attendance (Kokko 1997), increased emigration, or delayed or reduced reproductive 

effort.  Considering both forms density-dependence may be valuable in viability analyses 

for specific populations of known population size and carrying capacity.  Impacts of 

WNv will likely be less severe for sage-grouse populations that summer at higher 

elevations than those in the Powder River Basin (e.g., southwestern Montana, extreme 

northwestern Colorado, western Wyoming, etc.).  Lower temperatures at high elevations 

shorten periods of mosquito activity, increase larval development times, and reduce rates 

of virus amplification (i.e., longer extrinsic incubation periods) (Reisen et al. 2006).  

Managing WNv impacts.  Potential management strategies to reduce impacts of 

WNv in the Powder River Basin and elsewhere are limited.  First, we know too little 

about which hosts initiate and maintain WNv transmission cycles (Kato et al. 2008).  

Even when key hosts have been identified (e.g., American robin [Turdus migratorius]; 

Kilpatrick et al. 2006), they typically cannot be managed at appropriates scales within 

sage-grouse habitat.  Thus, most management for WNv involves attempts to reduce 

mosquito populations.  Man-made water sources known to support breeding Culex 

tarsalis in sage-grouse habitat include overflowing stock tanks, stock ponds (especially 

seep and overflow areas and muddy shorelines with hoof prints), irrigated agricultural 

fields, and ponds constructed for CBNG development (Zou et al. 2006a, Doherty 2007).  

New water sources can be constructed in ways that discourage breeding mosquitos (e.g., 
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steep-sided bare edges, restricted livestock access points, overbuilding ponds to prevent 

backup of water into standing vegetation, fluctuating water levels, overflow prevention) 

(Doherty 2007).  Mosquito populations may also be managed using biological controls 

such as mosquitofish [Gambusia sp.] or native fish species, using biological or chemical 

larvicides, or by spraying for adults, but only if such methods are consistently and 

appropriately implemented by qualified mosquito control personnel (Doherty 2007).  

Mosquito control programs appear effective for reducing WNv risk in other habitats 

(Gubler et al. 2000, Reisen and Brault 2007) but the costs and benefits of control need to 

be weighed against potential detrimental effects of widespread spraying (Marra et al. 

2004).  Requiring infectious disease impact statements as part of planned, large-scale 

changes in land use (e.g., energy development, grazing plans) (McSweegan 1996) may 

also improve coordinated management of WNv risk in sage-grouse summer habitat. 

Analytical elasticity and life-stage simulation analysis suggest that several 

different vital rates could respond to improved range and land management to offset 

impacts of WNv on λ.  Increasing forb abundance during the pre-laying period is 

anticipated to increase female nutritional condition and renesting rate (Dunbar et al. 2005, 

Gregg et al. 2006).  Similarly, increasing grass and sagebrush height is likely to improve 

nest success.  Greater sage-grouse females clearly prefer nests sites with taller sagebrush 

and grass (Hagen et al. 2007), and taller grass height around nests has been documented 

to increase nest success in several different parts of the species’ range (Holloran and 

Anderson 2005, Rebholz 2007).  Chick survival may be increased by increasing forb and 

grass cover (Dahlgren et al. 2006, Hagen et al. 2007).  Although broods use areas with 

less sagebrush than is available, decreasing sagebrush height or cover via spraying, 
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burning, or mowing would likely decrease nest success and overwinter survival (Swenson 

et al. 1987, Leonard et al. 2000, Smith et al. 2005) and is not recommended.  Increasing 

the size and extent of undeveloped sagebrush landscapes and the amount of tall sagebrush 

cover would likely simultaneously increase juvenile, yearling, and adult survival.  

Although no studies have clearly linked female survival to landscape-scale habitat 

conditions, wintering birds prefer areas with large expanses of sagebrush cover and areas 

away from energy development (Homer et al. 1993, Doherty et al. 2008) and breeding 

populations are more likely to persist in areas with higher proportions of sagebrush 

habitat within 6.4 km of leks (Walker et al. 2007a).  Selection for wintering areas with 

greater exposed sagebrush cover and taller sagebrush (Connelly et al. 2000) also suggests 

a benefit of increasing mature sagebrush cover, particularly during severe winters 

(Moynahan et al. 2006).  Removing roads and power lines in sage-grouse habitat would 

decrease mortality from power line collisions, vehicle collisions, and avian predators that 

nest and hunt from power lines (Knight and Kawashima 1993, Steenhof et al. 1993). 

The emergence of WNv as a new stressor on greater sage-grouse populations 

highlights the current impasse in sage-grouse management and conservation.  Historic 

stressors such as fires and invasive weeds continue to cause habitat loss and 

fragmentation, and new stressors such as West Nile virus and rapidly increasing energy 

development are known to cause population declines, yet potential solutions for offsetting 

those losses conflict with livestock grazing and energy production, two of the most 

culturally and economically important land uses within sage-grouse habitat. 
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Table 1.  Estimated average reduction in annual population growth (i.e., finite rate of 

increase, λ) under various West Nile virus (WNv) impact scenarios relative to no WNv 

mortality based on life-stage simulation analysis using vital rates for female greater sage-

grouse in the Powder River Basin, Montana and Wyoming, 2003-2006.  Results are based 

on 1000 life-stage simulation analysis simulation replicates.  Reductions in λ due to WNv 

mortality may be masked in any given year by annual fluctuations in vital rates influential 

for population growth (e.g., nest success, chick survival, juvenile survival, survival of 

breeding-aged females).  

  Correlated  Uncorrelated 

Scenario  Δλ  Δλ 

No WNv  0.000  0.000 

Observed WNv  -0.073  -0.103 

Current WNv  -0.073  -0.075 

Current WNv - resistance  -0.059  -0.084 

Current WNv - resistance and carryover effects  -0.076  -0.088 

Elevated WNv  -0.119  -0.115 

Elevated WNv - resistance  -0.085  -0.097 

Elevated WNv - resistance and carryover effects  -0.097  -0.110 
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Figure 1. Life-cycle and stage-based projection matrix for a 2-stage, pre-breeding, birth-

pulse model for female greater sage-grouse in the Powder River Basin, Montana and 

Wyoming, USA.  Stage 1 consists of yearlings (YR) and stage 2 consists of older adults 

(AD). 

 

Figure 2.  Relationships between predicted no. days with West Nile virus transmission 

events based on a degree-day model (Zou et al. 2006b) and absolute decreases in (a) 

spring-summer survival and (b) annual survival due to WNv-related mortality in three 

regions of the Powder River Basin, Montana and Wyoming, USA, 2003-2006. 

 

Figure 3.  An example of the distribution of simulated WNv infection rates for female 

greater sage-grouse in the Powder River Basin, Montana and Wyoming, USA.  Infection 

rates were simulated using a stretched beta distribution with mean = 0.07, SD = 0.055, 

min = 0.005, and max = 1.0.  Median infection rate from this distribution = 0.055. 

 

Figure 4.  An example of the predicted distribution of the annual number of WNv 

transmission days based on temperature data from Sheridan Field Station, WY (station 

no. 488160) with (a) degree-day criteria based on a 14.3º temperature threshold for virus 

amplification within Culex tarsalis and 109 degree-day extrinsic incubation period for 

median virus transmission (Reisen et al. 2006, Zou et al. 2006b) and (b) degree-day 

criteria modified to match observed WNv mortalities in sage-grouse near Decker, MT. 
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Figure 5.  Variance in population growth (i.e., finite rate of increase, λ) based on (a) mean 

elasticity values, (b) coefficients of determination in life-stage simulation analysis for 

each vital rate, and (c) for vital rates affected by different management strategies.  All 

analyses are based on vital rates from the Powder River Basin, Montana and Wyoming, 

USA, 2003-2006.  Simulated data included correlations between vital rates.  Values in (a) 

are mean elasticity values standardized to 1.  Values in (b) and (c) are coefficients of 

determination (r2) standardized to 1.  YR = yearling, AD = adult.  Vital rates with a “1” 

refer to first nests, “2” refers to renests.  See text for vital rate definitions. 

 

Figure 6.  Annual population growth (i.e., finite rate of increase, λ) regressed on (a, b) 

yearling nest success (first nests), (c, d) adult nest success (first nests), (e, f) survival of 

chicks from yearling females, (g, h) survival of chicks from adult females, (i, j) survival 

of juveniles from first nests, (k, l) survival of juveniles from second nests, (m, n) annual 

yearling survival, and (o, p) annual adult survival for female greater sage-grouse in the 

Powder River Basin, Montana and Wyoming, USA from 2003-2006 and for range-wide 

values.  Relationships are based on 1000 replicates from life-stage simulation analysis.  

The left panel illustrates relationships based on Powder River Basin data; the right panel 

illustrates relationships based on range-wide data.  All simulations included correlations 

between vital rates.  Range-wide values in (f) and (h) are based on the same mean and 

variance. 

 

Figure 7.  Distribution of simulated annual population growth rates (i.e., finite rate of 

increase, λ) for female greater sage-grouse based on life-stage simulation analysis using 
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data on vital rates from the Powder River Basin, Montana and Wyoming, USA, 2003-

2006, assuming no WNv impacts.  Values are based on 1,000 simulation replicates. 

 

Figure 8.  Projected change in resistance to WNv disease of greater sage-grouse females 

(at the start of the breeding season) over a 20-year period based on simulated vital rates 

from the Powder River Basin, 2003-2006 using life-stage simulation analysis.  Error bars 

represent 1 SD.  All estimates are based on 1000 simulation replicates with an initial 

value for resistance of 0.04 at year 1 (i.e., 4% of the initial population resistant to WNv 

disease).  Scenarios presented are for: (a) current WNv mortality with (black squares) and 

without (hollow squares) carryover effects and (b) elevated WNv mortality with (black 

squares) and without (hollow squares) carryover effects.  Values are offset for clarity. 

 

Figure 9.  Distribution of WNv-related mortality among female greater sage-grouse (a) in 

the 1st year of the simulation and (b) in the 20th year of the simulation with increasing 

resistance over time based on simulated infection rates from the Powder River Basin, 

2003-2006, assuming no carryover effects of WNv infection.  Values are based on 1,000 

simulation replicates. 

 

Figure 10.  Projected change in the proportion of WNv-infected resistant sage-grouse in 

the spring population (i.e., at the start of the breeding season) over a 20-year period based 

on simulated vital rates from the Powder River Basin, 2003-2006 using life-stage 

simulation analysis.  Error bars represent 1 SD.  Estimates are based on 1000 simulation 

replicates with an initial value for resistance of 0.04 at year 1. 
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Figure 2. 
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Figure 3.   
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Figure 4.   
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Figure 5.   
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Figure 6.   

a  Powder River Basin  b  Range-wide 
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Figure 6 (cont.).   

g  Powder River Basin  h  Range-wide 
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Figure 6 (cont.).   

m  Powder River Basin  n  Range-wide 
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Figure 6 (cont.).   

s  Powder River Basin  t  Range-wide 
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Figure 7.   

0

20

40

60

80

100

120

140

0.
50

0.
60

0.
70

0.
80

0.
90

1.
00

1.
10

1.
20

1.
30

1.
40

1.
50

1.
60

1.
70

1.
80

1.
90

2.
00

2.
10

2.
20

2.
30

2.
40

2.
50

2.
60

2.
70

2.
80

2.
90

3.
00

Population growth (lambda)

N
o.

 re
pl

ic
at

es
 

 

 209



Figure 8. 

a Current WNv infection rates 
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Figure 9. 

a   Year 1   b   Year 1 
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Figure 10. 
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Appendix A.  Correlation structure 

 

Incorporating correlation structure is important for generating realistic 

combinations of vital rates for simulations that are representative of typical values for the 

population of interest (Mills and Lindberg 1999, Wisdom et al. 2000, Morris and Doak 

2002).  We assigned pairs of vital rates a correlation coefficient of none (0.00), low 

(0.25), moderate (0.50), or high (0.75) based on whether published data indicated that 

both vital rates were regulated by the same biological mechanism(s).  We also examined 

correlation coefficients between vital rates in the Powder River Basin and range-wide 

vital-rate data to check for evidence for or against hypothesized correlations.  Below are 

the biological justifications for each correlation. 

Reproductive effort should be influenced by female nutritional condition during 

the pre-laying period.  Yearling and adults occur in mixed flocks during the winter and 

early spring, so nutritional condition should be similar between stages, and initiation rates 

of yearlings and adults should be moderately correlated.  Females may also adjust their 

reproductive effort if environmental cues such as residual grass height, winter and spring 

precipitation, or early spring forb abundance are reliable indicators of nest success or 

chick survival.  Years in which reproductive effort is high suggests that rates of nest 

initiation and renesting should be at least weakly positively correlated as well.  Renesting 

rates of yearlings and adults were moderately, positively correlated both in the Powder 

River Basin and range-wide.  Clutch size is also a form of reproductive effort, and should 

show moderate, positive correlations among stages.  The correlation should be weakly 

positive across nesting attempts because clutch sizes of renests vary more than those of 
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first nests.  We also estimated weak positive correlations between clutch size and nest 

initiation and renesting rates within each stage and nesting attempt (i.e., renesting rates of 

yearlings weakly positively correlated with renest clutch sizes of yearlings). 

Both yearling and adult nest success are strongly influenced by predator 

abundance (Schroeder et al. 1999), and yearlings and adults use the same habitats for 

nesting and initiate both first nests and renests at about the same time (Chapter 4).  

Yearling and adult nest success were moderately correlated (r  = 0.654) both in the range-

wide data and in the Powder River Basin data (0.704), so these were estimated to have at 

least a moderate correlation (0.50).  The same logic applies to success of renesting 

attempts.  We estimated a weak positive correlation between first nest success and chick 

survival because both may benefit from increased understory growth and cover (Hagen et 

al. 2007).  In the Powder River Basin, years with higher nest success tracked years with 

higher brood success (Chapter 4).   

Survival of chicks is regulated by availability of forbs and insects and understory 

cover, so chick survival of yearling and adult chicks should show at least a moderate 

positive correlation.  Survival of juveniles from first nests and renests is, in essence, the 

same vital rate, so we assigned it a correlation of 0.9.  Juvenile survival, yearling 

survival, and adult survival are all influenced by the same environmental conditions (e.g., 

snowstorms), parasite communities, and predator communities and should show at least a 

weak positive correlation.  No negative correlations were identified that had a clear 

biological basis.   

The estimated correlation matrix among variables used in all analyses along with 

variable definitions are shown below.   
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Variablesa

 IY1 IA1 IY2 IA2 IA3 CY1 CY2 CA1 CA2 CA3 NY1 NA1 NY2 NA2 H SCY SCA SJ83 SJ91 SY SA

IY1 1 0.50 0.25 0.25 0 0.25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

IA1 0.50 1 0.25 0.25 0 0 0 0.25 0 0 0 0 0 0 0 0 0 0 0 0 0 

IY2 0.25 0.25 1 0.50 0.25 0 0.25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

IA2 0.25 0.25 0.50 1 0.50 0 0 0 0.25 0 0 0 0 0 0 0 0 0 0 0 0 

IA3 0 0 0.25 0.50 1 0 0 0 0 0.25 0 0 0 0 0 0 0 0 0 0 0 

CY1 0.25 0 0 0 0 1 0.25 0.50 0 0 0 0 0 0 0 0 0 0 0 0 0 

CY2 0 0 0.25 0 0 0.25 1 0.25 0.25 0 0 0 0 0 0 0 0 0 0 0 0 

CA1 0 0.25 0 0 0 0.50 0.25 1 0.25 0 0 0 0 0 0 0 0 0 0 0 0 

CA2 0 0 0 0.25 0 0 0.25 0.25 1 0 0 0 0 0 0 0 0 0 0 0 0 

CA3 0 0 0 0 0.25 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

NY1 0 0 0 0 0 0 0 0 0 0 1 0.50 0.25 0.25 0 0.25 0.25 0 0 0 0 

NA1 0 0 0 0 0 0 0 0 0 0 0.50 1 0.25 0.25 0 0.25 0.25 0 0 0 0 

NY2 0 0 0 0 0 0 0 0 0 0 0.25 0.25 1 0.50 0 0 0 0 0 0 0 

NA2 0 0 0 0 0 0 0 0 0 0 0.25 0.25 0.50 1 0 0 0 0 0 0 0 
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 IY1 IA1 IY2 IA2 IA3 CY1 CY2 CA1 CA2 CA3 NY1 NA1 NY2 NA2 H SCY SCA SJ83 SJ91 SY SA  

H 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

SCY 0 0 0 0 0 0 0 0 0 0 0.25 0.25 0 0 0 1 0.50 0 0 0 0 

SCA 0 0 0 0 0 0 0 0 0 0 0.25 0.25 0 0 0 0.50 1 0 0 0 0 

SJ83 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0.9 0.25 0.25 

SJ91 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.9 1 0.25 0.25 

SY 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.25 0.25 1 0.25 

SA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.25 0.25 0.25 1 

a Variables include.  IY1 = nest initiation rate of yearlings; IA1 = nest initiation rate of adults; IY2 = renesting rate of yearlings; IA2 = 

renesting rate of adults; IA3 = second renesting rate of adults; CY1 = clutch size (female eggs) of yearling first nests; CY2 = clutch size 

(female eggs) of yearling renests; CA1 = clutch size (female eggs) of adult first nests; CA2 = clutch size (female eggs) of adult renests; 

CA3 = clutch size (female eggs) of adult second renests; NY1 = nest success of yearling first nests; NA1 = nest success of adult first 

nests; NY2 = nest success of yearling renests; NA2 = nest success of adult renests (and second nests); H = hatching success; SCY = 

survival of chicks from yearling females from hatch to 35 d; SCA = survival of chicks from adult females from hatch to 35 d; SJ83 = 

survival of juveniles from 35 d of age to 10 September for renests; SJ91 = survival of juveniles from 35 d of age to 10 September for 

first nests; SY = annual survival of yearlings; SA = annual survival of adults.
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Appendix B.  Vital rate summary 

  Powder River Basin  Range-wide 

Vital Ratea  Mean Varianceb  Mean Varianceb

INITYR1  0.982 0.0003  0.829 0.0166 

INITAD1  0.990 0.0001  0.930 0.0038 

INITYR2  0.151 0.0284  0.148 0.0368 

INITAD2  0.460 0.0681  0.395 0.0599 

INITAD3  0.042 0.0021  0.074 0.0051 

FCLUTCHYR1  3.74 0.0880  3.81 0.118 

FCLUTCHYR2  2.98 0.1460  3.29 0.316 

FCLUTCHAD1  4.10 0.0860  4.16 0.040 

FCLUTCHAD2  3.19 0.1930  3.52 0.200 

FCLUTCHAD3  2.69 0.1500  3.02 0.200c

SUCCYR1  0.453 0.0226  0.481 0.0268 

SUCCAD1  0.555 0.0284  0.569 0.0183 

SUCCYR2  0.521 0.1739  0.540 0.1309 

SUCCAD2  0.618 0.0958  0.553 0.0623 

HATCH  0.923 0.0005  0.921 0.0018 

CHSURVYR  0.488 0.0274  0.391d 0.0084d

CHSURVAD  0.456 0.0033  0.391d 0.0084d

JUVSURV83  0.776 0.0154e  0.799 0.0154 

JUVSURV91  0.757 0.0177e  0.782 0.0177 

SURVYR  0.639 0.0239  0.684 0.0182 
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SURVAD  0.556 0.0082  0.582 0.0050 

a Variables defined as: INITYR1 = nest initiation rate of yearlings; INITAD1 = nest 

initiation rate of adults; INITYR2 = renesting rate of yearlings; INITAD2 = renesting rate of 

adults; INITAD3 = second renesting rate of adults; FCLUTCHYR1 = clutch size (female 

eggs) of yearling first nests; FCLUTCHYR2 = clutch size (female eggs) of yearling 

renests; FCLUTCHAD1 = clutch size (female eggs) of adult first nests; FCLUTCHAD2 = 

clutch size (female eggs) of adult renests; FCLUTCHAD3 = clutch size (female eggs) of 

adult second renests; SUCCYR1 = nest success of yearling first nests; SUCCAD1 = nest 

success of adult first nests; SUCCYR2 = nest success of yearling renests; SUCCAD2 = nest 

success of adult renests (and second nests); HATCH = hatching success; CHSURVYR = 

survival of chicks from yearling females from hatch to 35 d; CHSURVAD = survival of 

chicks from adult females from hatch to 35 d; JUVSURV83 = survival of juveniles from 

35 d of age to 10 September for renests; JUVSURV91 = survival of juveniles from 35 d of 

age to 10 September for first nests; SURVYR = annual survival of yearlings; SURVAD = 

annual survival of adults. 

b Process variance estimated using the method of White (2000).   

c Process variance for clutch size of second renests could not be estimated from range-

wide data, so the value for clutch size of renests was used instead. 

d Mean and process variance for chick survival of yearling and adult females were the 

same in range-wide data because most previous publications did not present chick 

survival estimates separately for each stage. 

e Process variance for juvenile survival could not be estimated from Powder River Basin 

data, so values represent raw variance estimates from range-wide data. 
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