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ABSTRACT OF THESIS 
 

Binary classification tree models were used to create predictive geospatial maps 

of canopy mortality in burned areas of northwest Wyoming.  Canopy mortality 

represented a measure of burn severity that could be easily detected using overhead 

sensors, is quantifiable, and important for fire and resource managers to document.  Field 

estimates and digital orthophotography were used to collect 694 observations of percent 

mortality, which were used as model training data.  A suite of Landsat (TM and ETM+) 

indices widely used for burn severity mapping were employed as predictor variables to 

determine the best model combinations. Additionally, ancillary geospatial data from pre-

fire images, digital elevation models, vegetation maps, drought indices, and fire locations 

were also used.    

According to results from an array of spatial model comparisons and independent 

tests using new observations, it is possible to produce reasonably accurate maps of three 

canopy mortality categories in burned areas.  These have applications for vegetation and 

fuels management, hydrologic assessments, and wildlife habitat conservation.  Photo- and 

field-based canopy mortality estimates performed comparably in model development.  

The 80-100% canopy mortality category was most accurately mapped, followed by the 0-

20% class.  The middle category (25-75% mortality) was poorly predicted.     

Three spatial resolutions of model development were compared, including .07, 1, 

and 5 hectare mortality estimate areas with identical focal mean aggregations for raster 

data layers.  The most accurate results came from the .07 hectare scale analysis, using the 

original 30 meter pixel resolution Landsat TM and ETM+ raster image products.  A 

relative change detection index (the relative differenced Normalized Burn Ratio) 
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performed better at this resolution than an absolute index (the differenced Normalized 

Burn Ratio).  The coarser resolution analyses were hampered by overgeneralization, 

misclassifications along patch boundaries, and unbalanced proportions of classes in the 

training data.  At the 1 and 5 hectare resolutions, mapping of the middle mortality 

category was further compromised because it was composed of a combination of adjacent 

burned patches rather than a forest with some trees killed and others remaining.    

 While Landsat TM and ETM+ products can be used to map some distributional 

patterns of canopy mortality in burned areas, such as those resulting from crown fire, the 

smaller-scale heterogeneity of mixed lethal burns is not adequately captured.  Map users 

must be aware of this limitation, in order to avoid misconceptions about the true nature of 

fire disturbances.   
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CHAPTER 1:  INTRODUCTION 
 

Preface 
 

Wildland fire effects mapping using remote sensing has become a standard 

practice for large fires on federally managed land (Miller and Yool 2002, Lentile et al 

2006, Kolden and Weisberg 2007).  Landsat-5 TM and Landsat-7 ETM+ imagery has 

become the most common source for burn severity assessments based on the Normalized 

Burn Ratio (NBR) (Hudak et al 2004b).  As more and larger fires are occurring in the 

Rocky Mountains West (Westerling et al 2006), land managers and wildland fire 

researchers must rely on remote sensing to collect fire effects data (van Wagtendonk et al 

2004).  It is necessary to understand how burn severity maps made using remote sensing 

data reflect actual fire effects on the ground (Hudak 2006, Thode 2006).  Both thematic 

correctness and positional accuracy in geographic space must be considered.  Armed with 

knowledge about the capabilities and limitations of mapping fire effects from satellite-

based sensors, more informed assessments can be made from these maps, and additional 

geographic analyses can be applied as appropriate.  

The objectives of this study were twofold.  First, percent canopy mortality in 

burned forests was investigated to see whether it can be used as a quantitative and 

consistent index of burn severity, detectable using remote sensing.  Second, it explored 

the relationships between spatial resolution, fire behavior, and patch heterogeneity in 

remote sensing of fire effects.    

Several Landsat (TM and ETM+) burn severity indices, as well as additional geo-

spatial data including forest type and topography were evaluated as predictor variables 

for modeling canopy mortality.  Predictive geospatial models were developed using 
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binary classification trees, and used to generate map surfaces.  As part of this 

investigation, Chapter 2 compares two methods for obtaining geo-referenced 

observations of percent canopy mortality for use in model development, ground estimates 

and remote estimates using digital orthophotography.  In addition, three classification 

systems, with two, three, and five mortality categories respectively, were modeled to 

indicate the degree of map precision attainable.  This chapter demonstrates model utility 

for new observations (such as different fires) using accuracy assessments with 

independent data.     

Chapter 3 addresses the second research objective.  It explores the performance of 

three spatial resolutions (.07, 1, and 5 hectares) for canopy mortality mapping using 

classification tree models.  The benefits and drawbacks of these spatial aggregations are 

explored in the context of model accuracy, fire behavior processes, and associated 

patterns of effects.  Spatial resolution limits the discrimination of surface patterns 

depending on their size, making finer-scale heterogeneity in fire effects difficult to 

observe (Rocca 2004, Key 2006, Lentile 2006). However spatial aggregation helps to 

reduce positional and misregistration errors that also degrade accuracy (Townshend et al 

1992, Goodchild 1994).   Chapter 3 uses classification tree models based on a range of 

spatial resolutions to show how these tradeoffs affect detection of canopy mortality.   

Model accuracy assessments indicate a fire behavior threshold beyond which patterns of 

fire effects cannot be adequately detected using Landsat Remote Sensing. 

Literature Review 

Burn severity mapping studies forge together concepts and techniques from 

several disciplines including Remote Sensing, Fire Science, Forest Ecology, Geography, 
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and Statistics.  In order to understand how mapping of fire effects is possible, and how 

these maps reflect fire’s disturbance to the landscape, it is necessary to understand the 

state of scientific knowledge in these areas.  The following literature review provides 

such context for several topics relevant to this thesis research.    

Remote Assessments of Burn Severity 

Beginning in the mid 1980’s, remote sensing using multi-spectral satellite 

imagery technology greatly facilitated studies of fire disturbances (e.g. Jakubauskas et al 

1990, Turner and Romme 1994).  Early satellite-based fire studies showed that remote 

sensing was well suited to mapping fire scars and detecting different levels of damage to 

vegetation and soils (White et al 1996).  These studies also demonstrated more spatial 

heterogeneity in fire effects than was previously thought to exist (Turner et al 2003).   

More recently, availability of satellite imagery and advances in Geographic Information 

Systems (GIS), coupled with the need to demonstrate and understand the heterogeneous 

effects of fire, has brought about a demand for burn severity mapping on public lands 

using remote sensing (Brewer et al 2005, Lentile et al 2006).   

After the 1988 fires in Yellowstone National Park, Turner et al (1994) used 

Landsat TM images to classify three levels of burn severity in order to assess spatial 

patterns of fire effects.  Their severity classes included crown fire, lethal surface fire, and 

light surface burn.  They used supervised image classification using the GRASS 4.0 i. 

maxlik program within the burn perimeters to map the three levels based on the spectral 

reflectance of known points on the ground.   

Jakubauskas et al (1990) first used a ratio of two Landsat bands to map burn 

severity.  They mapped three qualitative severity levels in a Michigan fire using the 
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Environmental Vegetation Index (Near IR/Red).  Lopez-Garcia and Caselles (1991) 

pioneered a normalized difference in the near and middle infrared reflectance of Landsat 

bands 4 and 7 to map the extent of forest fires in Spain.  This method was later termed the 

Normalized Burn Ratio or NBR. The NBR uses the same differencing relationship used 

in the Normalized Differenced Vegetation Index (NDVI); however the middle Infrared 

Band (Band 7) is subtracted from the near infrared band (Band 4) instead of the visible 

red portion of the spectrum (Band 3).  The NBR equation (1) is normalized by dividing 

by the sum of the two bands, thus it has a scale of -1 to 1.   The result is multiplied by 

1000 to remove the decimal (Key and Benson 2006). 

1000
)7()4(
)7()4( x

bandMidIRbandNearIR
bandMidIRbandNearIRNBR

+
−

=                               (1) 

The comparison of near infrared to middle infrared wavelengths emphasizes the 

differences in burned areas for two reasons (White et al 1996).  Near infrared radiation is 

strongly reflected by photosynthesizing plants, so that weakened or defoliated vegetation 

following a fire has a reduced reflectance.  Middle infrared is absorbed by plants mainly 

because of foliar moisture content.  Dead vegetation and exposed soil (after canopy 

removal by fire) are much more reflective in this wavelength category.   Blackened soils, 

like dark pavement, emit middle infrared radiation even more strongly (Jensen 2000).   

Lopez-Garcia and Caselles (1991) also noted that the thermal infrared (Band 6) 

reflectance alone was sensitive to burned areas due to the heat emitted from blackened 

soils as well as reduced green, moist vegetation cover.    

White et al (1996) explored the use of Landsat TM image band ratios to detect 

gradients in the severity of fires, not just the distribution of burned areas.  They 

hypothesized that low severity burned areas would correspond to less change in surface 
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reflectance relative to more severely burned areas.  They evaluated a number of Landsat 

band combinations as well as the NDVI and NBR in comparison to ground plots.  They 

also applied these processes to images of burned areas taken after recovery over one 

growing season had occurred.   

Of all Landsat bands, the middle infrared band 7 was the most sensitive to burn 

severity in forest vegetation according to White et al (1996).  It showed the widest spread 

of reflectance values within a burn perimeter. The near infrared band (band 4) was not as 

sensitive to severity, but strongly detected removal of foliar biomass and re-growth post 

burn.  Together, the two captured both the physical and biological effects of fire.  The use 

of a one year post fire image versus one from immediately post fire provided greater 

sensitivity because the patterns of plant regeneration responded to otherwise unseen 

effects on soils, litter, and understory plants (White et al 1996). 

After a season of many large fires in western forests in 2000, the National Park 

Service began using a differenced NBR comparing pre- and one year post-fire to 

investigate burn severity mapping.  The differenced NBR (or dNBR) is a subtraction of 

the post fire NBR from the pre fire NBR (Equation 2): 

dNBR = Pre-fire NBR – Post-fire NBR                                       (2) 

Key (2006) described three approaches to burn severity mapping, with different 

timing of post-fire imagery.  First, “rapid assessment” burn severity maps are made from 

immediate post burn dNBR indices, with utility for obtaining time-sensitive information 

for fire operations and public education.  DNBR products from one or two months post 

fire provide “initial assessments” of severity with greater accuracy because the fire has 

been controlled and smoke is less likely to diminish image quality.  These maps highlight 
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crown fire areas most effectively, and give resource managers a useful map for follow-up 

management planning. The third approach to burn severity mapping is the “extended 

assessment,” which is made from comparison of pre-burn NBR with one year post burn 

NBR are capable of better differentiation of fire effects because re-growth patterns can be 

incorporated.  If users are willing to wait until one-year post burn imagery is obtained, 

the extended assessment approach can provide superior maps for both fire ecology and 

resource management applications (Key 2005).   

The differenced Normalized Differenced Vegetation Index (dNDVI) (Equation 3) 

has also been used to map burn severity, but has not performed as well as dNBR in 

western North America (Zhu et al 2006, Miller and Thode 2007).   Studies in Australia 

(Hammill and Bradstock 2004) and Spain (Diaz-Delgado et al 2001) have successfully 

used dNDVI to map foliar damage and recovery due to fire.    

dNDVI = Pre-fire NDVI – Post-fire NDVI                                      (3) 

The US Forest Service Remote Sensing Applications Center (RSAC) adopted the 

differenced NBR approach in 2001 for its Burned Area Emergency Rehabilitation 

(BAER) program nationwide (Bobbe et al 2001, Brewer et al 2005).  Traditionally BAER 

post-fire assessments were made with expensive aerial color infrared photography 

(Bobbe et al 2001, Hudak et al 2004b).  RSAC provides rapid assessment dNBR maps to 

help prioritize post-fire soil stabilization treatments (Hudak et al 2004b, Lentile et al 

2006).  The maps are classified according to “Burned Area Reflectance Change,” or 

BARC (Hudak 2006), and do not assume a direct relationship to burn severity on the 

ground.  Instead, they help to indicate areas for further ground-based assessment of soil 

impacts.      
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Because the dNBR is an absolute measure of change for each pixel, the amount of 

initial, pre-fire vegetation can strongly influence the magnitude of absolute pre and post 

differences (Miller and Thode 2007).  This problem can cause misclassification of burn 

severity levels because plant mortality due to fire is poorly detected in sparsely vegetated 

areas.  Miller and Thode (2007) proposed the relative dNBR (RdNBR) algorithm to 

compensate for this, which they have demonstrated to be successful in a variety of 

western vegetation types.  Because Band 7 reflectance is boosted in areas with burned 

soils, the relationship between dNBR and ground measures of severity is nonlinear 

(Miller and Those 2007).  To compensate, a square root transformation is incorporated in 

the RdNBR equation (4): 

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛ −
=

0100/Pr

Pr

eFireNBR

RPostfireNBeFireNBRRdNBR                                       (4) 

Similarly, dNDVI can be relativized by dividing dNDVI by pre-fire NDVI 

(Equation 5).  No transformation is needed because Band 3 does not exhibit boosted 

reflectance from burned soils (Miller and Those 2007).   

1000
Pr

Pr x
efireNDVI

VIPostfireNDeFireNDVIRdNDVI ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=                           (5) 

In 2004, the dNBR method was adopted in the U. S. by the multi-agency 

Wildland Fire Leadership Council’s Monitoring Trends in Burn Severity (MTBS) 

program for  creation of a nationwide burn severity atlas (Eidenshink et all 2007, Lentile 

et al 2006).       In this effort, the U.S. Forest Service and the U.S. Geological Survey are 

jointly producing dNBR burn severity maps for all wildland fires larger than 1000 acres 

(500 acres in the East).  RdNBR maps will also be made available in some cases 
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(Eidenshink et al 2007).  The MTBS burn severity mapping is retro-active to 1984, using 

archived Landsat TM and ETM+ images. 

There are several main causes of burn severity mapping thematic inaccuracy 

using remote sensing, which hold true for all reflectance indices. Overstory canopy 

vegetation obstructs the patterns of fire effects on the ground surface (Patterson and Yool 

1998, Bobbe et al 2001, Miller and Yool 2002, Sanchez-Flores and Yool 2004, Cocke et 

al 2005, Lentile et al 2006).  The spatial resolution of the sensing instruments cannot 

always discern small spot fires or burned patches (Bobbe et al 2001, Key 2006, Lentile et 

al 2006, Roy 2006).  Plant regrowth following a fire sometimes masks the reflectance 

changes caused when the fire killed the original vegetation (Key 2005, Key and Benson 

2006).  Positional errors inherent in the use of geospatial data, particularly remote 

sensing, can lead to false change detection (Townshend et al 1992, Goodchild 1994).  

Variability in solar angle and shadow effects can also cause false changes depending on 

image seasonality (Key 2006, Kolden and Weisberg 2007).  These sources of error are 

inevitable given the limitations of the available technology.   

Definitions of Burn Severity 

Differenced NBR and NDVI reflectance indices have been compared to burn 

severity levels on the ground in a number of test studies (White et al 1996, Zhu et al 

2006, Key 2006, Miller and Thode 2007).  In order to evaluate these relationships, it is 

necessary to understand how burn severity has been defined.  The generally accepted 

definition of burn severity is the degree of ecological disturbance or change in ecosystem 

components (Ryan 2002, van Wagtendonk et al 2004, Key and Benson 2006).  Unlike 

“fire intensity,” which is a measurable quantity in terms of heat per unit area per unit of 
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time used in fire behavior predictions (Neary et al 2005); “burn severity” is a qualitative 

measure.   

Many classification systems have been used to evaluate burn severity, most of 

which use categories such as “low,” “moderate,” and “high”  (Robichaud et al 2007). 

Low severity fire effects are more ephemeral, and cause little impact on the structure and 

function of a community, while high severity effects include major changes in plant 

composition, nutrient balance, and hydrologic function for a long period of time (Lentile 

et al 2006).  These classifications can be subject to individual judgment, and may differ 

substantially between vegetation types and geographic regions (Hudak 2006, Key and 

Benson 2006, Lentile et al 2006).  Further, cultural bias is evident in some definitions of 

burn severity, for example Simard (1991) defined burn severity as the significantly 

negative fire impacts to wildland systems and society.  

Often burn severity is rated according to the effects of fire on whichever resource 

impacts are under consideration (Jain and Graham 2007).  In forested areas, severity 

classes are often closely associated with the effects to the overstory (Diaz-Delgado et al 

2001, Hammill and Bradstock 2004, Lentile et al 2006).  The definition of high severity 

is sometimes equated with stand replacing fire (e. g. Agee 1998, Miller and Thode 2007).  

On the other hand, burn severity maps created for erosion mitigation reflect the 

distribution of related effects such as litter consumption and char depth (Bobbe et al 

2001, Hudak 2004ab, Neary et al 2005).   

Care must be taken to avoid confusing tree-based burn severity maps with those 

based on ground effects.  This can cause misconceptions about a fire’s ecological impact, 

or even the nature of a fire regime (see Safford et al, in press).  Fire effects to overstory 
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vegetation and soils occur as a result of different aspects of fire behavior (fire intensity 

versus fire duration), and are independently distributed (van Wagtendonk et al 2004, 

Neary et al 2005, Jain and Graham 2007). In fact, different predictive models are used to 

describe the two (Ryan 2002). A fast-moving crown fire can destroy the overstory of a 

forest while having mild effects on the understory and soil. A surface fire burning though 

large, heavy fuels can smolder for hours or days, causing lethal damage deep in the soil 

(Ryan 2002, Neary et al 2005).     

Ryan and Noste (1983) developed a protocol and rating system for field 

assessment of burn severity that incorporates separate field ratings for these distinct 

effects to the overstory and soil surface.  They explained that these severity patterns are 

linked to two processes; above and below the ground surface.  The heat pulse down into 

the soil is a function of fire residence time associated with smoldering logs and duff 

(Ryan 2002).  The heat pulse experienced by above-ground vegetation corresponds to 

flame length, which is a measure of fire intensity determined by slope, wind speed, fuel 

physical and chemical characteristics, and fuel moisture (Rothermel 1972).  This dual 

view makes a crucial link between fire behavior processes and severity patterns.  While 

conceptually elegant, the Ryan and Noste (1983) burn severity rating system is ground-

based and not easily applied to remote sensing. 

In the field of remote sensing, fire severity is overall magnitude of change 

determined by the sensors over a given pixel (Diaz-Delgado et al 2001, Zhu et al 2006).  

These changes are influenced by fire behavior, vegetation, and terrain, so field validation 

is needed to interpret what the recorded changes actually are.   Today, most 

comprehensive assessments of burn severity attempt to involve a combination of soil and 



 

 11

overstory effects (Miller and Yool 2002).  In forested environments, remotely sensed 

burn severity maps are often better correlated with overstory mortality than soil effects 

that are obscured beneath the canopy (Patterson and Yool 1998, Bobbe et al 2001, 

Sanchez-Flores and Yool 2004, Cocke et al 2005, Lentile et al 2006).    

Key and Benson (2006) produced a manual for undertaking burn severity 

mapping, and developed a methodology for making ground measurements of severity for 

map calibration and accuracy assessment.  This manual includes a field protocol for 

characterizing ecological change on the ground, called the Composite Burn Index (CBI).  

CBI plots are temporarily installed on the ground in burned areas, and geo-referenced for 

comparison with dNBR pixel values.  They provide a means of calibrating dNBR derived 

burn severity maps. CBI plots record rankings from 0 (unburned) to 3 (most severe) for 

ecological change in each layer of a plant community; soil surface, understory, shrub 

layer, intermediate trees, and overstory trees.   

Canopy Mortality as a Measure of Burn Severity 

Due to canopy interference, it is difficult to map fire effects on the ground using 

remote sensing, at least in forested vegetation (Hudak et al 2004a, Cocke et al 2005, 

Kasischke 2006, Murphy 2006). One exception would be in areas where high severity 

canopy fires remove the obstructing trees (Bobbe et al 2001, Cocke et al 2005).   Since 

soil and canopy effects are often distributed independently, it would be appropriate to 

map them separately (Neary et al 2005).   

While it may be unrealistic to map many ground surface effects in forested 

vegetation using remote sensing, canopy effects are much more visible from space.   In 

forested environments, remotely sensed burn severity products are often highly correlated 
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with effects on overstory vegetation (Hudak et al 2004ab, Lentile et al 2006, Miller and 

Thode 2007).   Because of these sensitivities, Landsat-derived indices can be used (in 

combination with ancillary data) to make maps of canopy mortality. 

In forested ecosystems, canopy mortality is a tangible, ecologically significant 

expression of burn severity.  Ryan and Noste (1983) suggest that the ideal burn severity 

classification system would identify tree mortality.  At the ecosystem scale, fire regimes 

are described in terms of whether or not overstory trees are killed (Turner et al 1994, 

Arno 2000, Arno et al 2000, Morgan et al 2001).   Percent canopy mortality would 

provide the means to a measurable and consistent mapping approach.  Many fire 

ecologists have expressed the need for a quantitative characterization of burn severity that 

would allow comparisons between fires, vegetation types, and fire seasons (Miller and 

Yool 2002, Brewer et al 2005, Lentile et al 2006, Jain and Graham 2007).  Maps of 

percent canopy mortality would give a more descriptive and concrete basis for decisions 

about post-fire land management, some of which have far reaching environmental and 

economic effects.   

Not only does it appear quite feasible to map canopy severity using remote 

sensing techniques, the ecological and management implications of these effects are of 

high importance. The spatial distribution of fire-induced tree mortality dominates 

ecosystem function across the landscape for decades or more (Ryan 2002, Turner et al 

2003, Neary et al 2005). The amount of edge between patches of stand replacing, partial 

mortality, and unburned forests is important to understand because of its benefits for 

ungulate browse (Turner and Romme 1994). Other species affected include tree insects, 

cavity nesting birds, and forest carnivores (Ryan 2002, others). Stand replacing fires 
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represent greater risk for invasive species (Hudak et al 2004b). With decreased evapo-

transpiration and rainfall interception, burned forests change the surface and subsurface 

hydrology (Turner et al 1994).  They represent socio-economic impacts and due to 

reduced recreation potential and risk factors for the wildland urban interface (Miller and 

Yool 2002). Stand replacing fires also can represent timber harvest (salvage) 

opportunities.  Future fuel loading and accumulation also is a function of fire pattern 

(Hely, Bergeron, and Flannigan 2000, Turner at al 2003). The burn patch sizes, degree of 

overstory removal, and distances to seed sources will affect plant succession, providing 

data for modeling updates to vegetation and habitat maps in burned areas (Turner et al 

1994, Brewer et al 2005, Lentile 2006).   

Spatial Resolution 

The spatial resolution of remote sensing imagery inherently limits accurate 

mapping of fire effects in a GIS (Moody and Woodcock 1995, Lertzman et al 1998, 

Hudak et al 2004b, Key 2005).  This is because each pixel value in a satellite image 

represents the mean reflectance of all surfaces within that unit.  If there is heterogeneity 

in the reflectance properties within the pixel, these patterns are indistinguishable 

(Goodchild 1994).  This is particularly problematic where fire effects vary at the 

individual log or tree scale (Key 2005), or along patch boundaries (Cao and Lam 1997).  

Patch boundary pixels, by definition, have a mix of fire effects.  With fewer of these 

mixed pixels (due to smaller pixels or less edge on the ground), there is less overall 

confusion and greater map accuracy (Cao and Lam 1997).  In a burn severity mapping 

study using Landsat and airborne AVIRIS sensors, van Wagtendonk et al (2004) showed 

that the relationship between CBI ground plots and dNBR pixel values depended on the 
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spatial resolution (pixel size) of the sensor.  Roy (2006) found that the fine scale of 

pattern and spectral characteristics of fire effects in African savannahs were not 

adequately detected by the NBR using Landsat imagery.   

The spatial heterogeneity of fire effects on overstory trees, the scale at which they 

occur, and the ability of remote sensing to detect tree mortality, together suggest 

fundamental elements of landscape ecology.  Turner and Romme (1994) illustrated that 

the mechanisms that control the ignition and spread of fires dictate the spatial patterns of 

fire effects.   Fire behavior processes are therefore borne out in the patterns of burn 

severity on the landscape.  To understand how to best map burned landscapes using GIS 

analyses, one must consider the operational scales at which the underlying processes (in 

this case fire) operate (Levin, 1992).  

Fire spread processes that occur according to fine scale distributions of fuels, 

microclimate, and topography will also be obscured at the 30 meter pixel resolution.  

Many burn severity mapping studies show that low and moderate categories are more 

difficult to discriminate (Patterson and Yool 1998, Bobbe et al 2001, Sanchez-Flores and 

Yool 2004, Cocke et al 2005).  Confusion results from the sub-pixel mosaic of burned 

and unburned patches.  Mixed areas are mapped depending on their respective 

proportions.   

Severely burned areas are more spatially homogeneous than low and moderate 

burns (Turner et al 1994, Hudak et al 2004a).  Such areas are therefore more likely to be 

effectively detected at the 30 meter pixel spatial resolution.    

Positional Errors 
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All analysis of remote sensing imagery is subject to some degree of registration 

error.  Despite advanced geo-rectification and terrain correction methods using ground 

control points and digital elevation models, it is not possible to align pixels perfectly with 

their corresponding geographic locations in GIS (Verbyla and Boles 2000).  Goodchild 

(1994) cautioned that the true location of a given pixel’s central point may be anywhere 

within the nine pixels in a 3x3 array surrounding the point.  Additionally, the coordinates 

of a point on the ground may be as far as 2 pixels away from the one it appears to 

intersect.    

When two images are compared in the case of change detection, the degree of 

offset in the position of each grid can introduce misregistration errors that mask or 

artificially inflate real changes (Dai and Khorram 1998, Verbyla and Boles 2000). 

Townshend et al (1992) recommended that registration accuracy within .2 of a pixel is 

necessary for less than 10% error in change detection classifications.  They noted that 

customary user specifications for image overlays are less stringent - only between half 

and one pixel.  In a simulation study of misregistration errors in change detection, Dai 

and Khorram (1998) found that among the 7 Landsat TM bands, band 4 (NIR) is the most 

sensitive.  Unfortunately this band is a major component of the NBR and NDVI indices 

used for burn severity mapping. 

 Smoothing filters based on a moving window for mean pixel values are often used 

to help minimize noise from image misregistration (Verbyla and Boles 2000).  The 

benefits of such methods, coupled with the drawbacks of coarser resolution due to pixel 

aggregation present interesting tradeoffs for mapping canopy mortality in burned areas.  
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This is particularly true where the scale of spatial heterogeneity in burn patches 

approaches that of image resolution (Key 2006).  

Classification Tree Models 

Most studies in which NBR or NDVI indices are used for burn severity mapping 

use regression models to predict severity based on CBI plots or similar field observations 

(White et al 1996, van Wagtendonk et al 2004, Brewer et al 2005, Zhu et al 2006, Miller 

and Thode 2007 and others).  This study explores an alternative - Classification and 

Regression Tree (CART) analysis -  to explore the relationship between canopy mortality 

and several predictive variables to map stand replacing fire effects.  The following is a 

summary of CART methods, advantages, and caveats for use.   

CART models do not have the limiting assumptions about data normality and 

error distributions that regression models do, because they are not based on probability 

distributions (Lawrence and Wright 2001).  Rather, they operate according to observed 

patterns (Urban 2002). Consequently, they have several advantages for fire studies, which 

are prone to spatial dependency (Bataineh et al 2006).    

 When CART is used to predict continuous variables, “regression trees” are 

created, which predict average numeric values for the dependent variable.  “Classification 

trees” predict the probability of membership in a category, and are created using 

categorical dependent variables (Urban 2002). 

 With a set of training data, CART models make a series of binary splits (or 

branches) derived from an iterative process that finds the single level of one of the 

predictor variables that most reduces the overall deviance (Urban 2002).  A computer 

algorithm compares the deviance (2 log likelihood statistic) of the data with no 
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partitioning versus each possible split, choosing the one with the greatest difference 

(reduction in deviance). The same process is applied to the resulting groups until 

specified criteria are met, and the tree is complete.  The terminal nodes of the tree are 

called leaves.  For each leaf, a class is assigned, and the percent of correctly assigned 

observations (probability of correct classification) is given.    

 The first few splits in the tree represent patterns that segregate groups on a broad 

scale, and are considered the most useful predictors.  The longer the node in the tree 

diagram, the more important the split in terms of reducing deviance and increasing the 

homogeneity of the two resulting groups (Urban 2002). Variables higher in the tree 

explain more of the variance between observations, and therefore represent their 

hierarchical importance (Michaelsen et al 1994, Amatulli et al 2006). Lower branches 

represent more localized or interactive processes that distinguish group membership at a 

more subtle level (Sanchez-Flores and Yool 2004). Variables that are re-used at different 

levels in the tree indicate a non-linear relationship to the dependent variable (Simard et al 

2000, Coops et al 2006).   

 The advantages of CART lie in their ease of use, flexibility with respect to input 

data, and easy interpretability (Lawrence and Wright 2001, Urban 2002, Perlich et al 

2003, Amatulli et al 2006).  Because classification trees function by identifying variables 

that best distinguish groups, they are able to handle complex interactions that make sense 

ecologically but are difficult to describe with conventional regression models.  In this 

way, CART helps to identify the real environmental thresholds that are associated with 

group differences (Michaelsen et al 1994, Simard et al 2000, Lawrence and Wright 2001, 

Perlich et al 2003).   
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 For this study, an important advantage of CART modeling is that each predictor 

variable has a chance to be considered with every partitioning step.  This has allowed 

comparison of several similar burn severity indices (NBR post fire, dNBR, RdNBR, 

dNDVI, and RdNDVI).  In a regression model, these inputs would be expected to exhibit 

multicollinearlity because they are inherently similar (Ott and Longnecker 2001).  CART 

modeling does not have the problems of variance inflation found in regression (Simard et 

al 2002). Instead, the best predictor is simply picked.   

 Classification and regression trees work best with large datasets.  Perlich et al 

(2003) recommended at least 700 observations. Very small datasets tend to predict badly 

(Mingers 1989).   Tree models are completely representative of the training data, and 

therefore the derived splitting rules are only suitable for equivalent data base ranges 

(Coops et al 2006).  Extrapolating a model beyond the training data is risky without 

independent testing (Amatulli et al 2006). 

 Classification and regression trees usually need to be pruned, because they are 

overfitted to noise and chance occurrences and particularities of the training data rather 

than real relationships (Hansen et al 2000). This also helps to simplify them, because they 

are often more complex than necessary (Esposito et al 1997, Amatulli et al 2006).  The 

lowest branches of a tree model tend to be the least reliable (Urban 2002).  Pruning will 

increase the misclassification rates on the training dataset but will reduce the errors made 

on an independent test (Mingers 1989, Lawrence and Wright 2001, Sanchez-Flores and 

Yool 2004).  Pruning tree models also helps to improve their interpretability and 

utilization (Esposito et al 1997, Amatulli et al 2006).   
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The most widely used method for pruning in CART involves cross validation, 

usually with subsets made by randomly splitting the data into ten even-sized groups.  

Ninety percent of the data is used to construct the tree model under study, with 10% 

reserved for testing it.  This is repeated ten times Monte Carlo fashion (Urban 2002).   

Initially, each new split reduces the residual mean deviance.  As more nodes are added, 

however, it begins to increase again, as independent test performance falls off.  It is best 

to prune off splits at this point, because these partitioning rules are not likely to apply 

outside of training dataset (Michaelsen et al 1994).   

Materials and Methods 

Model Data Selection and Preparation Processes 
 

This section provides a comprehensive description of the research process flow 

from variable selection to modeling of canopy mortality in the burned areas of northwest 

Wyoming (Figure 1). These methods were ultimately employed in the investigations 

described in both Chapter 2 and Chapter 3, but the following includes more detail about 

processes and rationale for modeling choices. Geographic data preparation steps are 

described in detail in Appendix A, and statistical analysis scripts are located in Appendix 

B.   
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Figure 1. Overall process diagram for data preparation, extraction, modeling, and 
accuracy assessment for this research on canopy mortality mapping in burned areas of 
northwest Wyoming. 

 

Study Area 

This study encompasses three administrative units of public land in Western 

Wyoming, including the Bridger-Teton National Forest (BTNF), Grand Teton National 

Park (GTNP), and Yellowstone National Park (YNP) (Figure 2).  These areas comprise 

approximately 2.4 million hectares of public land with complex geology, varied mountain 

climate patterns, and diverse flora (Steele et al 1983).  The study area features a mosaic 

of forested and non-forested vegetation distributed according to microclimate, soil types, 

and fire disturbance history (Loope and Gruell 1973).  Elevations range from roughly 

1800 meters to peaks over 4000 meters. Seasonal patterns of temperature and 

precipitation are characterized by cold, snowy winters, rainy springs, and moderately 
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warm summers (Clark 1981, Wright and Bailey 1982).  Fire season is mainly July 15 – 

Sept 30 with most extreme fire conditions Aug 15 – 31 (Loope and Gruell 1973). 

Five main forest communities are found in the study area, characterized by the 

following dominant trees and associations:  1) Douglas-Fir (Pseudotsuga menziesii), 2) 

subalpine fir (Abies lasiocarpa) – Englemann spruce (Picea englemanii), 3) lodgepole 

pine (Pinus contorta), 4) high elevation whitebark pine (Pinus albicaulis) with spruce-fir, 

and 5) aspen (Populus tremuloides) (Steele et al 1983, Bradley et al 1992).  

 

 
Figure 2.  Study area map showing YNP, GTNP, and BTNF in northwest 
Wyoming, with 23 fires and three Landsat scenes. 
 

The most significant ecological disturbance agent affecting the forest types of the 

study area is fire (Loope and Gruell 1973, Clark 1981, Agee 1998).  Two types of fire 
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regime have been attributed to these forest types; “stand replacing” and “mixed severity” 

(Turner et al 1994, Arno 2000, Arno et al 2000, Morgan et al 2001).   Fire regimes are 

characterizations of an ecosystem’s fire processes, ecological effects, spatial 

characteristics and temporal frequency (Lertzman 1998, Agee 1998, Brown 2000).  The 

factors that determine a fire regime are thought to be climate, vegetation, and topography 

(Morgan et al 2001).  In stand replacing fire regimes, burn patch sizes can be very large, 

especially with sustained high winds (Turner et al 1994, Bessie and Johnson 1995, Miller 

and Urban 2000).  Within these fires, some live trees remain due to variations in 

topography, fuels, and burning conditions (Lertzman 1998, Arno 2000, Turner et al 

2003).  Fire return intervals can be over 200 years (Brown 2000). Stand replacing fire 

regimes occur in lodgepole pine, spruce-fir, Whitebark pine, aspen, and Douglas-fir 

forests (Arno 2000).  Fire intervals can be centuries apart, with most burning occurring 

during extremely dry years (Loope and Gruell 1973, Clark 1981).    

Mixed severity fire regimes are also associated with lodgepole pine, spruce-fir, 

Whitebark pine, and Douglas-fir forests (Arno 2000).  A mixed severity regimes has 

more variability in fire behavior, effects, return intervals, and patch sizes than is found in 

a stand replacement regime.  The mixed severity regime has been described as both a 

mid-range disturbance type (between surface and stand replacing), and as a spatial or 

temporal juxtaposition of two or more different fire regimes on a landscape (Agee 1998, 

Lertzman et al 1998, Arno 2000, Lentile et al 2006).  Several forest types including 

Douglas-fir, lodgepole pine, and whitebark pine have been attributed to both fire regime 

types (Arno 2000).  Fire return intervals in mixed severity fire regimes can be 35 to over 

100 years (Brown 2000).  
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The distinction between stand replacing and mixed severity regimes is not always 

clear.  Arno (2000) suggests that the two fire regimes can overlap both spatially and 

temporally, according to both topographic variability and site productivity.  With the 

degree of overlap between these two fire regime characteristics, it is reasonable to 

consider that they are not actually distinct from one another in this study area.  Rather, a 

single fire regime can be conceived to exist along a spatial and temporal spectrum (as 

described by Ryan 2002 for the boreal forest).  This study explores the patterns of canopy 

mortality in the burned areas of northwest Wyoming according to this concept of one fire 

regime operating within a continuum of ecological effects.  

A combination of fire suppression, fuels reduction by grazing and logging, and 

moist weather patterns (Loope and Gruell 1973) tempered the occurrence of large fires in 

the study area from the 1890’s through the 1970’s.  Since the late 1980’s, widespread 

larger and more lethal wildland fires have occurred throughout the Rocky Mountains 

(Turner et al 1994, Arno 2000, Westerling et al 2006) despite ongoing suppression 

programs.  The recent fire activity is more characteristic of the stand replacing end of the 

fire behavior spectrum rather than the mixed severity type.  

 
Dependent Variable: Estimates of Percent Canopy Mortality 

Estimated percent mortality of overstory canopy cover was compared to an array 

of predictor variables in classification tree modeling.  These estimates were obtained 

from 694 CBI plots in 23 fires in the study area.  Field CBI data were collected by 

National Park Service field personnel from 2001 – 2004 following the methods of Key 

and Benson (2006).   
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For each CBI plot, ocular estimates of percent canopy mortality were recorded for 

overstory trees in a 30 meter diameter circle. Each plot was located using GPS for 

comparison with remote imagery in GIS.  GPS errors of up to12 meters were recorded on 

CBI plot data sheets.  Many of these plot locations were not differentially corrected in the 

office.  During 2001 and 2002, the Key and Benson (2006) CBI protocols were in 

development, and percent overstory tree mortality estimates were not part of this data 

collection. In these cases, field photographs were used to estimate the percent of 

overstory trees killed.   

In order to evaluate a remote method for measuring canopy mortality (Chapter 2), 

and study the effects of changing the spatial resolution of analysis (Chapter 3), a second 

set of mortality observation was obtained.  Percent canopy mortality was re-estimated to 

the nearest 5 percent at all 694 CBI plot locations for three concentric circles using 1 

meter digital aerial photography (both true color from 2006 and color infrared from 2001-

2002).  These sizes of the circles were .07, 1 and 5 hectares.  The .07 hectare circles are 

the same size as CBI plots, which provided an opportunity to compare the two estimation 

methods (Chapter 2).  

Estimated mortality was subsequently classified in three ways, with two, three, 

and five categories, respectively.  This allowed evaluation of the degree of precision 

possible using the available dataset (Chapter 2).  The two-category system uses an 80% 

mortality cutoff recommended by the Bridger-Teton National Forest for differentiating 

stand replacing fire in a management context.   A middle category of 25-75% was added 

in the three category system to capture the partial canopy mortality resulting from mixed 

severity effects.  The five-category system further adds 0% and 100% categories to 
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explore the detection of completely unburned and completely lethal burns. Figures 

showing the proportions of canopy mortality categories in the plot data are included in 

Chapters 2 and 3.  

 
Predictor variables:  Selection and Preparation 

A suite of the most commonly used burn severity reflectance indices was 

employed with Landsat-5 TM and Landsat-7 ETM+ to determine which ones best 

function as predictor variables to discriminate the mortality classes.  These included the 

NBR of the post-burn scenes, the pre- and one year post-burn dNBR, and RdNBR.  In 

addition, the dNDVI and RdNDVI were added.    

Landsat TM and ETM+ 6-band images and pre- and post-fire NBR and dNBR 

subsets were obtained in Albers Conical Equal-Area projection from the National Burn 

Severity Mapping website of the United States Geological Survey (USGS) EROS Data 

Center (http://burnseverity.cr.usgs.gov/download_data.asp). All images provided were 

terrain corrected and geometrically rectified using ground control points and digital 

elevation models according to National Land Archive Production System (NLAPS) 

protocols (Eidenshink et al 2007).  Bands 1-5 and 7 are converted to at satellite 

reflectance, which normalizes image pixel values for differences in sun illumination 

geometry, atmospheric effects and instrument calibration (Huang et al 2002). 

Specifications for terrain correction require an average root mean square error of less 

than one pixel (30m) and differenced image registration errors less than one half pixel 

(Howard 2006).    

  The 23 fires included in this study occurred over four summers in a geographic 

area covering three Landsat scenes.  A total of 11 pre- and post-fire pairs of images were 
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used (Appendix A, Table A-1).  Pre- and post-fire NBR and NDVI were generated using 

the Image Analysis Extension for ArcGIS 9.1.   

In order to remove bias associated with the particular atmospheric and phenologic 

characteristics of individual image pairs, dNBR and dNDVI subsets were standardized.  

Mean pixel values were computed by sampling adjacent unburned areas in each fire, and 

then subtracted from the entire dNBR for each fire prior to combining them into final 

mosaic layers (Key 2006).  For relative indices, the standardized dNBR and dNDVI were 

used when calculating RdNBR and RdNDVI using the ArcGIS Spatial Analyst raster 

calculator.   

Canopy mortality due to fire results from complex relationships between tree 

species characteristics, fire intensity, and the post-fire environment (Wright and Bailey 

1982, Diaz-Delgado et al 2001). In order to improve upon the use of remote sensing 

change detection for burn severity mapping, GIS layers featuring topography, vegetation 

type, and drought were also included in predictive models for this study.   Elevation, 

slope percent, and aspect layers were obtained from 30 meter resolution USGS Digital 

Elevation Models (DEM).  Five forest type categories were created from vegetation maps 

of GTNP, YNP, and the BTNF, following the fire groups of Bradley et al (1992).  

Pre-fire Landsat imagery was transformed using the Tasseled Cap (TCT) method 

(Crist and Cicone 1984) in order to examine relationships between vegetation types, 

forest structure, and fuels and canopy mortality effects.  The TCT is a set of 

multiplicative and additive coefficients, which when applied to the six bands of Landsat 

imagery, reduce the data volume to three bands called brightness, greenness and wetness 

(Crist and Cicone 1984, Lillesand et al 2004).  Brightness (TCT-1) is a measure of 
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overall reflectance in all six Landsat bands.  It is sensitive to soil exposure, and is higher 

for deciduous vegetation than it is for conifer forests (Crist et al 1986).  Greenness (TCT-

2) increases with photosynthetic vegetation and can also discriminate coniferous versus 

deciduous trees (Kushla and Ripple 1998).   The wetness band (TCT-3) expresses 

relationships between soil and vegetation (Crist et al 1986).  It is sensitive to moisture in 

vegetation, which enables separation of growing versus senescing or dead plants, and 

shadows made by different sizes of plants.  Wetness has been used to detect structure and 

woody fuel loading in forests (Kushla and Ripple 1998).  In this study, pre-fire TCT 

bands 1-3 were intended to provide surrogates for vegetation type and woody fuel 

characteristics.  The bands were produced for each pre-fire image with ERDAS Imagine 

9.1, and combined into a 23-fire mosaic using ArcGIS 9.1.  

Each predictor variable raster was filtered using a circular focal mean algorithm 

(focal majority for forest type) to compute the focal means for .07, 1, and 5 hectare 

circles to match the CBI plot canopy mortality estimate areas. ArcGIS 9.1 Spatial Analyst 

performs focal mean calculations by averaging the values of all pixels that fall within the 

chosen radii, which in this case were 15, 56.41, and 126.16 meters.  In this way, estimates 

of percent mortality in 5 hectare circles, for example, were analyzed using predictor grids 

using the corresponding 126.16 radius circular focal means.  When the predictor grids 

were aggregated according to focal means, their numeric distributions became more 

centralized (Table 1).   

Administrative unit (GTNP, YELL or BTNF) was also used in selected models to 

test for differences in canopy mortality predictions that might exist across the landscapes 

of the study area (Table 1).   
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Drought records were used in initial model development to control for climate 

variation.  Annual differences in snow deposition and rainfall play a major role in the fire 

regime and plant phenology of this study area (Loope and Gruell 1973, Turner et al 1994, 

Bessie and Johnson 1995, Arno 2000). Change detection using dNBR and dNDVI indices 

would likely detect differences in burned areas according to both fuel dryness during 

burning and the degree of vigor in regrowth the following year.   The Palmer “Z” Index 

was chosen to represent this variation.  It gives the moisture anomaly or departure from 

normal for a given month; with records going back 1900 for individual climate regions 

(Alley 1984).  Positive numbers indicate periods of above normal moisture, while 

negative numbers correspond to drought.   
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Table 1.  Predictor variables, spatial resolutions, sources, and ranges of values used in modeling canopy 
mortality in burned areas of northwest Wyoming.   
 

Predictor 
Variable  

Spatial   
Resolution 

Data Source, 
Description 

Range of Values 
(Min-Max) 

Normalized Burn Ratio 
(NBR) Post-Fire 

30m pixels, unfiltered and 
focal means for 1.0, and 
5.0 hectare circular areas 

7 scenes (2001 – 2004) Landsat 
TM and ETM+ 

.07h:   -507.4 – 722.6 
1h:      -482.4 – 718.6 
5h:      -460.5 – 688.5 

Differenced 
Normalized Burn 
Ration (dNBR) 

 
“ 

11 pairs of scenes (1999 – 2004) 
Landsat TM and ETM+ 

.07h:   -242.4– 1125.3 
1h:      -195.9 – 1116.3 
5h:      -149.1 – 997.2 

Relative differenced 
Normalized Burn Ratio 
(RdNBR) 

 
“ 

11 pairs of scenes (1999 – 2004) 
Landsat TM and ETM+ 

.07h:   -17,655.2 – 6067.7 
1h:      -3884.9 – 5965.9 
5h:      -1.55 E13 – 4.88 E13 

Differenced 
Normalized 
Differenced Vegetation 
Index (dNDVI) 

 
“ 

11 pairs of scenes (1999 – 2004) 
Landsat TM and ETM+ 

.07h:   -69.3 – 582.9 
1h:      -43.1 – 509.6 
5h:      -65.2 – 458.6 

Relative differenced 
Normalized 
Differenced Vegetation 
Index (RdNDVI) 

 
“ 

11 pairs of scenes (1999 – 2004) 
Landsat TM and ETM+ 

.07h:   -266.6 – 3811.2 
1h:      -186.8 – 4369.1 
5h:      -5.9 E12 – 1.7E14 

Pre-fire  Tasseled Cap 
Transformation 
Brightness  (TCT-1) 

 
“ 

9 scenes (1999 – 2002) Landsat 
TM and ETM+ 

.07h:   54.0 – 168.0 
1h:      54.6 – 160.6 
5h:      59.5 – 154.5 

Pre-fire  Tasseled Cap 
Transformation 
Greenness  (TCT-2)  

 
“ 

9 scenes (1999 – 2002) Landsat 
TM and ETM+ 

.07h:   -1.0 – 78.0 
1h:      2.2 – 77.6 
5h:      5.7 – 69.7 

Pre-fire  Tasseled Cap 
Transformation 
Wetness (TCT-3)  

 
“ 

9 scenes (1999 – 2002) Landsat 
TM and ETM+ 

.07h:   -43.0 – 16.0 
1h:      -43.2 – 12.6 
5h:      -43.7 – 9.3 

Elevation (m)  
“ 

USGS 30 meter DEM .07h:   1760.9 – 3056.3 
1h:      1761.0 – 3056.7 
5h:      1763.4 – 3059.2 

Aspect    
“ 

USGS 30 meter DEM .07h:   0 – 358.2 
1h:      6.45 – 355.4 
5h:      16.5 – 347.2 

Slope (Percent)  
“ 

USGS 30 meter DEM .07h:   .5 – 73.8 
1h:      0 – 90.7 
5h:      .1 – 85.9 

Pre-fire Forest Type  
“ 

GTNP, YNP, and BTNF 
vegetation maps.  Converted to 
raster and reclassified to 5 forest 
types and non-forested. 

1 = Douglas-Fir 
2 = Spruce – Fir 
3 = High Elevation Spruce – Fir 
4 = Lodgepole Pine 
5 = Aspen 
6 = Non-forested 

Palmer’s Drought 
Severity Index Z Index 
of Mean Departure 

Climate  divisions for 
Wyoming: Month of fire, 
June, July, August (JJA) 
average for fire season, 
JJA average for year 
following fire 

NOAA National Climatic Data 
Center  
http://www7.ncdc.noaa.gov/CD
O/CDODivisionalSelect.jsp# 
 

Month of fire:       
 -4.69 – 1.98 
JJA Year of fire: 
-4.19 – 0.84 
JJA Year following fire: 
-3.45 – 1.79 

Administrative Unit Grand Teton National Park 
(GTRE), Yellowstone 
National Park (YELL), and 
Bridger-Teton National 
Forest (BTNF)  

Fire History Records GTRE:   3 Fires, 78 Plots 
BTNF:  8 Fires, 425 Plots 
YELL:  11 Fires, 191 Plots 
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Three forms of Palmer’s Z indices were used (Table 1), including the monthly 

value for the climate region during the time of each fire; the average for the summer 

months (June, July, and August) of the fire season; and summer month averages for the 

year following each fire (when summer moisture could effect recovery rates, which in 

turn impact post-fire change detection).  The values were simply typed into the data 

tables for each CBI plot location.  Due to the very coarse nature of this climate region 

data, it performed poorly in classification tree models and was later removed from 

analysis.   

Classification Tree Modeling Using R 

In this study, the statistical software program R Version 2. 4. 1 with the “Tree” 

package was used for classification tree models (R Development Core Team 2006).  R is 

open source software, easily obtained by users outside of academia, such as fire and 

resource managers.  With the Tree package, R chooses optimal splits by comparing 

reduction in deviance. The default stopping criteria are 10 total observations in a node, or 

the deviance is less than 1% of the total dataset deviance. Trees were pruned to the 

number of leaves with lowest residual mean deviance.   See Appendix B and the 

supplemental data DVD for individual model scripts.  

Accuracy Assessment 

Independent accuracy assessment was necessary to determine how the 

classification tree models performed for new fires outside of the training dataset.  A 

simple random sample of 100 points was generated in three of the 23 fires, for a total of 

300 points.  New plots were used rather than reserving some of the original 694 plots to 

conserve the size of the dataset, since 700 plots is recommended as a minimum for CART 
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trees (Perlich et al 2003).  The Blind Trail fire in the BTNF, the Wilcox fire In GTNP, 

and the Broad fire in YNP were chosen due to their large sizes, variable forest types, 

elevations, and locations in separate mountain ranges.  Also, no Landsat 7 SLC-off 

problems occurred in the differenced imagery for these fires.   

As with the 694 original locations, canopy mortality was estimated to the nearest 

5% for concentric circles of .07, 1, and 5 hectares in size surrounding the random points.  

One meter digital orthophotos (true color and infrared) provided reference imagery.   The 

mortality estimates categorized into three level classes; 0-20%, 25-75% and 80-100%.  

Predicted canopy mortality surfaces were generated for each model being 

evaluated.  Canopy mortality classes for the reference points were compared to predicted 

surfaces made from classification tree models using the ArcGIS 9.1 Spatial Analyst 

Raster Calculator with conditional statements (see Appendix A).  Error matrices from 

these comparisons were used to derive user’s and producer’s accuracies for each class, as 

well as calculated Kappa statistics (Equation 6)  (Cohen 1960).    
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11                                                         (6) 

N = total number of observations. 
r = the number of rows in the error matrix 
xii = number of observations in row i and column i 
xi+ and x+i = marginal totals for row i and column i 

 

Canopy Mortality Sampling Considerations: 

The CBI plots used to develop predictive models of canopy mortality were 

located in burned areas by field personnel with an opportunistic, not random approach 

(Key and Benson 2006).  This section addresses the implications of this sampling scheme 



 

 32

on the final geospatial models.   Random sampling is not a requirement of predictive 

mapping or CBI protocols (Longley et al 2002, Key and Benson 2006), however, in this 

case unintended bias appears to impact at least one of the models.   The consequences of 

this are minimal for the preferred models and overall conclusions, however.  

The objectives of CBI field work that guided the selection of canopy mortality 

estimate locations called for approximately 50 samples per fire, representing the range of 

severity, from unburned to the most severe crown fire effects.  A variety of vegetation 

types was also sought during CBI data collection, including sagebrush, riparian, and 

meadow vegetation in addition to forest.    In order to maximize travel efficiency, field 

personnel targeted areas with many levels of severity occurring together.  They therefore 

prioritized their work to take place in more heterogeneously burned portions of fires with 

a variety of plant communities.    

CBI protocols recommend pre-selection of plot locations in each of five initial 

severity classifications (unburned, low, moderate, moderate-high, and high) to obtain a 

variety of burn severity level examples (Key and Benson 2006).  In some cases plot 

locations were randomly pre-selected in the office, and CBI crews used GPS to navigate 

to them.  Once in the field, however, the crews chose among these plots according to 

their planned travel routes over the course of a given field day.   

 In order to assess the potential impact of this plot selection, the slope, aspect, 

elevation, and distance from roads of the 694 CBI plots were compared to the same array 

of characteristics for a randomly generated sample of 700 points in the 23 fires. The 

results (Figures 3-6) indicate little meaningful difference in the distributions of the 

variables.    
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Figure 3.  Very slight differences are evident in this comparison of 
cumulative frequency of slope percent for 694 CBI plot locations and 
700 random locations in 23 fires.    
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Figure 4.  A comparison of cumulative frequencies of slope percent for 
694 CBI plot locations and 700 random locations in 23 fires shows that 
the CBI plots have slightly more south facing and fewer east facing 
locations.  
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Figure 5.  Cumulative frequencies of elevation for 694 CBI plots and 700 
random points in 23 fires.  Some fires had many more CBI plots than 
others, accounting for the greater number of locations above 2100 meters.    
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Figure 6.  Cumulative frequencies are compared for distance to roads for 
694 CBI plot locations and 700 random points in 23 fires.  As with 
elevation (Figure 5), more CBI plots were obtained from some fires than 
from others.  Several of the more intensively-sampled fires are in roadless 
areas, which probably accounts for the greater numbers of remote plots.  
The gap between 15,000 and 27,000 meters results from two extremely 
remote fires in the Teton Wilderness of the BTNF and YNP.  
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While the above comparisons between topographic variables and road distances 

for CBI plots and random locations indicate minimal impacts from sampling bias, the 

CBI plot selection methods did appear to affect the proportional distribution of mortality 

categories in the model dataset.  Figure 7A illustrates the numbers of CBI plot location-

based observations corresponding to 1-20%, 25-75% and 80-100% canopy mortality at 

the three spatial resolutions investigated in Chapter 3.   Figure 7 B shows much more 

evenly distributed proportions for the three categories and spatial resolutions from 

random points used in accuracy assessment.  At the .07 hectare resolution, the differences 

are minimal, however as the size of the estimation circles increased, differences emerge.  

The CBI plot dataset has much fewer 0-20% observations, and more 25-75% cases.   

In targeting CBI plot locations in heterogeneously burned areas to facilitate 

efficient data collection from all severity categories and a variety of vegetation types, 

field personnel avoided large continuous patches of consistent fire effects.  In addition, 

locations near the edges of burned patches were preferred, because traveling far into the 

interiors of them represented additional time expenditures.  This procedure allowed the 

desired variety among 30 meter diameter severity samples, but 1 and 5 hectare co-located 

circles took in the adjacent burn patterns.  A small unburned or low severity patch that 

would fall completely within a 30 meter diameter circle would represent only a small part 

of a 5 hectare circle.  Thus, more aggregation of adjacent patches resulted, leading to 

more circles having the middle, 25-75% canopy mortality category, and very few in the 

0-20% category (Figure 7A).   
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Figure 7.  Pie charts showing the distributions of canopy mortality 
categories estimated for three spatial resolutions in the 694 opportunistically 
sampled CBI plots (A), and the 300 randomly sampled accuracy assessment 
plots in the Blind Trail, Broad, and Wilcox fires (B).  Note there more even 
proportions of categories in B.    

 

With classification tree modeling, the distribution of categories in the training 

data impacts model structure and performance (Lawrence and Wright 2001).  This is 

because the models apply splits where the greatest deviance reduction is attained.  A 

category with more observations would be expected to have more variability within it, 

which could overshadow between-category differences.     As Chapter 3 shows, the 
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skewed proportions for canopy mortality observations at the 5 hectare spatial resolution 

severely hampered the classification tree model. While this is important to note, other 

problems at the 5 hectare resolution rendered it undesirable.  The relatively even 

distributions of observations for .07 and 1 hectare circles (Figure 7A) did not indicate 

such problems.   

  In summary, it appears that the CBI based plot location selections influenced the 

proportions of the mortality categories, which in turn affected the performance of the 5 

hectare model, but had little overall impact on the predictive models at .07 and 1 hectare 

spatial resolutions.    
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CHAPTER 2: USING SATELLITE IMAGERY TO MAP POST-FIRE FOREST 
CANOPY MORTALITY CLASSES IN NORTHWEST WYOMING 

 
Keywords:  Remote sensing, Landsat, Burn severity, Canopy mortality, Normalized Burn 
Ratio, Normalized Differenced Vegetation Index, Classification trees. 
 

Abstract 
 

Burn severity mapping using remote sensing has become a standard procedure to 

help resource managers assess the effects of fire on the landscape.  Several remote 

change detection indices, derived from Landsat-5 TM and Landsat-7 ETM+, have been 

used in conjunction with ground plots to produce these maps.  Burn severity is a 

qualitative expression of the extent of ecological change on the ground.  As such, it 

conveys limited specific information about fire effects. Canopy mortality is a more 

quantitative and tangible way to define and map burn severity, better suited for evaluating 

and managing fire effects. This study shows that percent canopy mortality in forested 

areas can be mapped using Landsat TM and ETM+ imagery to provide such a specific 

measure of burn severity for northwest Wyoming.  Binary classification tree models of 

canopy mortality were derived from 694 locations in 23 fires.  Mortality was estimated 

two ways; in the field and remotely with the use of digital orthophotographs.  Predictor 

variables included variations of the Normalized Burn Ratio and Normalized Differenced 

Vegetation Index.  In addition, forest type, topography, and Tasseled Cap 

Transformations were included as predictors.  Mortality was predicted using two, three, 

and five categories to determine optimal model and map precision.    

Models using air photo-based estimates versus field estimates had similar 

misclassification rates but different structures.  Three categories were optimal for 

mapping.  The relative differenced NBR was the best predictor of canopy mortality.  
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Independent testing of a three-category predicted surface indicated 68.5% accuracy 

overall (Kappa 0.45). A simplified model using only dNBR and topography was 60.3% 

accurate (Kappa 0.33).     

Remotely-sensed thematic maps of canopy mortality have great applicability for 

resource managers to assess fire effects to timber, wildlife habitat, hydrologic function, 

recreation potential, and future vegetation growth.  They also will aid in maintaining and 

updating maps of fuels and vegetation in burned areas. 

Introduction 

Wildland fires have significant disturbance effects on the forests of the Rocky 

Mountain West.  It is necessary to locate, measure, and understand the effects of these 

fires in order to conduct appropriate management responses.   Until recently, most public 

land management agencies documented large fire disturbances with maps of ignition 

locations and final perimeters (Morgan et al 2001, Rollins et al 2002).  Mapping 

techniques included a combination of ground reconnaissance, over flights, aerial 

photographs, and more recently Global Positioning Systems (GPS) (Kolden and 

Weisberg 2007).   

The effects of fire are much more complex both spatially and qualitatively than a 

simple perimeter would suggest (Lertzman 1998, Peterson 1998, Turner et al 2003).   It is 

surprising that, until recently, many resource management professionals, researchers, and 

members of the public still considered all forest stands within these fire perimeter to be 

uniformly (and lethally) affected (Turner and Romme 1994), and managed them as such.   

In order to understand the magnitude of fire effects both quantitatively and 

qualitatively, more realistic geospatial maps of burned areas are needed.  Recent research 
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into burn severity mapping using the differenced Normalized Burn Ratio (NBR) and 

Normalized Differenced Vegetation Index (NDVI) with Landsat TM and ETM+ provide 

such remote assessments of fire effects (White et al 1996, Brewer et al 2005, Lentile et al 

2006).  Burn severity is a qualitative term, however, and is used inconsistently (Miller 

and Yool 2002, Jain and Graham 2007).  Burn severity maps are therefore ambiguous in 

their representation of specific fire effects.  

A tangible, specific measure of burn severity, such as percent forest canopy 

mortality, would provide a quantifiable alternative.  This study is an investigation into the 

use of remote sensing to map tree canopy mortality, which is a tangible and quantifiable 

consequence of fire, relevant to management.   Whether or not trees are killed, and where 

stand replacement has occurred are fundamental questions for timber programs, wildlife 

habitat, hydrology, recreation, fire and fuels management, and vegetation mapping.  

Maps of percent canopy mortality in burned areas can be used to address important 

resource management questions.  With the apparent increase in the occurrence of large 

fires in Western North America (Westerling et al 2006) this remotely-obtained 

geographic information becomes even more vital for appropriate resource management.   

 Classification tree modeling was used in this study to predict canopy mortality 

from Landsat (TM and ETM+) imagery and ancillary data.  Geographically-located 

canopy mortality estimates in 23 fires in two national parks and a national forest in 

Northwest Wyoming provided a basis for model development.  Percent tree mortality 

from 694 locations was estimated in two ways, using field evaluation and digital 

orthophotography.   Mortality was categorized according to three systems with five, 

three, and two categories, respectively.  Comparisons of the performance of these levels 
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of detail indicated appropriate precision for mapping.  Several NBR- and NDVI-based 

burn severity indices from Landsat TM and ETM+ images were used as predictor 

variables.  Additionally, Tasseled Cap Transformations, forest type, elevation, slope, 

aspect, and administrative unit were considered as predictors.  

The accuracy of selected canopy mortality mapping models was assessed using 

independent random samples, with error matrices and Kappa statistics (Cohen 1960) 

provided. The results show that Landsat imagery can be used to provide a mapping tool 

for managers, while demonstrating an ecologically significant, tangible measure of burn 

severity for mapping forest fires.  Furthermore, the results demonstrate that it is possible 

to use remote sensing with digital orthophotography to obtain large datasets of canopy 

mortality estimate locations for use in building similar models in other forest ecosystems.    

Background 

The Normalized Burn Ratio (NBR) and Normalized Differenced Vegetation 

Index (NDVI) are two popular multispectral band ratios for discriminating fire effects 

using Landsat TM and ETM+ and other platforms (Lentile et al 2006, Brewer et al 2005, 

White et al 1996).  The NBR is calculated by subtracting the shortwave infrared 

reflectance (Band 7) of an image from the near infrared (Band 4), and dividing by their 

sum (Equation 1) (Key and Benson 2006).  The index is patterned after the NDVI 

formula (Equation 2), however Band 7 (middle infrared) is used instead of Band 3 

(visible red), because it has greater sensitivity to burned soil surfaces (White et al 1996).  

Using either index, change detection between pre fire and post fire images provides an 

indication of fire induced change.  The differenced NBR (dNBR) (Equation 3) and 

differenced NDVI (dNDVI) (Equation 4) pixel values have been shown to increase with 
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burn severity (White et al 1996, Diaz-Delgado et al 2001, Key and Benson 2006, Zhu et 

al 2006).  Because of its sensitivity to both vegetation change and burned soils, the dNBR 

has become the most common method for mapping the severity of burned areas using 

Landsat in North America (Brewer et al 2005, Lentile et al 2006).  Other burn severity 

mapping studies targeting strictly vegetation damage and recovery have used the dNDVI 

(Diaz-Delgado 2001, Hammill and Bradstock 2004).  

Recently a relative dNBR index (RdNBR) has been proposed to better detect 

severe overstory burns (Miller and Thode 2007), especially in rocky or non-productive 

desert areas (Zhu et al 2006).    The RdNBR index (Equation 5) divides the dNBR by the 

NBR of pre-fire vegetation.  A square root transformation is used to adjust for the 

tendency for Band 7 reflectance in burned areas to be inflated, resulting in a curved 

distribution when compared to ground measures of severity (Miller and Thode 2007).   In 

the formula, pre-fire NBR is divided by 1000 because dNBR is multiplied by 1000 for 

integer format.  Relative dNDVI (RdNDVI) can be calculated without the transformation 

because there is no boosting of relative change with the use of Band 3 (Equation 6). 

1000
)7()4(
)7()4( x

bandMidIRbandNearIR
bandMidIRbandNearIRNBR ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+
−

=                               (1) 

1000
)3()4(
)3()4( x

bandredbandNearIR
bandredbandNearIRNDVI ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+
−

=                (2) 

             dNBR = Pre-fire NBR – Post-fire NBR                              (3) 

dNDVI = Pre-fire NDVI – Post-fire NDVI                                          (4) 

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛ −
=

0100/Pr

Pre

eFireNBR

RPostfireNBFireNBRRdNBR                                        (5) 



 

 50

      1000
Pr

Pr x
efireNDVI

VIPostfireNDeFireNDVIRdNDVI ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=                      (6) 

 

Burn severity has been defined in numerous ways, but it is generally expressed as 

the degree of ecological change resulting from a fire (van Wagtendonk et al 2004, Neary 

et al 2005, Key and Benson 2006).  In the field of remote sensing, fire severity is linked 

to the overall magnitude of change determined by the sensors for a given pixel (Hammill 

and Bradstock 2004, Lentile et al 2006).   

Key and Benson (2006) developed a standardized ground-truthing method to 

facilitate for burn severity mapping, called the Composite Burn Index (CBI).  According 

to this method, geographically–positioned field plots are evaluated using a 0-3 severity 

scale that incorporates ocular rankings of substrate, understory, and overstory ecological 

effects.  Circular 20 meter diameter plots are used for ground and understory effects, with 

concentric 30 meter diameter circle for overstory tree effects. The CBI method has been 

widely used to calibrate burn severity maps into low, moderate, and high categories and 

evaluate overall performance of mapping  (van Wagtendonk et al 2004, Cocke et al 2005, 

Zhu et al 2006, Miller and Thode 2007). 

In 2004, the multi-agency Wildland Fire Leadership Council proposed a major 

burn severity mapping project across the United States, entitled Monitoring Trends in 

Burn Severity (MTBS) (Eidenshink et al 2007).   Under this directive, the U. S. Forest 

Service Remote Sensing Applications Center, and the U. S. Geological Service EROS 

Data Center jointly provide atlases of dNBR burn severity maps for all wildland fires 

larger than 1000 acres (500 acres in the East).  RdNBR maps will also be provided in 
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some areas (Eidenshink et al 2007). MTBS burn severity mapping will be retro-active to 

1984, using archived Landsat TM and ETM+ images.   

These Recent advances in burn severity mapping using remote sensing have 

informed fire and resource management in important ways (Eidenshink et al 2007).  A 

basic question of fire effects is usually unanswered, however:  Where was the forest 

overstory killed, and where did it survive?  It seems reasonable to suggest that remote 

sensing could be used to provide such data in map format.  Trees are visible to overhead 

sensors, and NBR and NDVI indices are very sensitive to live versus dead vegetation 

(White et al 1996).  Prior to this study, no attempt has been made to test the utility of 

MTBS mapping products for this purpose.   

Methods 

Study Area 

The public lands of Northwest Wyoming are an excellent laboratory for mapping 

canopy mortality effects in burned areas.  Grand Teton National Park (GTNP), 

Yellowstone National Park (YNP), and the Bridger-Teton National Forest (BTNF) 

together comprise approximately 2.4 million hectares of mountainous land with extensive 

forests.  Five main forest types can be distilled from the diverse floras of the region 

(Steele et al 1983, Bradley et al 1992).  They are dominated by:  Douglas-fir 

(Pseudotsuga mesziesii), lodgepole pine (Pinus contorta), spruce-fir (Picea englemannii 

and Abies lasiocarpa), high elevation spruce-fir (P. englemanii and A. lasiocarpa with 

Pinus albicaulis) and aspen (Populus tremuloides). Each of these forest types has 

different levels of vulnerability to fire (Bradley et al 1992) ranging from very resistant 

Douglas-fir to easily killed spruce-fir and aspen.  
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Since the historic 1988 Yellowstone fires burned over 250,000 hectares in one 

season (Turner et al 1994), more and larger forest fires have occurred in the study area.  

A series of very dry summers between 2000 and 2003 caused approximately two dozen 

major fires in YNP, GTNP, and BTNF.  As part of pre-MTBS investigations, the 

National Park Service and U.S. Geological Survey provided dNBR imagery to help map 

the severity of these fires.  Local fire effects monitoring field crews conducted over 700 

CBI plots to assist with severity calibration.   

Data Preparation  

Percent canopy mortality was the dependent variable in binary classification tree 

model development.  It was estimated at 694 CBI plot locations in 23 fires in YNP, 

GTNP, and BTNF that occurred between 2000 and 2003. Field crews estimated canopy 

mortality at many of these locations as part of CBI plot protocols (Key and Benson 

2006).  This data collection took place in first or second year following the fire, 

depending on field crew availability.  Plots were located in the 23 fires in an attempt to 

capture a wide range of severity levels and forest types (Key and Benson 2006).   

A second, remote method was investigated to make canopy mortality estimates, 

using digital aerial photographs (with 1 meter resolution) for these same locations.  True 

color (2006) and color infrared (2001-2002) images 1 meter pixel resolution were 

available for post-fire mortality assessments over the entire study area.  Percent tree 

mortality was estimated to the nearest 5% for circular areas of 30 meter diameter 

projected over the 694 CBI plot locations on the aerial photographs using ArcGIS.  

Comparison of model results using both field and air photo estimates will indicate 

options for similar studies in other ecosystems.  Field estimates are expensive, but can 
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better detect individual dead trees.  GPS errors can be large, however, particularly in 

heavily forested locations.  Air photo estimates require timely photography and may 

introduce interpretation error, however.  Some misregistration occurs with such 

orthphotographs and between them and satellite imagery.  Finally, depending on timing, 

field and air photo estimates may represent different conditions due to delayed tree 

mortality.    

All canopy mortality estimates for the 694 locations were classified into groups 

according to three systems; with five, three, and two categories each (Table 1, Figure 1).  

With both field-based and photo-based estimates of canopy mortality, and three 

classification systems, a total of six combinations were used to generate predictive 

models. 

 
Table 1.  Three systems used to categorize canopy mortality estimates used as the 
dependent variable in predictive mapping. 

 
Five Categories: Three Categories: Two Categories: 
 
A 0 % 
B 5-25 % 
C 30-75 % 
D 80-95 % 
E 100 % 

 
X 0-20 % 
Y 25-75 % 
Z 80-100 % 

 

 
0 0-75 % 
1 80-100 % 
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0-20%    25-75%    80-100%

Canopy Mortality Group Breakdowns for 694 Locations

0-75%      80-100%0%    5-25%   30-75%   80-95%  100%

5 Categories                                3 Categories        2 Categories

121

293

112

90

78

Air Photo Estimates                     Air Photo Estimates     Air Photo Estimates

414

145

135
414

280
 

Field Estimates                               Field Estimates Field Estimates

424

270
424

136

134
311

72

113

128

70

 
Figure 1.  Pie charts showing the numbers of plots in each mortality category in the 
training data for three classification systems used in classification tree modeling.  
Note there are more observations in the higher percent mortality classes.   

 
 

Pre- and post-fire Landsat TM and ETM+ 6-band scenes and individual fire 

subsets for dNBR were downloaded from the United States Geological Survey (USGS) 

EROS Data Center Website (http://burnseverity.cr.usgs.gov/).  The post burn imagery 

used was obtained at least one full growing season after the fires, according to Extended 

Assessment protocols (Key 2005, Key and Benson 2006). All images were terrain 

corrected and geometrically rectified using ground control points and digital elevation 

models according to the National Landsat Archive Production System (NLAPS) 

protocols, with Bands 1-5 and 7 converted to at satellite reflectance (Eidenshink et al 

2007).    NBR and NDVI for pre and post fire were generated using the Image Analysis 

Extension for ArcGIS 9.1.  Pre-fire TCT brightness, greenness, and wetness were created 

using ERDAS Imagine 9.1.  
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  The 23 fires included in this study occurred over four summers in a geographic 

area covering three Landsat scenes.  A total of 11 pre- and post-fire pairs of images were 

needed to generate the Extended Assessment (Key 2006) burn severity indices for all 23 

fires.  These indices included dNBR, post-burn NBR, RdNBR, dNDVI, and RdNDVI.   

In order to combine the 23 fires for analysis, DNBR and dNDVI subsets were 

standardized by subtracting the mean differences of pixels sampled in unburned areas 

adjacent to each fire (Key 2006).  Relative indices (RdNBR and RdNDVI) were 

calculated using these.   

Additional data included Pre-fire Tasseled Cap Transformation (TCT) bands 

(Crist and Cicone 1984), topography, and forest type (Table 2).   TCT brightness, 

greenness, and wetness were derived from pre-fire Landsat TM and ETM+ 6-band 

imagery using Erdas Imagine 9.1.  Elevation, slope percent, and aspect were produced 

from 30 meter Digital Elevation Models (DEM).  The forest type layer was generated 

from pre-fire vegetation maps of YNP and GTNP, and BTNF.   The five types mapped 

were Douglas-fir, lodgepole pine, spruce-fir, high elevation spruce-fir, and aspen.     

All GIS data layers were converted to UTM NAD 83 Zone 12N.  A mosaic of 

raster subsets for all 23 fires in the study area was made for each predictor variable used. 

A geographic intersection of these mosaic layers was used to extract pixel values for the 

694 CBI plots, resulting in a spreadsheet dataset for comparison with canopy mortality 

estimates.    
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Table 2.  Geospatial predictor variables used in classification tree model development for 
predicting canopy mortality in burned areas of northwest Wyoming.   

 
Predictor Variable  Source      Range of Values 
Normalized Burn Ratio 
(NBR)  Post Fire 

7 scenes (2001 – 2004) Landsat TM 
and ETM+ 

-507.4 – 722.6 
 

Differenced Normalized 
Burn Ratio (dNBR) 

11 pairs of scenes (1999 – 2004) 
Landsat TM and ETM+ 

 -242.4– 1125.3 
 

Relative differenced 
Normalized Burn Ratio 
(RdNBR) 

11 pairs of scenes (1999 – 2004) 
Landsat TM and ETM+ 

-17,655.2 – 6067.7 
 

Differenced Normalized 
Differenced Vegetation 
Index (dNDVI) 

11 pairs of scenes (1999 – 2004) 
Landsat TM and ETM+ 

-69.3 – 582.9 
 

Relative differenced 
Normalized Differenced 
Vegetation Index 
(RdNDVI) 

11 pairs of scenes (1999 – 2004) 
Landsat TM and ETM+ 

-266.6 – 3811.2 
 

Tasseled Cap Brightness – 
Pre-fire 

9 scenes (1999 – 2002) Landsat TM 
and ETM+ 

 54.0 – 168.0 
 

Tasseled Cap Greenness – 
Pre-fire 

9 scenes (1999 – 2002) Landsat TM 
and ETM+ 

-1.0 – 78.0 
 

Tasseled Cap Wetness – 
Pre-fire 

9 scenes (1999 – 2002) Landsat TM 
and ETM+ 

-43.0 – 16.0 
 

Elevation (m) USGS 30 meter DEM 1760.9 – 3056.3 

Aspect   USGS 30 meter DEM  0 – 358.2 

Slope Percent USGS 30 meter DEM   .5 – 73.8 

Pre Fire Forest Type GTNP, YNP, and BTNF vegetation 
maps.  Converted to raster,   Reclassified 
to 5 forest types and non-forested. 

1 = Douglas-Fir 
2 = Spruce – Fir 
3 = High Elev.Spruce – Fir 
4 = Lodgepole Pine 
5 = Aspen 
6 = Non-forested 

 

Classification Tree Model Development 

Classification and Regression Tree (CART) methods were used to predict percent 

canopy mortality using the CBI plot estimates and predictor variables.  CART is an 

increasingly popular predictive modeling method made possible by powerful computer 

processors (Lawrence and Wright 2001).  The process works by generating a series of 

binary splits (or branches) according to an iterative process that selects a break point in a 
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single predictor variable that maximizes the reduction in overall deviance (Urban 2002).  

The same step is then applied to the resulting groups until specified criteria are met, and 

the tree is complete.    

Classes of canopy mortality are categorical by definition, so the CART process 

produced “classification trees.” with class membership predicted for each observation in 

the training dataset.  A numeric dependent variable would generate “regression trees,” 

which predict average values.  With classification trees, each terminal node (or “leaf”) is 

assigned a class, and the percent of correct versus incorrect classifications is given.  Most 

CART software packages provide a graphic that shows the branch configurations, the 

split statistics, and leaf labels that resembles a tree.  These diagrams function as a 

decision tool, much like a diagnostic key, that can be used to make predictions with new 

observations.  Classification and regression trees usually need to be “pruned,” because 

they are over fitted to the training data (Hansen et al 2000).    The lowest branches of a 

tree model tend to be the least reliable because they are associated with noise in the 

training data (Urban 2002), so pruning can actually reduce the errors made on an 

independent test (Mingers 1989, Lawrence and Wright 2001, Sanchez-Flores and Yool 

2004).  Pruning tree models also helps to simplify them and make them easier to use 

(Esposito et al 1997, Amatulli et al 2006).   

The open source statistical program R Version 2. 4. 1 was used with the “Tree” 

package for generating classification trees for this study (R Development Core Team 

2006).  The Tree package chooses optimal splits by comparing reduction in deviance. 

The default stopping criteria are 10 total observations in a node, or the deviance is less 

than 1% of the total dataset deviance.  A 10-fold cross validation algorithm was used to 
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produce plots of deviance versus tree size.  Trees were pruned to the number of nodes 

with the lowest residual mean deviance according to ten iterations of the cross validation 

process.  

Accuracy Assessment 

Selected classification tree models were used to generate predicted surfaces in 

GIS.  The accuracy of these maps was tested in comparison to a new set of 300 random 

locations in three fires (100 locations per fire) where canopy mortality was estimated 

using true color and color infrared digital orthophotography. The three fires included the 

Blind Trail fire in the BTNF, the Wilcox fire in GTNP, and the Broad fire in YNP.  Error 

matrices were generated by comparing these estimates to predicted surfaces made from 

the preferred classification tree models.      

When remotely-sensed reference data (such as aerial photographs) are used in 

accuracy assessment, there is potential for additional error.  In particular, misregistration, 

photo interpretation, and timing differences can complicate accuracy evaluations, making 

them conservative (Verbyla and Hammond 1995, Kalkhan et al 1998, Foody 2002).     

Figure 2 shows the process steps used in data preparation, modeling, mapping, 

and accuracy assessment of canopy mortality using two methods to obtain the training 

datasets and three different classification systems.  
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Canopy mortality 
estimates for 694 CBI 
field plots in 23 fires 

Canopy mortality 
estimates made using 
digital orthophotos 
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dNBR
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Assessment Data:
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1       2      3
1  
2   
3

1       2      3
1  
2   
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Figure 2.  Process steps utilized in development and evaluation of predictive models 
based on two data collection methods for mapping three canopy mortality classification 
systems in burned areas of Northwest Wyoming. 
 
 
 

Results and Discussion 
 

Six initial tree models were developed using three different classification systems 

and both field- and photo-based canopy mortality estimates (Table 3, Figure 3).   

Differences are apparent in both tree structure and misclassification rates among the 

models.    

Classification Tree Model Structure: 
 

All six tree models generated use the RdNBR as the primary split variable for 

predicting canopy mortality (Figure 3).  The CART algorithm compared the deviance 

reduction at all possible thresholds for all predictor variables, and in each case RdNBR 
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was the best predictor at the broadest level.  The relative index highlights the proportion 

of reduction in dNBR rather than the absolute reduction, so it is more sensitive to subtle 

differences distinguishing canopy mortality categories.   

 

Table 3.  Summary of six tree models used to predict canopy mortality in burned areas.  
Model misclassification rates are based on observed versus predicted categories in the 
training dataset. 

 

Mortality 
Categories 

 
Source of   
Estimate 

Misclassification  
Rate  

Main predictor  
(first split) 

Other predictor 
variables used 

 
Categories of 
first split 

5 Field 43.5 % 
* 5-25%  and  
80-95% categories  
not predicted 
 

RdNBR Elevation 
dNBR  
 

30-75% 
vs. 

100% 

3 Field 27.4% RdNBR Elevation 
dNBR 

80-100% 
vs. 

80-100% 
2 Field 18.0% RdNBR dNBR 

Elevation 
NBR post fire  

0-75% 
vs. 

80-100% 

5 Air 
Photos 

42.9% 
* 80-95% category  
not predicted   

RdNBR Elevation 
NBR post fire 
RdNDVI 
dNBR 
 

0% 
 vs.  

100% 

3 Air 
Photos 
 
 

26.4% RdNBR Elevation, 
dNDVI 

0-20% 
 vs.  

80-100% 

2 Air 
Photos  
 

19.3% RdNBR Elevation 
dNDVI 
NBR post fire  

0-75% 
vs. 

80-100% 

  
 

When the six tree models were pruned to show the results of the first split, they 

showed that RdNBR was not separating the same pairs of groups (Table 3).  The initial 

split in the field-based model with three categories results in the 80-100% mortality 

category for both sides. Because classification trees choose splits that most reduce 

deviance in the dataset, this first split shows that there is considerable variability within 
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the RdNBR reflectance of stands estimated by field crews to be over 80% killed.  Likely, 

these differences are characterized by high severity crown fires that kill all of the trees 

versus surface fires that kill most of them.  Because field estimates were made by looking 

at the appearance of the forest one year post fire, it is possible that trees thought to be 

lethally burned may have actually survived.  If such locations were categorized as over 

80% mortality in error, this would increase the variability in the reflectance 

characteristics of this category.  Consequently, the deviance within this category would 

also be larger.  

 

Five Categories Three Categories Two Categories

←dNBR < 641.29

E E

←RdNBR < 705.34

←RdNBR < 111.97

←Elevation
< 641.29

AA
EE

←RdNBR < 705.34

←Elevation
< 2265.51

←RdNBR < 214.76 ←dNBR < 217.81

YY
XX

ZZ

ZZYY

←RdNBR < 692.08

←NBR post fire
< -256.97←Elevation 

< 2454.64

←dNBR < 217.81←dNBR < 107.11

00
00

0011
11 11

CC

←RdNBR < 350.495

←Elevation
<1995.83

←RdNBR 
<147.86

←Elevation
<1918.32

←dNBR < 352.9
←RdNDVI < 852.26

←NBR post fire 
< -170.13

AA

EE
EE

EE

EE

CC

BB EE
←dNDVI < 228.62

←RdNBR < 357.72

XX
YY

ZZZZ
ZZZZ

ZZ
←Elevation

< 2011.53

←Elevation < 2436.6

←RdNBR < 147.86

←RdNBR 
< 1353.07

0%             5-25%              30-75%  0-20%         25-75%         80-100% 0-75%             80-100%XX YY ZZ 00 11

Ph
ot

o 
ba

se
d 

Es
tim

at
es

   
   

   
   

   
   

   
   

   
   

  F
ie

ld
 B

as
ed

Es
tim

at
es

00
00

11
11

11 11 11 11

←NBR post fire <-129.06

←RdNBR 
< 1353.07

←dNDVI < 228.62
←Elevation

< 1951.29

←RdNBR<152.18

←RdNBR < 357.72

←Elevation
< 1916.13

80-95%           100%EEDD
AA BB CC

 
Figure 3.  Classification tree diagrams for models based on field- and photo-based 
estimates with five, three, and two categories of canopy mortality.  Note that in the five 
category models and photo-based three category model, elevation thresholds limit the 
predictions of middle mortality levels.   
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 The field estimate-based model using five mortality categories differentiated the 

30-75% group from the 100% group with the first split.  Thus, there was once again more 

variability between the RdNBR of a mixed-mortality category and 100% mortality.   

Dividing these two groups reduced the deviance more than separating unburned forest 

from 100% killed forest.  The most likely reason for this was the distribution of the 

training data. Classification tree models are sensitive to the proportions of observations in 

each category (Lawrence and Wright 2001).  As Figure 1 shows, only 72 of 694 

observations had 0% mortality. The RdNBR thresholds were also much higher for the 

field-based model initial splits (Figure 3), which corresponds to a separation occurring at 

a higher severity level, such as would be expected within the higher percent mortality 

class.    

The first splits in the photo-based models have more intuitive results (Table 3). 

The two category model differentiated 0-75% from 80-100% canopy mortality at the first 

node.  The three category tree split the 0-20% group from the 80-100% group, and the 

five category model split 0% from 100% mortality.  The thresholds of these splits were 

also more centrally located in the range of RdNBR values (Figure 3). 

Lower branches in the classification trees split according to different predictors 

and threshold values depending on whether field or photo estimates were used, and how 

many categories were assigned.  More branches remained after pruning in the photo-

based models.  This may indicate that cross-validation eliminated fewer relationships 

linked to noise in the dataset when the photo based estimates were used.   

All three models based on air photo estimates featured NDVI indices as split 

variables, while none of the field estimate models included it (Table 3, Figure 3).   NDVI 
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is more sensitive to plant photosynthesis and living biomass (White et al 1996) than 

NBR, and therefore would best highlight vegetative changes.  In estimating canopy 

mortality for the 694 locations, the photo method also depended on visible changes in 

living vegetation (particularly with color infrared images).  Field estimates, on the other 

hand, involved examination of tree scorch, char, and girdling, which occur in the 

understory and are less directly associated with NDVI.  The use of NDVI in the photo 

based models therefore may be at least partially linked to the estimation method.    

Based on these patterns in tree model structure, it appears that estimating canopy 

mortality from digital aerial photographs was better suited to predictive modeling than 

field CBI plot estimates.   A comparison of percent mortality observations made at the 

694 locations using field estimates versus digital orthophotograph estimates yielded a 

correlation coefficient of .84.  Differences probably resulted from a combination of GPS 

registration errors, delayed mortality, and different observer perspectives.  Using the  

orthophotograph method, canopy mortality estimates are better co-registered with 

predictor variables, and larger sample sizes can be obtained rapidly at low cost.   

Landsat burn severity satellite indices (RdNBR, dNBR, NBR post fire, dNDVI 

and RdNDVI) and elevation were the only variables used by the pruned classification tree 

models to predict canopy mortality in burned areas.   Despite the relationships between 

fuel loading and fire behavior (Countryman 1972), TCT brightness, greenness, and 

wetness were not featured in any of the models.  Slope and aspect were also unused. 

Vegetation types are fundamentally linked to fuel characteristics (Anderson 1982), as 

well as vulnerability to mortality from fire (Wright and Bailey 1982), however forest type 

was not included in any of the pruned classification tree models.  The forest type that 
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would be expected to differ most from the others would be deciduous aspen, but with 

only 55 aspen CBI plots, the dataset may have been too small to demonstrate this 

relationship.    

Elevation played a perplexing role in several of these classification tree models 

(Figure 3).  In many cases, classes of partial canopy mortality could only occur above 

certain threshold elevations due to binary splits in this predictor variable.  Observations 

of partial mortality were found at all elevations in the dataset, however.  While it operates 

awkwardly as a predictor variable, it may represent a relevant relationship in terms of fire 

effects.  Fire spread is limited at high elevations by sparse fuels, open canopy growth, 

higher relative humidity, and moister fuels (Turner and Romme 1994).  When fire 

behavior is constrained in this way, mixed tree mortality would be more likely to occur.  

Classification Tree Model Performance 

The tree models using five categories of canopy mortality had the highest overall 

misclassification rates (43.5 and 42.9 %). These models were unable to derive predictions 

for all five levels (Figure 3, Table 3). Even without pruning, no observations fell into the 

80-95% mortality category in either model, although the dataset contained 113 and 121 

cases for this level.  Similarly, the 5-25% category was not predicted by the field-based 

tree despite 70 observations.  The training dataset used in this study appears to have been 

too small to make classification models with five levels.    

 The tree models with the lowest misclassification rates (18.0 and 19.3%) were 

used to predict only two categories of canopy mortality.   The distribution of two 

categories (0-75% and 80-100%) is less useful for understanding fire effects on the 

landscape, however (Agee 1998, Lertzman 1998).  Maps with this binary information 
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would lack detail about important mixed-lethal fire effects that impact wildlife habitat, 

fuel loading, recreation, and hydrologic function, among other resources (Turner et al 

1994, Ryan 2002). At worst, these two-category maps could lead to questionable resource 

management decisions.  Based on model performance and utility for resource 

management, the three-category approach is the most appropriate choice for thematic 

mapping of canopy mortality in burned areas.   

Model misclassification rates are similar for field- and photo-based models (Table 

3).  For the three- and five-category trees, the photo based models have slightly fewer 

errors, while the two-category tree using field estimates was more accurate by a small 

margin.   

Accuracy assessment of tree model performance with independent data was 

necessary to further explore the potential for canopy mortality mapping beyond the 

training dataset.  The three-category model based on mortality estimates from digital 

orthophotos was selected.   This “Best Tree” was used to generate a predicted surface for 

the study area, and compared to a simple random sample of 300 locations in the Broad, 

Wilcox, and Blind Trail Fires (Figure 5, Table 4).  

Additionally, a second three-category model surface was derived using a 

simplified set of predictors easily obtained by resource managers.  Since the MTBS 

program will be providing dNBR maps for large fires as a standard procedure, it may be 

more feasible to map canopy mortality with this burn severity index alone.  Without 

proper software it is difficult to acquire many of the predictor variables used in the Best 

Tree model, particularly the NDVI.  The “dNBR Only Tree” model provides an 

alternative that uses elevation, aspect, and dNBR (Figure 4).    
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dNBR Only Tree Model 

←dNBR < 99.99
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←Aspect < 138.04

XX

YY
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Figure 4. The dNBR Only Tree model also 
shows elevation as a limiting factor in 
mapping the 25-75% mortality category.   

 
A predicted surface for the dNBR Only Tree model was also generated for 

accuracy assessment (Figure 5, Table 4) Some accuracy was lost according to the 

independent test for the dNBR Only Tree.  Although the model misclassification rates 

were similar, the best tree (68.5% accuracy, Kappa 0.45) outperformed the dNBR only 

tree (60.3% accurate, Kappa 0.33).   
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Figure 5. Error matrices for predicted model surfaces compared to reference data 
from mortality estimates made using digital orthophotos.  Eight of 300 locations were 
excluded because they returned no data from predicted surfaces due to non-forested 
locations.  
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Both models accurately predicted the 80-100% morality category.  The producer’s 

accuracy shows that 92.1% of this category was correctly identified on the maps using 

the best tree model (80.1% for the dNBR only tree). The most severe burn patches are 

usually larger and more uniform (Turner at al 1994, Hudak et al 2004), and are therefore 

easily detected by remote sensors using burn severity mapping indices. Also, the training 

dataset was rich in observations for this category.   

 
Table 4.  Accuracy assessment results comparing predicted surfaces 
and random locations for the 3-category Best Tree and dNBR Only 
tree models.    

         A.  Best Tree B. dNBR Only Tree 
  

Misclassification Rate 
 

26.4% 
 

27.4% 

 Overall Accuracy 
Assessment 

68.5% 60.3% 

 Accuracy 0-20%  
                    User’s: 
                    Producer’s: 

 
67.7% 
60.9% 

 
55.4% 
66.7% 

 Accuracy 25-75%  
                    User’s: 
                    Producer’s: 

 
50.0% 
25.4% 

 
21.9% 
9.9% 

 Accuracy 80-100%  
                    User’s: 
                    Producer’s: 

 
72.2% 
92.1% 

 
69.5% 
80.9% 

 Kappa 0.45 0.33 

 Main predictor  
(first split) 

RdNBR dNBR 

 Other predictor  
variables used 

Elevation 
dNDVI 

Elevation  
Aspect 

 
 

The user’s and producer’s accuracies for the 0-20% category were lower, ranging 

from 55.4% to 67.8%.  The middle category of 25-75% mortality had the poorest 

accuracy.  According to Key (2006) burn severity maps using dNBR also tend to be least 
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reliable in moderately burned areas.  Only 25.4% of the burned area with this level was 

correctly mapped using the best tree (9.9% for the dNBR only tree model).   The greatest 

confusion occurred due to misclassification of this level as 80-100%.   Several published 

burn severity mapping studies have also noted that low and moderate levels are most 

difficult to map accurately with Landsat imagery (Bobbe et al 2001, Miller and Yool 

2002, Cocke et al 2005, Key 2006, Lentile et al 2006). 

Elevation thresholds may also be contributing to the inaccuracy in the mapping of 

25-75% canopy mortality.  According to the best tree model the 25-75% mortality 

category can only occur above 2011.5 meters (Figure 3).  The dNBR-only model requires 

2436.6 meter elevation to achieve this category (Figure 4).   

Predicted surfaces generated for all 23 fires in the study area were summarized to 

compare the relative proportions of each of the three mortality categories within fire 

perimeters (Figure 6).  The dNBR tree model predicted more of the area within the burn 

perimeters as the 0-20% mortality class, while the best tree predicts more area in the 80-

100% category. Accuracy assessment indicated that the dNBR tree had greater accuracy 

in the 0-20% category, while the best tree was more accurate for the 80-100% category.  

Similar proportions were predicted for the 25-75% category.  
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Figure 6. Percentages of each of the three mortality categories in all 23 
of the fires using the predicted surfaces from the tree models.   
 

 
 

Summary and Conclusions 
 

This study has shown that percent canopy mortality can be effectively mapped 

using remote sensing data in burned areas of northwest Wyoming forests. Accuracy 

assessment with independent samples showed that burned forests with over 80% 

mortality are particularly well detected.  While the middle mortality category mapping 

has lower accuracy, knowing its distribution is important for management and ecological 

understanding.    

Predictive modeling using classification trees allowed comparison of several 

popular Landsat indices based on NBR and NDVI.  The RdNBR was most effective for 

reducing deviance in the estimated canopy mortality categories.   

None of the models generated in this study utilized pre-fire TCT bands or forest 

type data.  This indicates that canopy mortality models using MTBS products are 
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potentially useful across a wide range of forest landscapes, perhaps beyond the study 

area. 

Classification tree models perform best with large and evenly distributed datasets.  

The effect of fewer observations in the lower mortality categories was evident in tree 

model structure and performance.  Furthermore, as more mortality categories were used, 

misclassification rates increased drastically.  A total of 694 observations in the dataset 

was insufficient for mapping five mortality categories.  This indicates that many more 

observations would be needed if a continuous scale of mortality (rather than classes) were 

to be predicted.   

 Tree models compared the use of field estimates of canopy mortality in model 

development to estimates obtained for the same locations using digital aerial photography 

(true color and color infrared).  The field- and photo-based estimates of mortality differed 

in both perspective and time since fire.  GPS errors caused locational differences as well.  

Mortality estimates depended primarily on the overhead visibility of living canopy 

foliage.  Field estimates, on the other hand, were made from the ground, within one or 

two years post fire.  Tree mortality was assessed according to bole char as well foliage 

appearance.  Delayed tree mortality, post-fire regrowth, and soil color would vary 

considerably depending which of these sources was used.   

Misclassification rates for models based on the two estimation methods were 

similar; however tree model structure using field estimates revealed inefficient partitions 

in the first splits.   These models also may represent less utility outside of the training 

data, because cross-validation indicated pruning to fewer total nodes.  If timely imagery 
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is available, photo-based mortality estimates would be both economical and 

advantageous for obtaining large datasets.  

Predicted map surfaces using the simplified dNBR only tree models were 60.3% 

accurate according to independent testing. While this is lower than the best tree accuracy 

(67.7%), some resource managers may prefer the more available data to map canopy 

mortality in burned areas.  The reduced level of accuracy may be acceptable for some 

applications. Given the availability of dNBR products for burn severity mapping through 

the MTBS program, and the ease of obtaining elevation and aspect grids, this appears to 

be a reasonable approach.  Overall proportions of mortality categories in the predicted 

surfaces were similar between the best tree and dNBR only tree (Figure 6).    

In conclusion, Landsat TM and ETM+ remote sensing can be used in conjunction 

with classification trees in a relatively simple mapping process for canopy fire effects.  

This method will enable fire and resource managers and researchers to create thematic 

maps of tangible, measurable, and ecologically important effects on the ground.  These 

maps add great value to conventional burn severity assessments, such as those provided 

by the MTBS program (Eidenshink et al 2007) because they provide specific and 

quantitative data that can be used for applications such as hydrologic models, updates for 

fuels and vegetation maps, succession models, and habitat assessments. With advances in 

higher resolution satellite and airborne imagery as well as spectral unmixing (Smith et al 

in press, Robichaud et al 2007, Lentile et al 2006), such mapping will undoubtedly 

improve.    
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CHAPTER 3:  
MAPPING CANOPY MORTALITY IN BURNED LANDSCAPES OF 

NORTHWEST WYOMING, USA:  EFFECTS OF CHANGING SPATIAL 
RESOLUTION 

 
Keywords:  Remote Sensing, Landsat, Spatial Resolution, Positional Accuracy, Fire 
Regime, Normalized Burn Ratio, Classification Trees.     
  

Abstract 

Thematic maps made using remote sensing reflect the relationships between 

landscape pattern sizes and shapes and the spatial resolution of the imagery.  Burn 

severity maps made using Landsat TM and ETM+ multispectral sensors are therefore 

subject to the advantages and limitations of 30 meter pixels.  The resolution and degree of 

positional accuracy attainable impact the information contained in the maps.  Fire effects 

that occur at scales larger than 30 meters square are most likely to be captured.  This 

study examined how changing spatial resolution affected accuracy and thematic content 

of Landsat-derived maps of forest canopy mortality, an index of burn severity, in burned 

areas.  

Classification tree models were used to predict and map percent overstory tree 

mortality in 23 fires in northwest Wyoming at three spatial resolutions (.07, 1. and 5 

hectares).  Independent variables included several variations of the Landsat TM and 

ETM+ Normalized Burn Ratio (NBR) and Normalized Differenced Vegetation Index 

(NDVI), as well as ancillary geographic data.  The three spatial resolutions resulted in 

models that used different remotely-sensed burn severity indices as primary predictors.  

The .07 hectare analysis (with unfiltered 30 meter Landsat TM and ETM+ pixels) 

provided the highest accuracy (68.5%, Kappa 0.45).  The 1 and 5 hectare models were 

less effective because of patch aggregation and unbalanced categories in the input data.   
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The highest percent mortality class, representing crown fire, was mapped most accurately 

at all spatial resolutions. The middle class with partial canopy mortality was poorly 

predicted.  These areas were most vulnerable to the homogenizing effects of spatial 

aggregation at coarser resolutions, due to their inherent patchiness.   

Fire behavior processes responsible for killing trees occur according to surface 

and crown fires along a continuum of increasing intensity and patch size as part of the 

fire regime of the Northern Rocky Mountains.  Surface fires tend to exhibit 

heterogeneous effects at finer scales due to environmental variations under typical 

weather patterns.  Crown fires spread rapidly, leaving large homogeneous patches.  A 

drought and wind threshold marks the transition from one process to the other.  The 

results of this study indicate that the spatial resolution of Landsat TM and ETM+ sensors 

is effective for mapping the distribution of crown fire, but cannot adequately detect 

smaller canopy mortality patterns associated with surface fire. 

Introduction 

 This study examined effects of changing spatial resolution on modeling and 

mapping fire effects in northwest Wyoming using Landsat (TM and ETM+) remote 

sensing.  Geospatial models were made using binary classification trees, at three spatial 

resolutions (.07, 1, and 5 hectares).  The results demonstrate the capabilities and 

limitations of remote sensing for mapping burned areas across a continuum of fire 

processes and resulting patterns.   

Recent advances in remote sensing using Landsat TM and ETM+ and other 

platforms to map burned areas have led to widespread adoption of government-sponsored 

burn severity mapping programs (Eidenshink et al 2007).  These maps are used by fire 
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managers to document fire perimeters in remote areas, estimate smoke emissions, 

prioritize soil stabilization treatments, and other post-fire activities (Isaev et al 2002, 

Hudak et al 2004, Lentile et al 2006).  Furthermore, they have facilitated ecological 

analyses of the spatial patterns of fire and the processes that create them (e. g. Duffy et al 

2007, Thompson et al 2007). 

Burn severity is equated with the degree of ecological change due to fire (Neary et 

al 2005, Key and Benson 2006), and as such is a qualitative (and inconsistent) measure 

for comparison across ecosystems (Brewer et al 2005, Lentile et al 2006).  To allow a 

more quantitative approach to mapping fire effects, this study used percent canopy 

mortality as a measure of burn severity.    

Predictive models of canopy mortality were created using 694 circular training 

plots located in 23 fires in Grand Teton National Park (GTNP), Yellowstone National 

Park (YNP), and the Bridger-Teton National Forest (BTNF). The fires occurred between 

2000 and 2003.  Estimates of percent mortality from these locations were derived from 

digital orthophotographs, and compared to several popular Landsat TM and ETM+ burn 

severity detection indices and ancillary data in a Geographic Information System (GIS).  

Model-based geospatial raster surfaces were tested against a random sample of 300 

locations in three of the fires.  

In the northern Rocky Mountains, fire behavior operates along a continuum from 

individual fuel particles smoldering, to square kilometers of forest exploding in an 

independent crown fire (Countryman 1972, Ryan 2002).  When fine fuel moistures are 

moderate and winds are light, local variations in the fire environment lead to inconsistent 

fire spread and heterogeneous burn patches (Turner and Romme 1994, Miller and Urban 
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2000). The spatial patterns of overstory tree mortality are therefore heterogeneous 

according to these factors (Turner et al 1994, Hudak 2004ab, Rocca 2004). Above a 

certain drought and wind threshold, fire behavior is subject to conditions that operate on a 

much larger scale (Bessie and Johnson 1995).  These crown fire patches are equally large 

and homogeneous (Turner et al 1994).   

To best map landscape disturbances using remote sensing, such as burned 

overstory trees, data should be collected at the same resolution as the operational scales at 

which the phenomenon, in this case fire, operates (Levin 1992, Cao and Lam 1997, 

Marceau 1999).   

Fire effects on forests range in size from individual tree girdling or torching to complete 

blackening of entire landscapes (Agee 1998).  These fire patterns are linked to fire 

behavior processes, determined by fuels, weather, and topography (Countryman 1972).  

Ideally, remote assessments of fire effects would be capable of discerning all of 

the scales of operation that correspond to fire behavior (Moody and Woodcock 1995, 

Lertzman et al 1998, Peterson 1998). The multispectral reflectance values derived from 

Landsat are averaged over 30 meter square pixels, however, which affects the ability to 

distinguish burned surfaces depending on their patch size and arrangement (Turner et al 

1989, Bobbe et al 2001, Key 2006, Lentile et al 2006).   

The use of remote sensing to map fire patterns is also complicated by positional 

inaccuracy of the imagery.  Remotely-sensed layers in a GIS are subject to 

misregistration up to three pixels in either direction (Goodchild 1994).  When change 

detection between two images is used, this is compounded, and considerable thematic 

errors can result (Dai and Khorram 1998, Townshend et al 1992, Verbyla and Boles 
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2000).  In order to compensate, moving window filters are frequently used (e. g. van 

Wagtendonk et al 2004, Key and Benson 2006, Miller and Thode 2007), which change 

each pixel value to an average of some number of surrounding pixels.  In this process, 

spatial resolution is further decreased (Verbyla and Boles 2000).  

This study examined how Landsat 30 meter pixels captured the patterns of canopy 

mortality (using the .07 hectare spatial resolution), and what happened when additional 

spatial aggregation was applied to improve positional accuracy (1 hectare resolution).  

The 5 hectare resolution analysis illustrated the risks of extremely coarse analysis for 

mapping fire effects for ecological analysis and management purposes.  

 The performance of the classification tree models showed that canopy mortality 

can be mapped using remote sensing.  Model structure and results differed, however, 

according to spatial resolution and the type of fire behavior involved.  The ideal spatial 

resolution for making canopy mortality maps was indicated to be a compromise between 

minimum grain size and positional accuracy.  

Background 

Burn Severity Mapping with Satellite Imagery 

Since the 1980’s several methods of imaging burned areas from space and aircraft 

have been used to map burn severity worldwide (Lentile et al 2006).  In the United States, 

the Normalized Burn Ratio (NBR) of Landsat TM and ETM+ imagery (Equation 1) has 

become the standard approach (Eidenshink et al 2007). The NBR is an index of near 

infrared (Band 4) and middle infrared (Band 7) reflectance that contrasts the 

characteristics of green vegetation and bare soil (White et al 1996).   
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The NBR of a post fire image is subtracted from that of a pre-fire image to detect 

change.  The differenced NBR (dNBR) (Equation 2) is calibrated to burn severity by 

comparing it with ground measures, such as the Composite Burn Index (CBI) plots 

developed by Key and Benson (2006) (e. g. van Wagtendonk et al 2004, Cocke et al 

2005, Zhu et al 2006, Miller and Thode 2007).    

                           dNBR = Pre-fire NBR – Post-fire NBR       (2) 

DNBR maps are categorized according to low, moderate, and high levels of 

ecological change for thematic mapping.  With dNBR from pre- and immediate post-fire- 

image pairs, ‘Rapid assessments’ of severity provide maps for soil rehabilitation (Bobbe 

et al 2001) and other time-sensitive management (Key 2006).  More accurate maps of 

burn severity (‘Extended Assessments’) are made using post-fire NBR from images that 

show at least one growing season of vegetative recovery (White et al 1996, Key 2005).  

The dNBR has been adapted for sparsely-vegetated burned areas in California by 

Miller and Thode (2007) to create a relative index of NBR change.  The Relative 

differenced DNBR (RdNBR) divides the dNBR by pre-fire NBR with the intent of 

deriving a percent change (Equation 3). This index is intended to be more sensitive to 

canopy mortality when tree cover is thin.  Because Landsat Band 7 reflectance is boosted 

over burned soils and ash, the distribution of RdNBR is curved in comparison to ground 

severity levels.  To correct for this, the pre-fire NBR square root absolute value is used in 

the denominator.  
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In some countries, the differenced Normalized Differenced Vegetation Index 

(dNDVI) is used to map and study burn severity (Diaz-Delgado et al 2001 in Spain,  

Hammill and Bradstock 2004 in Australia).  The NDVI is similar to the NBR (Equation 

1), but visible red reflectance (Landsat Band 3) takes the place of Band 7.  NDVI is 

sensitive to photosynthetic activity in vegetation, and thus is useful to detecting mortality 

in burned areas (White et al 1996).  Relative dNDVI is calculated without the use of 

square root adjustments (Equation 4). 

      1000
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Burn Severity Patterns and Fire Behavior Processes 

A basic tenet of Landscape Ecology states that spatial distributions in the 

environment control ecological processes and vice-versa (Turner et al 2001).  In the case 

of wildland fire, Agee (1998) illustrated that under ‘normal’ weather, the patterns of fuels 

and topography control the processes of fire spread. With drought, however, the 

processes of weather and crown fire behavior overwhelm many of these environmental 

variations.  Two kinds of fire behavior result from these relationships - surface fire and 

crown fire.  Different patterns of burn severity are created according to their 

characteristic operational scales (Turner et al 1994, Bain 1997, Walsh et al 1997, Miller 

and Urban 2000, Rocca, 2004).  

Surface fire intensity and spread are predicted according to fuel type, wind, slope, 

and fine dead fuel moisture (Rothermel 1972).  Ecological effects occur mainly on the 

ground surface, although trees can be killed by girdling and root damage (Wright and 

Bailey 1982, Agee 1993).    During moderate weather and climate conditions, differences 
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in temperature, shading, wind speed, and fuel accumulations result from varied aspect, 

elevation, and vegetation types on the landscape.  These function to affect localized fine 

dead fuel moisture, critical for determining receptive fuels at various scales from 

mountain slopes to individual trees, logs, and fuel jackpots (Countryman 1972, Rocca 

2004).  Surface fire behavior ranges in intensity from smoldering to creeping to running 

(Ryan 2002). The effects of these processes to forest vegetation vary in the same spatial 

contexts that they occur (Turner et al 1989a, Turner and Romme 1994, Turner et al 1994, 

Miller and Urban 2000, Rocca 2004).    

The drivers of crown fire spread are different from those of surface fire, and 

spread is predicted using different models (Van Wagner 1976).  When fine dead fuel 

moistures are low, crown fires have great speed and intensity. Wind gusts can lead to 

rapid shifts in fire behavior (Ryan 2002), while fuels and topography are less important 

(Rothermel 1972, Bessie and Johnson 1995).  Crown fire initiation marks a substantial 

leap in the magnitude of spatial patterns (Turner et al 1994, Miller and Urban 2000). 

Patch sizes are much larger, with less spatial variation (Turner et al 1994, Lertzman et al 

1998, Miller and Urban 2000, Hudak et al 2004a, Rocca 2004).  Spread rate, which is 

wind driven, can actually be what limits patch size because the fire will continue over 

large areas until the weather changes (Countryman 1972, Ryan 2002).   

During fire season, a threshold in fine dead fuel moisture determines whether 

surface fire or crown fire processes occur in forest vegetation (Bessie and Johnson 1995, 

Miller and Urban 2000).  During extreme drought, fires can spread rapidly without regard 

to local environmental variations (Van Wagner 1976, Ryan 2002).  These are the fires 

that contribute to most of the area burned on the landscape (Agee 1998). When the fire 
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behavior threshold is not exceeded, because of seasonal or diurnal humidity, fire behavior 

is much more subject to changes in topography and fuel loading, and the total burned area 

will be smaller (Bessie and Johnson 1995, Miller and Urban 2000, Ryan 2002).  Surface 

and crown fire dominance alternates over a fire season, during a fire event, and diurnally 

as fuels patterns and weather processes take turns driving fire behavior (Miller and Urban 

2000).  Near the threshold between the two, variations in wind speed interact with stand 

structure and topography to produce intermittent crowning and individual tree torching 

(Van Wagner 1977, Ryan 2002).    

 

Materials and Methods 

Study Area  

This study area includes approximately 2.4 million hectares of mountainous 

terrain with extensive conifer forests in a region known as the ‘Greater Yellowstone 

Ecosystem’ (Keiter and Boyce 1991).  Elevations range from approximately 1800 meters 

to peaks over 4000 meters. The climate is characterized by cold, snowy winters, rainy 

springs, and moderately warm summers (Baker 1944, Clark 1981).  Peak fire season 

occurs in mid to late summer (Bradley et al 1992).   

Two types of fire regime have been attributed to the forests of the study area; 

termed ‘stand-replacing’ and ‘mixed-severity’ (Turner et al 1994, Arno 2000, Brown 

2000, Morgan et al 2001).  In the stand replacing fire regime, most overstory trees are 

killed, due to crown fire as well as lethal surface fire (Ryan and Noste 1983, Brown 

2000).  Burn patch sizes can be very large, especially with sustained high winds (Miller 

and Urban 2000, Ryan 2002).   
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Mixed severity regimes have more variability in fire behavior, effects, return 

intervals, and patch sizes.  They have been described as both a mid-range disturbance 

type (between surface and stand replacing), and as a spatial or temporal juxtaposition of 

two or more different fire regimes on a landscape (Agee 1998, Lertzman et al 1998, Arno 

2000, Brown 2000, Lentile et al 2006).  These two kinds of fire regime correspond to the 

processes and spatial patterns of surface and crown fire.  Thus, stand-replacing and 

mixed-severity fire regimes may not be physically or ecologically distinct from one 

another.  Instead, a single Northern Rockies fire regime may be exhibiting a dual 

expression depending on climatic and weather thresholds.   

Five main forest types occur in the study area; characterized by the following 

dominant tree species:  Douglas-fir (Pseudotsuga mesziesii), lodgepole pine (Pinus 

contorta), spruce-fir (Picea englemannii and Abies lasiocarpa), high elevation spruce-fir 

(P. englemanii and A. lasiocarpa with Pinus albicaulis) and aspen (Populus tremuloides) 

(Steele et al 1983, Bradley et al 1992).  Each of these types has the ability to burn under 

both ‘mixed’ and ‘stand replacing’ fire behavior conditions (Arno 2000), although sparse 

high-elevation forests rarely experience crown fire (Bradley et al 1992).   

Model Development 

Classification and Regression Trees (CART) models were used to predict canopy 

mortality using Landsat TM and ETM+ burn severity indices and ancillary data gathered 

in a GIS.  CART methods use an iterative process to consecutively subdivide training 

data observations into two groups according to which predictor variables most reduce 

deviance (Lawrence and Wright 2001, Urban 2002). This continues until the final splits, 

called leaves, meet specified criteria. Categories are predicted using ‘classification trees,’ 
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while ‘regression trees’ derive average values for continuous data inputs (Urban 2002).  

Tree models are not affected by skewed distributions, unequal variances, spatial 

dependence, or complex interactions between variables.  Instead of attempting to explain 

relationships mathematically, they simply demonstrate how they behave for predicting 

group membership (Michaelsen et al 1994, Lawrence and Wright 2001, Simard et al 

2000).   

With CART modeling, each predictor variable has an equal chance to be 

considered with every partitioning step, so the best one emerges (Simard et al 2000).   

This presents an advantage for this study, because several remote sensing indices are 

compared to evaluate their use for predicting canopy mortality.   

CART outputs provide a dichtomous key that can be used to make predictions 

with new observations (Simard et al 2000, Sanchez-Flores and Yool 2004, Amatulli et 

al 2006).  Because tree models are completely representative of the training data used to 

generate them, large datasets and independent testing are recommended (Mingers 1989, 

Amatulli et al 2006, Coops et al 2006).  ‘Pruning’ tree models removes the lowest 

splits, which are more likely to be associated with noise in the training data, and 

improves their use for new observations (Mingers 1989, Hansen et al 2000, Lawrence 

and Wright 2001, Urban 2002).    

The statistical software program R (version 2. 4. 1) was used with the ‘Tree’ 

package to build and prune classification tree models for this study.  The criteria for 

stopping the splitting process was 10 or fewer total observations or a deviance value 

less than 1% of the initial overall deviance in a leaf.  Pruning was done using ten 
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iterations of ten-fold cross validation, to the number of nodes indicated to have the 

lowest residual mean deviance.    

Data Preparation 

The dependent variable for predictive modeling was estimated canopy mortality 

for 694 locations in 23 fires that occurred between 2000 and 2003 in the study area.     

Three sizes of analysis were used for each location, consisting of concentric circles 

with 15, 56.41, and 126.16 meter radii (.07, 1, and 5 hectares, respectively).  The 15 

meter/.07 hectare size was chosen because it corresponds to the size of CBI plots used 

to calibrate burn severity maps (Key and Benson 2006). Mortality was estimated in 

each circle to the nearest 5% using 2006 true color and 2001-2002 color infrared 1 

meter digital orthophotographs, regardless of the amount of pre-fire canopy cover.   

Percent mortality for each observation was then classified into three categories; 0-20%, 

25-75%, and 80-100% (Figure 1).    
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Figure 1.  Pie charts showing the numbers of plots in each mortality 
category in the training data for each spatial resolution of classification 
tree modeling.  Note there were only 25 observations for the 0-20% 
category at 5h. 
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Independent variables included Landsat 7 ETM+ and Landsat 5 TM -derived 

post-fire NBR, dNBR, RdNBR, dNDVI, RdNDVI, and Tasseled Cap transformations.   

Pre- and extended post-fire Landsat NBR, dNBR and 6-band imagery was provided 

by the USGS Eros Data Center for the 23 fires.    These included 19 terrain corrected, 

geo-rectified image pairs. The Image Analysis Extension for ArcGIS 9.1 was used to 

make pre- and post-fire NDVI.    Pre-fire Tasseled Cap Transformations (TCT) for 

brightness, greenness and wetness were generated using Erdas Imagine 9.1.  RdNBR, 

dNDVI, and relative dNDVI (RdNDVI) were produced using the ArcGIS Spatial 

Analyst extension Raster Calculator.   

In addition to these Landsat-derived variables, ancillary pre-fire forest type 

and topography data was included in modeling (Table 1).  Forest type was obtained 

from three separate vegetation GIS layers from YNP, GTNP and BTNF. These maps 

were reclassified  
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Table 1.  Geospatial predictor variables used in classification tree model development 
for predicting canopy mortality in burned areas of northwest Wyoming.  The 
dependent variables were estimated canopy mortality classes for three sizes of 
circular areas corresponding to .07, 1, and 5 hectare spatial resolutions.  

 
Predictor Variable  Source      Range of Values 
Normalized Burn Ratio 
(NBR)  Post Fire 

7 scenes (2001 – 2004) Landsat TM and 
ETM+ 

.07h:   -507.4 – 722.6 
1h:      -482.4 – 718.6 
5h:      -460.5 – 688.5 

Differenced Normalized 
Burn Ratio (dNBR) 

11 pairs of scenes (1999 – 2004) Landsat 
TM and ETM+ 

.07h:   -242.4– 1125.3 
1h:      -195.9 – 1116.3 
5h:      -149.1 – 997.2 

Relative differenced 
Normalized Burn Ratio 
(RdNBR) 

11 pairs of scenes (1999 – 2004) Landsat 
TM and ETM+ 

.07h:   -17,655.2 – 6067.7 
1h:      -3884.9 – 5965.9 
5h:      -1.55 E13 – 4.88 E13 

Differenced Normalized 
Differenced Vegetation 
Index (dNDVI) 

11 pairs of scenes (1999 – 2004) Landsat 
TM and ETM+ 

.07h:   -69.3 – 582.9 
1h:      -43.1 – 509.6 
5h:      -65.2 – 458.6 

Relative differenced 
Normalized Differenced 
Vegetation Index 
(RdNDVI) 

11 pairs of scenes (1999 – 2004) Landsat 
TM and ETM+ 

.07h:   -266.6 – 3811.2 
1h:      -186.8 – 4369.1 
5h:      -5.9 E12 – 1.7E14 

Tasseled Cap Brightness – 
Pre-fire 

9 scenes (1999 – 2002) Landsat TM and 
ETM+ 

.07h:   54.0 – 168.0 
1h:      54.6 – 160.6 
5h:      59.5 – 154.5 

Tasseled Cap Greenness – 
Pre-fire 

9 scenes (1999 – 2002) Landsat TM and 
ETM+ 

.07h:   -1.0 – 78.0 
1h:      2.2 – 77.6 
5h:      5.7 – 69.7 

Tasseled Cap Wetness – 
Pre-fire 

9 scenes (1999 – 2002) Landsat TM and 
ETM+ 

.07h:   -43.0 – 16.0 
1h:      -43.2 – 12.6 
5h:      -43.7 – 9.3 

Elevation (m) USGS 30 meter DEM .07h:   1760.9 – 3056.3 
1h:      1761.0 – 3056.7 
5h:      1763.4 – 3059.2 

Aspect   USGS 30 meter DEM, Converted to  
aspect  

.07h:   0 – 358.2 
1h:      6.45 – 355.4 
5h:      16.5 – 347.2 

Slope Percent USGS 30 meter DEM, Converted to  
percent slope  

.07h:   .5 – 73.8 
1h:      0 – 90.7 
5h:      .1 – 85.9 

Pre Fire Forest Type GTNP, YNP, and BTNF vegetation maps
Converted to raster,   Reclassified to 5 
forest types and non-forested. 

1 = Douglas-Fir 
2 = Spruce – Fir 
3 = High Elev. Spruce – Fir 
4 = Lodgepole Pine 
5 = Aspen 
6 = Non-forested 

Unit Administrative unit where fire occurred: 
GRTE = Grand Teton  
National Park, YELL=Yellowstone 
National Park, BTNF = Bridger-Teton 
National Forest 

GRTE – 4 fires 
YELL – 11 fires 
BTNF – 8 fires 
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into a single 30 meter resolution raster dataset with five forest types and a sixth, 

nonforested category.  Thirty-meter resolution Digital Elevation Models (DEM) were 

used to produce slope, aspect and elevation grids.   

All predictor variable layers were compiled in a GIS and filtered to the 1 and 5 

hectare spatial resolutions using circular focal means (56.41 and 126.16 meter radii).  In 

this way, canopy mortality estimates for each scale of analysis were modeled in 

comparison to a set of GIS predictor variables with the same spatial resolution (Figure 2). 

The .07 hectare model analysis was conducted using the original 30 meter pixel layers, 

because the 15 meter radius circles could fit within one pixel.  

 

Canopy mortality 
estimates derived 
from digital 
orthophotographs 
for .07, 1, 5h circles 
at 694 Locations in 
23 Fires

21 Landsat TM and 
ETM+ pre- and post-
fire image pairs

dNBR for 23 Fires

Digital Elevation Models:
Elevation, Slope, Aspect

Vegetation Maps,
Reclassified into 5 Forest 
Types

Generate for all Fires:
Pre Fire NBR
Post Fire NBR
Standardized dNBR
RdNBR 
Pre Fire NDVI
Post Fire NDVI
dNDVI - Standardized
RdNDVI
TC Bands 1,2,3

Mosaic all 23 fires for 
each predictor 

Resample  to circular 
focal means at 3 
spatial resolutions.   

Compile all predictor 
grids in GIS

Extract pixel values 
for all CBI plot 
locations

Export to 
spreadsheet.  Add 
administrative unit 
variable

Classification 
Tree Modeling

Create model 
predicted 
surfaces in GIS

Extract mortality 
classes for  AA 
Locations

Accuracy assessment 
and error analysis

Accuracy 
Assessment Data:
Canopy mortality 
estimates at 3 
spatial resolutions 
from digital 
orthophotographs

1       2      3
1  
2   
3

1       2      3
1  
2   
3

 
Figure 2.  Steps utilized in development and evaluation of predictive models for 
mapping canopy mortality classes in burned areas at three spatial resolutions. 

 

In order to examine the applicability of the classification tree models across the 

study area, the administrative unit where fires occurred (YNP, GTNP, and BTNF) was 
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included in the dataset (Table 1).  If the unit variable was included as a split variable in 

any of the tree models, it would indicate important geographic limitations for this 

mapping approach.   

 Accuracy Assessment  

An independent dataset including 100 random locations from each of three of the 

23 fires was used to evaluate performance of the classification tree models.  These 

included the Blind Trail fire in the BTNF, the Wilcox fire in GTNP, and the Broad fire in 

YNP.  Predicted mortality class surfaces were produced for the .07, 1, and 5 hectare 

spatial resolutions using conditional statements that duplicated the tree models with the 

ArcGIS Spatial Analyst Raster Calculator. Canopy mortality was estimated for three sizes 

of circular areas as before, using digital orthophotographs.  Mortality class was extracted 

from predicted surfaces for the random locations, and used to generate error matrices and 

Kappa statistics (Cohen 1960) for each model (Equation 5). 
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N = total number of observations. 
r = the number of rows in the error matrix 
xii = number of observations in row i and column i 
xi+ and x+i = marginal totals for row i and column i 

 

When higher resolution imagery (such as 1 meter digital orthophotography) is 

used for accuracy assessment of maps also based on remote sensing, conservative results 

can be expected (Verbyla and Hammond 1995).  This phenomenon is due to 

compounding errors associated with the reference data with model-based inaccuracies.  
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Such errors can arise from misregistration, photo interpretation error, and time 

differences (Kalkhan et al 1998, Foody 2002).  

Results 

The three classification tree models (Figure 3) show the influence of the spatial 

resolution of analysis (.07, 1, and 5 hectares) for detecting different levels of mortality in 

burned areas using Landsat.  Each model used a different burn severity index as its 

primary split variable to reduce the majority of deviance.  The .07 hectare analysis used 

the RdNBR to differentiate the 0-20% and 80-100% categories at the first split (Table 2), 

as determined by pruning the tree model to this initial stage.  The 1 hectare model made 

the same split with dNBR.  The 5 hectare model used dNDVI to separate the middle 

mortality category (25-75%) from the 80-100% group.  The differences can be attributed 

to the effect of spatial resolution on the composition of the training data, sensitivity to 

heterogeneity of fire effects, and properties of NBR and NDVI.   

As the sizes of the circles used to estimate percent canopy mortality increased, 

they were more likely to include more than one patch of burned or unburned trees, and 

less likely to contain a single homogeneous canopy mortality category.  As Figure 1 

indicates, the 5 hectare estimates have disproportional distributions of the three categories 

because low and unburned CBI plots included adjacent burned areas.  Consequently, few 

fell into the 0-20% mortality category.  Classification trees are sensitive to unbalanced 

categories in the training data (Lawrence and Wright 2001), which explains why the 5 

hectare model first split between the middle and higher mortality categories, where the 

majority of the observations were found (Table 2).    
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Figure 3.  Tree model diagrams for .07, 1, and 5 hectare resolution predictions of 
canopy mortality classes.  Splits to the left refer to values less than the given 
threshold. The vertical lengths of tree branches correspond to the proportion of 
deviance reduced with each split. 

 

At the .07 hectare spatial resolution, the mortality estimation circles were 30 meters 

in diameter, and intentionally centered in a consistently burned patch of forest vegetation in 

the field (Key and Benson 2006).   At this scale, the 25-75% category would represent a 

mixed lethal fire, where some trees survived and others were killed.  Locations with over 

80% mortality would have experienced severe surface or crown fire.   As the size of the 

canopy mortality estimation circles increased, the fire characteristics corresponding to the 

three categories changed.  Instead of describing the proportions of killed trees in a stand, the 

0-20% and 25-75% estimates for the 1 and 5 hectare circles reflected aggregations of 

heterogeneous burn patches.  Proportionally more of the 25-75% category was found in the 5 

hectare estimates as a result.  These could have included patches of surface or crown fire, or 
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boundary zones along the edge of more than one patch.  Estimates of 80-100% mortality at 

these scales would indicate a homogeneous crown fire patch.   

 
Table 2. Summary of classification tree model characteristics and performance for 
three spatial resolutions used for prediction and mapping canopy mortality classes.  

 
 Resolution of Model            .07h           1h          5h 
  

Model Misclassification Rate 
 

26.4% 
 

27.2% 
  

20.6% 

 Main predictor  
(first split) 

RdNBR dNBR dNDVI 

 Other predictor variables used Elevation  
dNDVI 

dNDVI 
RdNBR 

Elevation 

dNBR 
NBR post fire 
TCT greenness 

Elevation 
 

 Classes resulting from first split 0-20% 
vs. 

80-100% 

0-20% 
vs. 

80-100% 

25-75% 
vs. 

80-100% 
 

 Overall Accuracy Assessment 68.5% 62.5% 53.0% 

 Accuracy 0-20%  
                    User’s: 
                    Producer’s: 

 
67.7% 
60.9% 

 
83.1% 
62.8% 

 
100% 
5.7% 

 Accuracy 25-75%  
                    User’s: 
                    Producer’s: 

 
50.0% 
25.4% 

 
66.7% 
14.5% 

 
42.2% 
57.4% 

 Accuracy 80-100%  
                    User’s: 
                    Producer’s: 

 
72.2% 
92.1% 

 
56.4% 
93.7% 

 
63.2% 
78.9% 

 Kappa 0.45 0.38 0.25 

 
 

Because the characteristics being described for the three mortality categories 

changed depending on spatial resolution, it is not surprising that different reflectance 

characteristics best discriminated between them.  NBR and NDVI have different 

properties due to the alternate use of red reflectance (Landsat TM and ETM+ Band 3) and 
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middle infrared (Band 7).   NDVI is more sensitive to plant photosynthesis, while NBR 

enhances differences in exposed dry soils, ferrous minerals, and ash (White et al 1996).  

Due to their size, the 5 hectare circles were more likely than the others to include diverse 

vegetation types and multiple burned patches.  The primary split separated the 25-75% 

mortality category from the over 80% group (Table 2).  The distinction between these 

levels was best made using dNDVI, suggesting that differences in the overall cover of 

photosynthesizing vegetation best separate them (White et al 1996).  

 The .07 and 1 hectare classification tree models appear to have capitalized on the 

sensitivity of NBR to change in blackened and ashy surfaces. The proportions of 

observation in the training data for these models were well balanced, and the first splits 

separated the 0-20% and 80-100% categories as would be expected.  The relativized 

version of dNBR (RdNBR) was used for the primary split in the .07 hectare model with 

the original 30 meter pixel resolution.  The RdNBR is more sensitive than dNBR to 

subtle changes, such as might be detected with higher spatial resolution when only a 

proportion of the trees in a forest canopy is burned.    

Once pruned using ten-fold cross-validation, none of the classification tree 

models used pre-fire forest type, TCT brightness or wetness, or administrative unit.  

Apparently differences in the pre-fire vegetation, fuels, or mountain range discernible by 

these variables were not important for differentiating canopy mortality levels post-fire.  

At the spatial resolutions used, the various forested landscapes may appear relatively 

similar when burned.  At the larger scales of analysis forest type and TCT layers would 

also likely represent an aggregation of vegetation and fuels, which would tend to 

diminish any relationship that might exist for predicting canopy mortality. The lack of 
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these predictor variables in the final classification trees suggests that the models are 

useful across the entire study area, and may be applicable over larger geographic regions.   

  Model misclassification rates (Table 2) and error matrices (Table 3) from 

independent testing show the importance of appropriate spatial resolution for mapping 

and modeling canopy mortality in burned areas. The three spatial resolutions resulted in 

different misclassification rates for observed and predicted training data, as well as varied 

performance using a separate dataset.    

 
Table 3.  Error matrices for accuracy assessment using independent random samples.  
One hundred samples each in three fires were obtained, however some locations were 
non-forested resulting in fewer than 300 total observations. 
 

Pr
ed

ic
te

d

Air Photo Estimates

0-20%     25-75%   80-100%

0-20%         42 13              7          62

25-75%        13             18  5           36

69             71           152      292

.07h  Resolution Model 1h  Resolution  Model 

80-100%       14             40           140 36 Pr
ed

ic
te

d

0-20%     25-75%   80-100%

0-20%         49 7                3          59

25-75%         1             12  5          18

78            83              127      288

80-100%       28            64            119   194 Pr
ed

ic
te

d

0-20%     25-75%   80-100%

0-20%         4   0              0           4

25-75%        62             62 23          147

70             108          109        287

80-100%       4               46            86      136

Air Photo EstimatesAir Photo Estimates

5h  Resolution  Model 

 

 

The highest overall accuracy for the three mortality categories was provided by 

the .07 hectare map (68.5%) (Table 2).  It also showed a reasonable Kappa statistic of 

0.45 (Kalkhan et al 1997), suggesting that the model’s accuracy can be differentiated 

from that of random chance.  The 92% producer’s accuracy for the 80-100% mortality 

category indicates that most of the stand-replacing fire effects were correctly mapped.  

The user’s accuracy (75%), however, was lower because many of the predicted 80-100% 

pixels actually belonged in the 25-75% mortality category.  The model mainly 

underpredicted the middle category at lower elevations (user’s accuracy 50%) due to the 
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role of elevation as a limiting factor in the tree model (Figure 3).  The model is structured 

in such a way that only locations above 2011.53 meters can be assigned the 25-75% 

mortality category.  This rule detracts from the utility of the elevation variable in 

classification tree models, especially because the middle mortality category is known to 

occur below 2011.53 meters in the training dataset. However, the elevation threshold 

does have some basis in fire behavior.  High elevation forests in the study area are sparse, 

and have limited fuels for carrying fire between trees (Bradley et al 1992).  Moister 

environments and shorter growing seasons prevent fine fuels from drying to levels where 

fire can carry consistently (Countryman 1972, Ryan 2002), thus mixed tree mortality 

would be expected.  In comparison to the aerial photographs, the .07 hectare model 

surfaces appear to more accurately detect the middle category at high elevations.   

At .07 hectares, a pronounced speckle pattern of the middle and high mortality 

categories is evident in the predicted map surfaces outside of the burn perimeters, 

particularly in rocky areas (Map 1A).  It is likely that misregistration between the 

unfiltered pre- and post-fire satellite images has caused this artificial change where 

adjacent patches of rock and vegetation were misaligned. 

The 1 hectare map accuracy was 62.5% overall (Table 3) with a Kappa statistic of 

0.38.  The producer’s and user’s accuracies for the 0-20% mortality class were improved 

over those of the .07 hectare map.  The producer’s accuracy for 80-100% mortality was 

93.7%.  This category appears to be overpredicted, however, as indicated by a 56.4% 

user’s accuracy.  The 25-75% category is often mapped as 80-100% by this model.  Once 

again, this problem is linked to an elevation threshold in the tree model (Figure 3), but to 

a greater degree.  With a larger circle used to estimate mortality, more observations 
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belonged to this category due to the inclusion of more combinations of adjacent burned 

and unburned patches (82 versus 73 for the .07 hectare dataset).  With more 25-75% 

observations, more were incorrectly predicted below 2478 meters (14.5% producer’s 

accuracy).  This threshold is also substantially higher, and thus more restrictive than the 

2011.53 meter level in the .07 hectare tree model.  

  

 
Map 1. Canopy Mortality Predicted Surfaces for the Wilcox Fire at three spatial 
resolutions: A. = .07 h, B = 1h, C = 5h.  The speckle pattern of canopy mortality outside 
of the fire in A probably resulted from RdNBR image misregistration.  Note the large 25-
75% boundary areas around each patch of the 80-100& category in C.   
 
 

Examination of the 1 hectare model predicted surface shows much less speckle of 

middle and high mortality pixels outside of the burn perimeter (Map 1B).  The 1 hectare 

focal mean filter has apparently corrected for many misregistration errors that falsely 

indicated change.  However, the maps are much more homogeneous, and appear to miss 

many small patches of the lower and middle mortality categories visible on aerial 

photographs, even at high elevations.  
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The accuracy assessment at the 5 hectare map showed the poorest overall 

performance, at only 53.0% (Kappa = 0.25). This contrasts with the low misclassification 

rate (20.6%) given for the model’s observed and predicted training data, underscoring the 

importance of independent testing.  It also illustrates drawbacks associated with the 

coarse spatial resolution used, and the related problem of unbalanced training data.  With 

only 25 observations in the dataset for the 0-20% mortality category, the tree is only 

capable of predicting the low mortality category under very specific criteria (Figure 3).  

Consequently, most of the forest outside of the burn perimeters is mapped as 25-75% 

mortality.  The producer’s accuracy for this category is only 5%.    

 Map 1C shows the most troublesome result of the 5 hectare spatial resolution 

model. Misclassification of boundary pixels between crown fire patches and adjacent 

unburned forest caused very wide buffers (200-250 meters) of 25-75% mortality pixels to 

be erroneously mapped along the edges of 80-100% patches. When compared with aerial 

photographs, the sizes of these high mortality crown fire patches were substantially 

reduced on the predicted surface.  This led to very high user’s accuracy (100%) because 

all of the pixels mapped as 80-100% mortality really were that category, however only 

5.7% of the locations on the ground with that degree of canopy mortality were correctly 

mapped.  Nearly all of the remaining pixels on the entire map were attributed to the 25-

75% mortality class, even outside of the known fire perimeters.   

Conclusions and Discussion 

In modeling and mapping canopy mortality in burned areas using classification 

trees, each of the classification tree models used primarily Landsat TM and ETM+ -

derived remote sensing burn severity indices and elevation to predict canopy mortality.  
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Different spatial resolutions produced different models with different sets of predictors 

and levels of map accuracy.  

The resolution of the 1 and 5 hectare canopy mortality maps was too coarse to 

distinguish stands where partial tree mortality has occurred.  Instead, they function to 

identify mixtures of adjacent burned patches.   The burned forests with truly partial tree 

mortality are ecologically important (Turner and Romme 1994), however they have 

patterns that are too small to be separable at 1 or 5 hectares.  These spatial resolutions of 

these thematic maps are therefore unlikely to provide the kind of information desired for 

research or management applications.   

The 5 hectare model analysis was further hampered by insufficient 0-20% 

mortality observations in the training data. Unburned sample locations obtained farther 

from adjacent burned forest would have improved the model.  Boundary pixel 

misclassifications due to aggregation along the edges of burned patches would have still 

led to poor accuracy, however.   

The best accuracy resulted from the .07 hectare analysis without spatial filtering 

(68.5% overall accuracy, Kappa 0.45). The 30 meter pixel-based maps based on .07 

hectare estimates were better able to detect the smaller and more subtle patterns of 

canopy mortality, including partially killed patches.  The accuracy for the 80-100% 

category, which would correspond to crown fire areas, is particularly high (producer’s 

92.1%, user’s 72.2%).  The middle category of mortality is poorly predicted (user’s 50%, 

producer’s 14.5%).  Key (2006) noted a similar poor performance in dNBR burn severity 

mapping, where the small-scale variability in moderate severity effects was poorly 

detected. 
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The .07 hectare tree model uses RdNBR as the primary split variable to 

differentiate categories of mortality.  RdNBR may be registering some of the subtle 

changes associated with fire patterns that occur at the scale of individual trees or groups 

of trees, smaller than a 30 meter pixel.  This is difficult to evaluate, however, because the 

tree model uses an elevation threshold that limits this category to locations above 2011.53 

meters.   For this reason, partial canopy mortality (25-75%) is best predicted at high 

elevations.   As indicated by speckle patterns of canopy mortality outside the fire 

perimeters, misregistration errors are occurring at this spatial resolution.  As a next step 

in this study, it would be appropriate to test a minimal spatial filter, such as a 3x3 moving 

window, to see if this would improve accuracy or decrease it.   

Total proportions of tree mortality classes in the predicted surfaces are similar for 

the .07 and 1 hectare model surfaces, however at 5 hectares; the model predicts less than 

2% of the area within the burn perimeters in the 0-20% class, and a much larger 

proportion of the middle mortality class (Figure 4).  From independent testing, we know 

that these proportions are unrealistic.  
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Canopy Mortality Class Percentages for 
Predicted Tree Model Surfaces from 23 Fires
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Figure 4.  The proportions of the three canopy mortality 
classes in the predicted surfaces for all 23 fires in the study 
are similar for the .07 and 1 hectare spatial Resolutions.  The 
5 hectare analysis resulted in drastically different results. 

 

Aside from spatial resolution, the limitations of Landsat TM and ETM+ imagery 

for mapping canopy mortality stem also from other errors inherent in remote sensing and 

GIS.  Misregistration of paired imagery, GPS position error, inaccurate aerial photo 

interpretation, post-fire time delay differences, and other data noise likely contributed to 

model and map inaccuracy.  Nevertheless, it appears that remote sensing of canopy 

mortality can provide reasonably accurate maps of crown fire effects, because many of 

these more homogeneous high severity patterns are large enough to be differentiated at 

the 30 meter pixel resolution.  More subtle low and moderate severity surface fire effects, 

however, are too small to be reliably mapped using this technology.  The fire behavior 

processes and effects that lead to partial canopy mortality are heterogeneous as a result of 

small spot fires, variable degrees of tree girdling, fuel beds, and forest composition 

(Miller and Urban 2000, Hudak et al 2004, Rocca 2004).  Mapping these mixed areas is 
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difficult if these patterns are smaller than the resolution of remote sensors (Lentile et al 

2006). 

Crown fire behavior processes driven by drought and wind occur at scales that are 

both spatially and temporally different from those of surface fire. Surface fires under 

average weather conditions are much more subject to environmental variability, and thus 

are more spatially complex (Agee 1998, Miller and Urban 2000).  While one process can 

be observed at the 30 meter pixel resolution, the other cannot.  

Figure 5 shows a continuum of fire behaviors and operational scales (as described 

by Ryan 2002) in the fire regime of northwest Wyoming (combining the stand replacing 

and mixed severity types of Arno 2000 and Brown 2000).  Along the horizontal axis, the 

severity of weather conditions increases from moist through extreme drought and wind.  

The vertical axis increases with the operational scale of fire behavior and effects from a 

particle of surface fuel to an entire landscape.  During moist seasons or moderate weather 

fire creeps slowly through fine fuels and burns small patches according to 

microtopography and fuel loading (Rocca 2004).  Average weather conditions allow 

surface fires to run through the forest understory and torch individual trees and groups of 

trees (Ryan 2002). Once a certain threshold of drought and wind speed is reached, 

(indicated by the dashed line) crown fire spreads (Bessie and Johnson 1995, Miller and 

Urban 2000).  These fires are controlled by larger forces and patterns (Turner et al 1994).  

Above the dashed line (B), remote sensing with Landsat TM and ETM+ imagery is 

effective for mapping canopy mortality effects.  Below the line (A), the 30 meter spatial 

resolution is too coarse to make accurate mapping feasible.   
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Figure 5.  Fire behavior and effects according to drought and wind conditions in the 
fire regime of northwest Wyoming forests (x axis), and spatial domain of fire 
behavior (y axis).  The shaded area (B) represents the stand replacing expression that 
can be mapped with Landsat imagery.  The left portion (A) includes mixed lethal tree 
effects from surface fire that are not accurately mapped at this resolution. 

 

If Landsat satellite technology is used to map the effects of fire in the landscapes 

of the Greater Yellowstone Ecosystem, the spatial distributions of crown fire disturbances 

will be well documented.  This information will lead to better understanding of this 

disturbance regime.  Unfortunately, the other expression of the dual fire regime will not 

be as well captured.  The ‘mixed’ effects of surface fires may be overlooked.  The 

ecological importance of these more subtle disturbance patterns may be neglected 

because they cannot be assessed from space.  The small scale heterogeneity of surface 

fire in ‘mixed severity regimes’ is poorly understood (Arno 2000, Rocca 2004), and it is 

not incorporated in spread models (Rothermel 1972, Van Wagner 1977). Fire suppression 

has been much more successful in eliminating the fires that occur under these conditions 
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(Loope and Gruell 1973, Renkin and Despain 1992).  If managers and researchers rely on 

30 meter pixel resolution imagery to understand the fire regime of the Rocky Mountains, 

an important aspect of the fire regime will be unknown, and its ecological significance 

may be forgotten in land use management.    

It is important for fire researchers and resource managers to understand the 

capabilities and limitations of remote sensing data for fire effects mapping that this study 

has revealed.  This is because important and far-reaching decisions are often made using 

maps.  For example, timber salvage sales, wildlife habitat protection, and stream 

stabilization practices will likely depend on remotely-sensed GIS data.  Updates to 

current higher resolution vegetation and fuels GIS layers can be made from remote 

sensing for burned areas (Ryan 2002, Zhu 2006) , but users must be aware of the effects 

of reduced spatial precision.   

Finally, our scientific understanding of fire regimes is also subject to interpretations made 

at scales dictated by technological specifications rather than ecological processes.  Not 

only are we at risk of overemphasizing crown fire at the expense of the other fire 

processes we cannot map, we will compromise our understanding of fire’s true ecological 

effects.  

Higher resolution sensors are needed to accurately map the finer-scale 

heterogeneity of the effects of partially-lethal surface fire.  Current research into spectral 

mixture analysis shows interesting potential for evaluating sub-pixel effects of Landsat 

TM and ETM+ images (Robichaud et al 2007, Smith et al in press).  Digital aerial 

photography, whether interpreted by humans or machines, may also prove useful for 

obtaining inexpensive large sample sizes for modeling and mapping of canopy mortality.  
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Spatial attributes such as burned area fractal dimension or mean patch size may enhance 

model performance.  Fuzzy classification methods using tree models to map probability 

surfaces may enhance their functioning (Lawrence and Wright 2001). More research into 

these areas will improve understanding of the patterns and processes of the entire fire 

regime rather than only the stand replacing expression.   
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CHAPTER 4:  SYNTHESIS 
 

This research process has shown that it is possible to make maps of canopy 

mortality patterns due to crown fire using Landsat imagery.  Relative dNBR (RdNBR) 

appears to be most effective for distinguishing this pattern at the pixel scale according to 

classification tree modeling.  DNBR is more easily obtained, however, from the 

Federally-sponsored Monitoring Trends in Burn Severity (MTBS) program (Eidenshink 

et al 2007) and can be used alone with elevation and aspect to produce maps with slightly 

reduced accuracy compared to the model using RdNBR, elevation, and dNDVI.  At 

Grand Teton National Park and the Bridger-Teton National Forest, these maps will be 

used in the near future for assessments of snowshoe hare habitat (as part of endangered 

Canada lynx management), post-fire reforestation planning, hydrologic assessments, and 

vegetation map updates. 

Scale of analysis has distinct effects on map accuracy and utility, particularly for 

the important middle categories of partial canopy mortality.  Due to the problems of 

small-scale heterogeneity in mixed-lethal burns, it is difficult to detect these areas with 30 

meter pixels, and more so at 1 or 5 hectare aggregations.  To make matters worse, the 

characteristics being mapped as the middle canopy mortality category are different as the 

spatial resolution increases.  Areas that were 25-75% mortality in the 1 and 5 hectare 

circles represented boundaries between adjacent burned or unburned patches.  True 

partial canopy mortality, with a mixture of killed and living trees, is poorly captured, 

despite its ecological importance for community diversity, forest structure, succession, 

and fuel loading (Turner et al 1994, Agee 1998, Ryan 2002, Rocca 2004).  Even with the 

best combination of spatial resolution and positional accuracy, remotely sensed maps of 
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burn severity are only able to tell part of the story of fire’s effects.  In northern Rocky 

Mountain forests, larger patches of high or complete mortality (such as crown fire) can be 

detected with high accuracy.  However, low severity surface fire or heterogeneous effects 

to the soil surface are often lost in these mapping processes.  Only the fire behavior 

processes and effects that occur above the fire regime’s drought and wind threshold are 

represented.   

With the adoption of the MTBS program (Eidenshink et al 2007) remote sensing 

and mapping of wildland fire severity is standard procedure.  Kolden and Weisberg 

(2007) predicted that Landsat-based mapping of wildfires will soon replace manual 

mapping methods.   If so, this research suggests that only crown fire effects will be 

adequately mapped in the northern Rocky Mountains.  A risk associated with this is that 

resource managers using these maps may ignore the mixed severity processes, and fail to 

assure their perpetuation under future scenarios.   

The scale of analysis for canopy mortality mapping using Landsat TM and ETM+ 

should be as small as possible, with minimal spatial aggregation to compensate for 

misregistration and positional errors inherent in the technology.  Other sources of remote 

imagery should be explored, such as USDA National Agriculture Imagery Program 

digital photography (used in this study for canopy mortality estimation and accuracy 

assessment).  If Landsat dNBR and RdNBR products continue to be available, a 3x3 

moving window filter with .5 hectare or smaller canopy mortality estimates should be 

evaluated in for modeling and mapping in the future. 

The Composite Burn Index (CBI) plot protocols of Key and Benson (2006) are 

intended to bridge the field-level and remote sensing burn severity ratings for ground-



 

 116

truthing burn severity mapped with dNBR.  Given that overstory and ground fire effects 

are distributed independently, however (Jain and Graham 2007), this composite approach 

may be less effective than separately calibrating the substrate and overstory ratings.   This 

may lead to poor correlations between the overall CBI scores and dNBR pixel values.  In 

addition, the resolution of Landsat is too coarse to adequately detect small scale 

heterogeneity in soil effects (Robichaud et al 2007).   

 Chapter 2 showed that the use of digital orthophotography was appropriate for 

generating canopy mortality estimates for model development.  This approach would 

allow collection of a many more observations for modeling and mapping with 

classification trees.  With a substantially larger dataset, it is possible that more than three 

categories of mortality could be accurately mapped, because classification trees perform 

better with larger datasets (Mingers 1989).  A continuous canopy mortality model using 

regression trees rather than classifications would be unlikely, however, because air photo 

estimations more precise than the nearest 5% are not practical.   

 Photo-based canopy mortality estimates could also be used to also facilitate a 

random sampling approach for generating model training data.  This method would be 

less likely to have the unbalanced proportions of categories in the training data found 

with CBI plot locations.  While this probably had minimal effects on the models for all 

but the coarsest spatial resolutions, the bias could be easily avoided in the future.  

 Classification tree models for mapping canopy mortality in this study used 

primarily NBR change detection indices and elevation.  An elevation threshold in 

classification tree models prevented the 25-75% category from occurring below certain 

threshold elevations. Elevation was an important predictor variable, however such ordinal 
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variables do not seem ideally suited to classification tree modeling for fire disturbance.  

Even without pruning, forest type, TCT transformations, administrative units, and slope 

were not needed in the tree models.  Because the different pre-fire vegetation and fuels 

characteristics did not help to predict post-fire tree survival, these models may be more 

widely applicable outside of the study area.    

One of the appeals of using Landsat data for burn severity mapping is the rich 

archival record of imagery dating back to the first Landsat Multispectral Sensor (MSS) 

mission in 1972 (Lilesand et al 2004).  Band 7 was not part of the program’s data 

collection until Landsat 4 TM was launched in 1982.  If burn severity (or canopy 

mortality) maps are desired for fires that occurred during the MSS missions, the RdNDVI 

or dNDVI would be required.  The spatial resolution of these early Landsat sensors was 

79 meters, which would compromise the detection of mixed severity effects.     
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Introduction 
 
 This appendix provides step-by-step descriptions and screen shots of the 
Geographic Information System (GIS) methods used in the modeling and mapping of 
forest canopy mortality in burned areas for this Thesis research.  GIS procedures were 
used to derive data for both building and testing binary classification tree models using 
Landsat-5 TM and Landsat-7 ETM+ imagery, as well as several other raster layers.  Refer 
to Chapter 1 for data characteristics and rationale for model data selection. The ESRI 
ArcGIS 9.1 suite with Spatial Analyst, Image Analysis, and Hawth’s Tools Extensions 
was used for creation and manipulation of raster data.  Erdas Imagine 9.1 was used to 
produce Tasseled Cap Transformations from pre-fire imagery.   
 

Canopy Mortality Estimates from Digital Orthophotographs 
 
 Sources of Digital Orthophotography 
 
 Color infrared quarter-quad orthophotographs with one meter pixel resolution 
were obtained from the Wyoming GIS Coordination Structure 
(http://wgiac.state.wy.us/html/aboutDoqq2002.asp).  They were derived from air 
photographs taken over the entire state of Wyoming between 2001 and 2002 (see 
example metadata file in supplemental data DVD).  The scars of 2000 – 2001 fires are 
evident in these photographs, while pre-burn images are provided for 2002-2003 fires.  
 True color 1 meter pixel aerial orthophotographs for Wyoming counties for the 
summer of 2006 were also used.  They were produced by the USDA National 
Agricultural Inventory Program (NAIP) (See example metadata in supplemental DVD).  
The effects of all 23 fires are evident in these images.    
 Both the color infrared and true color orthophotos were provided in UTM NAD 
83 for Zone 12N.   
 
 CBI Plot Locations Shapefile 
 
 Each of the 694 Composite Burn Index (CBI) plot locations used for estimating 
canopy mortality was recorded using Global Positioning System (GPS) devices in the 
field (Key and Benson 2006).  The UTM coordinates were entered in to a database and 
imported as a layer in ArcMap (Tools Menu > Add XY Data). The new layer was then 
saved as a point shapefile (see supplemental data DVD).  Each location in the attribute 
table included a field estimate of percent canopy mortality for the 30 meter diameter CBI 
plot, however new estimates were needed for other spatial resolutions.  Digital aerial 
orthophotography provided a means to develop this data.   
 The ArcToolbox Buffer tool was used to create concentric circles of .07, 1, and 5 
hectares in size for each CBI plot location (ArcToolbox > Analysis Tools > Proximity > 
Buffer).  Buffer distances of 15, 56.41, and 126.16 meter were specified around each 
point, creating circles having these radii (see example, Figure A-1).  The resulting three 
shape files were displayed in ArcMap over digital orthophotograph layers.  Percent 
mortality was estimated and recorded for each circle size at each location, using the 

http://wgiac.state.wy.us/html/aboutDoqq2002.asp
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screen display (Figure A-2).   The same process was used to make canopy mortality 
estimates for accuracy assessment locations.  
 
 

 
Figure A-1.  The Buffer tool was used to create .07, 1, and 5 hectare circles at each CBI plot 
location for estimating percent mortality using digital orthophotos.  In this example, the 1 
hectare circles are created using a 56.14 meter buffer distance, corresponding to a circle with 
that radius.   
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CBI-05
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CBI-03

CBI-05

CBI-04

CBI-03

 
Figure A-2.  Color infrared (left) and true color (right) digital orthophotographs with .07, 1, and 5 hectare 
concentric circles for estimating percent canopy mortality in the ArcMap viewer. 
 
 

Landsat Burn Severity Products 
 
 Obtaining Data 
 
 Landsat TM and ETM+ satellite products (differenced Normalized Burn Ratio 
(dNBR) subsets, pre- and post-fire 6 band imagery) were downloaded from the USGS 
burn severity website (http://burnseverity.cr.usgs.gov/download_data.php).  As Extended 
Assessment protocols dictate (Key 2006), the pre-fire imagery was obtained during the 
middle of the growing season. The post-fire imagery closely duplicated the plant 
phenology of the pre-fire image after one season of vegetative recovery.  Eleven image 
pairs were used to provide the necessary burn severity indices for the 23 fires in the study 
area, because the fires occurred during different years, over three row-path locations 
(Table A-1). 
 

http://burnseverity.cr.usgs.gov/download_data.php
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Table A-1.  Pairs of Landsat scenes used for generating burn severity indices.  Pre-fire images were used for TCT brightness, greenness, and wetness 
bands. 
 

Fire Name  Path-Row ID Pre Image Date USGS ID Pre Image Type  Post Image Date USGS ID Post Image Type 
Arthur 3829 7/15/2000 7038029000726450 ETM+ 7/5/2002 7038029000218650 ETM+ 
Blind Trail 3830 6/29/2000 7038030000018152 ETM+ 7/2/2001 7038030000019750 ETM+ 

Boulder 3830 6/29/2000 7038030000018152 ETM+ 7/2/2001 7038030000019750 ETM+ 

Boundary 3829 7/15/2000 7038029000726450 ETM+ 7/2/2001 7038029000118350 ETM+ 

Broad 3829 7/15/2000 7038029000726450 ETM+ 8/1/2003 5038029000321310 TM 

Divide 3730 7/3/2001 5037030000118410 TM 7/9/2003 5037030000319010 TM 

East 3829 8/1/2003 5038029000321310 TM 8/11/2004 7038029000422452 ETM+ SLC-off 
East Table 3830 7/29/2002 5038030000221010 TM 8/11/2004 7038030000422452 ETM+ SLC-off 
Enos 3829 7/15/2000 7038029000726450 ETM+ 7/2/2001 7038029000118350 ETM+ 

Falcon 3829 7/15/2000 7038029000726450 ETM+ 7/5/2002 7038029000218650 ETM+ 
Frank 3829 8/1/2003 5038029000321310 TM 8/11/2004 7038029000422452 ETM+ SLC-off 
Glade 3829 7/15/2000 7038029000726450 ETM+ 7/2/2001 7038029000118350 ETM+ 

Green Knoll 3830 7/2/2001 7038030000118350 ETM+ 7/21/2002 7038030000220250 ETM+ 

Little 3829 7/15/2000 7038029000726450 ETM+ 7/5/2002 7038029000218650 ETM+ 

Little Joe 3829 7/15/2000 7038029000726450 ETM+ 7/5/2002 7038029000218650 ETM+ 

Moose 3829 7/15/2000 7038029000726450 ETM+ 7/5/2002 7038029000218650 ETM+ 

Moran 3829 7/15/2000 7038029000726450 ETM+ 7/2/2001 7038029000118350 ETM+ 

Mule 3730 7/3/2001 5037030000118410 TM 7/9/2003 5037030000319010 TM 

Phlox 3829 7/15/2000 7038029000726450 ETM+ 8/1/2003 5038029000321310 TM 

Stone 3829 7/15/2000 7038029000726450 ETM+ 7/5/2002 7038029000218650 ETM+ 
Upper Slide 3830 7/13/1999 7038030009919450 ETM+ 7/2/2001 7038030000019750 ETM+ 

Wilcox 3829 7/15/2000 7038029000726450 ETM+ 7/2/2001 7038029000118350 ETM+ 

Wolff Ridge 3830 8/8/2000 5038030000022110 TM 8/1/2003 5038030000321310 TM 
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 Re-projecting Pre- and Post-fire 6 Band Imagery and dNBR 
 
 The Project Raster tool (ArcToolbox > Data Management Tools > Projections 
and Transformations > Raster > Project Raster) was used to re-project pre and post fire 
6 band imagery and dNBR subsets to NAD 83 Zone 12.  The re-sampling technique was 
nearest neighbor (Figure A-3). This was chosen because each Landsat pixel value 
represented a discrete characteristic of a location, rather than a continuous isopleth-type 
data layer occurring along a gradient (which would be better resampled using bilinear or 
cubic methods). 
 
 

 
Figure A-3.  The Project Raster tool with the nearest neighbor resampling technique selected to 
reproject the pre-fire Landsat 7 ETM+ bands for the Phlox fire. 

 
 Subsetting the 23 fires 
 
 One at a time, the reprojected pre-and post-fire six band images and dNBR rasters 
for each fire or group of fires were loaded into ArcMap.  An “area of interest” polygon 
shapefile called AOI.shp was created (in ArcCatalog).  This shapefile was used to create 
a temporary rectangular polygon around each desired fire.  The Extract by Mask tool 
(ArcToolbox> Spatial Analyst Tools > Extraction > Extract by Mask) was then used to 
create each fire subset (Figure A-4).   
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A B

 
Figure A-4.  The Extract by Mask tool (A) is used with a temporary rectangular polygon in the AOI 
shapefile (B) to subset the dNBR for the Green Knoll fire area.    

 
 
 Standardizing the dNBR 
 
 Each of the eleven image pairs (Table A-1) resulted in dNBR indices that were 
influenced by the particular atmospheric conditions, moisture conditions, and plant 
phenology of their acquisition times.  It was necessary to remove the bias associated with 
these conditions before combining them for analysis.   Each dNBR was therefore 
standardized according to methods of Key (2006).  As an example, Figure A-5 shows a 
temporary polygon shapefile (AOI.shp) used to sample the unburned areas surrounding 
the Green Knoll fire.  A minimum of ten polygons (totaling at least 10,000 pixels) was 
used to obtain a mean value with the Zonal Statistics tool (Figure A-6) (ArcToolbox > 
Spatial Analyst Tools > Zonal > Zonal Statistics).  The mean was then subtracted from 
the entire dNBR image in the Spatial Analysis Raster Calculator prior to using it in 
combination with any other dNBR subsets (Figure A-7).  
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Figure A-5.  Temporary polygons used to select a sample of 
pixels in unchanged areas adjacent to the Green Knoll fire. 

 

 
Figure A-6.  The zonal statistics for pixels within the temporary polygons, showing the mean for 
unchanged areas on the differenced image to be a dNBR of -34.832. 
 

 
Figure A-7.  The Spatial Analyst Raster Calculator is used  
here to subtract the dNBR mean for unchanged areas from 
the entire Green Knoll fire subset. 
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 Mosaicking the Standardized dNBRs to One Layer 
 
 All of the standardized dNBR subsets from the 23 fires were loaded into one 
ArcMap project file, and combined into one raster layer using the Mosaic to New Raster 
tool (ArcToolbox > Data Management Tools > Raster > Mosaic to New Raster) (Figures 
A-8, A-9).  
 
 
 

 
Figure A-8.  The Mosaic to New Raster tool combined all of the standardized dNBR 
subsets into one layer for later use. This same procedure was used for all predictor 
variables.  
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Figure A-9.  The standardized dNBR mosaic for all 23 fires in one layer.  The 
blank spaces between subsets have no data.  

                                                           
 
 Creation of Pre- and Post-burn NBR  
 
 The re-projected pre- and post-burn 6 band image subsets were loaded into 
ArcMap, with the Image Analysis extension turned on.  The Image Analysis toolbar pull 
down menu features a Vegetative Indices tool, which includes a NDVI (Normalized 
Differenced Vegetation Index) option that makes the calculation using bands specified by 
the user (Figure A-10).  Because the Normalized Burn Ratio (NBR) uses the same 
equation as the NDVI with the substitution of Band 7 for Band 3, this tool functions for 
both indices.  
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Figure A-10.  The Image Analysis Extension Vegetative Indices tool showing the 
commands for generating the Glade Fire pre burn NBR.  This is done by substituting the 
middle infrared band for the red band in the NDVI calculation.  “Band 6” in this case refers 
to Landsat Band 7 because the true thermal Band 6 data is absent.  The same steps were 
used to derive the post-fire NBR for each fire.     
 

  
 The next step was to use the Spatial Analyst Raster Calculator to multiply the new 
NBR raster subsets by 1000 (Figure A-11).   The Mosaic to New Raster tool was used to 
generate a single raster that combined all of the post burn NBR subsets for the 23 fires 
(see Mosaicking the Standardized dNBR to One Layer, page 126).   
 
 

 
Figure A-11.  Each derived NBR is multiplied by 1000 using  
the Raster Calculator to remove the decimal. 
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 Creation of the RdNBR 
 
 The standardized dNBR and pre-fire NBR for each of the fire subsets were used 
to derive the Relative differenced Normalized Burn Ratios (RdNBR) (Miller and Thode 
2007).   The RdNBR equation was entered into the Spatial Analyst Raster Calculator as 
Figure A-12 illustrates.     
 The RdNBR subsets for all of the fires were mosaicked in to one layer using the 
Mosaic to New Raster tool (see Mosaicking the Standardized dNBR to One Layer, page 
126).   
 
 

 
Figure A-12.  The Spatial Analyst Raster Calculator expression 
used to generate the RdNBR for the Green Knoll fire from the 
standardized dNBR and pre-fire NBR subsets. 
 
 

 
 Creation of the Pre- and Post-fire NDVI  
 
 As with NBR, the Image Analysis extension was used to produce NDVI from the 
pre- and post-fire 6 band images for each of the fire subsets (see Creation of Pre- and 
Post-fire NBR, page 127).  In the Vegetative Indices dialog box, Band 3 was specified as 
the visible infrared band (Figure A-13). The results were then multiplied by 1000 to 
remove the decimal. 
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Figure A-13.  The Image Analysis Vegetative Indices dialog box with 
commands used to generate the pre-fire NDVI for the Glade fire. 

 
 
 Creation and Standardization of dNDVI  
 
 The differenced NDVI (dNDVI) was made by subtracting the post-fire NDVI 
from the pre-fire NDVI for each fire using the Spatial Analyst Raster Calculator (Figure 
A-14).  Each dNDVI subset was standardized using the same process used with dNBR 
(see Standardizing the dNBR, page124).  The dNDVI subsets were then combined into a 
single dNDVI grid for all 23 fires using the Mosaic to New Raster tool (see Mosaicking 
the Standardized dNBR to One Layer, page 126).   
 

 
Figure A-14.  The dNDVI for each fire (in this case the Green 
Knoll fire) was generated in the Spatial Analyst Raster Calculator 
by subtracting the post-fire NDVI from the pre-fire NDVI. 
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 Creation of the RdNDVI 
 
 The Relative differenced NDVI (RdNDVI) formula divides the dNDVI by the 
pre-fire NDVI and multiplies it by 1000.  Figure A-15 shows the expression used to 
create the RdNDVI for the Green Knoll fire using the Spatial Analyst Raster Calculator.  
As with the other burn severity indices, the RdNDVI rasters for the 23 fires were 
combined into one layer (see Mosaicking the Standardized dNBR to One Layer, page 
126).   
 
 

 
Figure A-15.  Creation of the RdNDVI using the Spatial Analyst  
Raster Calculator 
 
 
 

Tasseled Cap Transformations 
 
 Creating TCT Bands 
 
 Erdas Imagine 9.1 was used to derive the pre-fire Tasseled Cap Transformations 
(TCT) from the original 6-band image subsets downloaded from the USGS.  Figure A-16 
shows the Tasseled Cap dialog box (Spectral Enhancement > Data Prep> Tasseled Cap).  
This operation created six new bands, but only the first three (brightness, greenness, and 
wetness) were retained. 
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Figure A-16.  The TCT spectral enhancement commands used in Erdas Imagine 9.1 for the Glade 
pre-fire subset. 

 
 
 Re-Projecting TCT Bands 
 
 The three TCT band rasters were re-projected to UTM NAD 83 in ArcGIS 
ArcToolbox using the Data Management Raster Project tool with nearest neighbor re-
sampling (see Reprojecting the Pre-and Post-fire 6 Band Imagery and dNBR, page 123).  
They were then clipped to rectangular subsets surrounding each fire using the Extract by 
Mask tool with the dNBR subsets used as masks (ArcToolbox > Spatial Analyst Tools > 
Extraction > Extract by Mask).  Mosaics of all 23 fires were made for brightness, 
greenness and wetness (TCT 1-3) using the same methods described in Mosaicking the 
Standardized dNBR to One Layer, page 126).   
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Topography 
 
 Obtaining Data 
 
 USGS digital elevation models (DEM) were provided by Yellowstone National 
Park, Grand Teton National Park, and the Bridger-Teton National Forest.  The 10 meter 
Yellowstone DEM was resampled to 30 meter pixels to match the resolution of the 
Landsat products and other DEMs (ArcToolbox Data Management Tools > Raster > 
Resample) (Figure A-17). The bilinear technique was chosen because elevation exists 
along a continuous gradient.  The Yellowstone elevation data was also converted from 
feet to meters by multiplying it by .3048 in the Spatial Analyst Raster Calculator.    
 

 
Figure A-17.  Resampling of the Yellowstone 10 meter DEM to 30 meter  
resolution with the bilinear technique 

 
 

 The 30 meter DEM data files for the three administrative units of the study area 
are very large.  For more efficient processing, the 23 fire areas were extracted using the 
Extract by Mask tool (ArcToolbox > Spatial Analyst Tools > Extraction > Extract by 
Mask), with temporary polygons used as the masks.  The three resulting rasters were then 
combined according to the methods in Mosaicking the Standardized dNBR to One Layer, 
page 126).   
 
 Creating Percent Slope and Aspect 
 
 The 30 meter DEM mosaic including all of the fires in the study area was used to 
create a percent slope layer with the Slope tool (ArcToolbox 3D Analyst > Raster Surface 
> Slope) (Figure A-18).  The Aspect tool (ArcToolbox 3D Analyst > Raster Surface > 
Aspect) was used to make the aspect layer (Figure A-19).  
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Figure A-18. Dialog box for the Slope tool, showing percent rise as the chosen output. 
 

 

 
 Figure A-19. The 3D Analyst Aspect tool dialog box 

 
 
 

Forest Type 
 
 Obtaining and Reprojecting Data 
 
 Pre-fire forest type data was obtained from vegetation maps provided by 
Yellowstone National Park, Grand Teton National Park, and the Bridger-Teton National 
Forest.  Pre-fire vegetation for Grand Teton National Park consisted of vector maps made 
using aerial photography digitized in 1979. This shape file was converted to 30 meter 
resolution raster format (ArcToolbox > Conversion Tools > To Raster > Polygon to 
Raster) (Figure A-20).  Yellowstone National Park provided a 30 meter pixel raster 
vegetation layer that originated from the same 1979 source.  Vegetation data from the 
Bridger-Teton National forest was obtained from a 1998 Landsat-derived 30 meter pixel 
raster map made by Utah State University.  See the supplemental data DVD (Appendix 
C) for metadata for all three vegetation data layers.  
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Figure A-20.  The Grand Teton National Park vegetation cover type 
shapefile was converted to 30 meter pixel raster format  

 
 
 Reclassifying Vegetation into Forest Types 
 
 The Bridger-Teton National Forest map was re-projected to UTM NAD 83 using 
the nearest neighbor technique (ArcToolbox > Data Management Tools > Projections 
and Transformations > Raster > Project Raster).  Each of the three vegetation rasters 
was then reclassified to produce a forest type map using the Reclassify tool (ArcToolbox 
> Spatial Analyst Tools > Reclass > Reclassify) (Figure A-21).   Five forest types and a 
nonforested category were derived from the three vegetation maps, as specified in Tables 
A-2, A-3, and A-4.   
 Once reclassified, the three forest type maps were combined together using the 
Mosaic to New Raster tool (ArcToolbox > Data management Tools > Raster > Mosaic to 
New Raster). Because of overlap, the aerial-photo derived Grand Teton National Park 
vegetation map was chosen to supersede the Bridger-Teton National Forest map in the 
final output (Figure A-22).  
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Figure A- 21.  The Spatial Analyst raster Calculator Reclassify dialog box with 
values for the Bridger-Teton National Forest vegetation and forest types. 

 
 

 
 
Table A-2.  Reclassification of the Grand Teton National Park Vegetation Cover Types into Forest Types.  
 

Original Map Cover Type Original Pixel Value Reclass Pixel Value Reclassified  Forest type 
Lodgepole_Pine(0) 0 4 Lodgepole pine  
Moist_Grassland/Meadow 
(>7400') 1 6 Non forested 
Whitebark(0) 2 3 High elevation spruce-fir 
Whitebark(4) 3 3 High elevation spruce-fir 
Lodgepole_Pine(3) 4 4 Lodgepole pine  
Lodgepole_Pine(2) 5 4 Lodgepole pine  
Lodgepole_Pine(1) 6 4 Lodgepole pine  
Spruce-Fir(4) 7 2 Spruce-fir 
Lodgepole_Pine(4) 8 4 Lodgepole pine  
Douglas-Fir(4) 9 1 Douglas-fir 
Moist_Sagebrush/Cinquefoil 10 6 Non forested 
Water_Body 11 6 Non forested 
Marsh/Fen 12 6 Non forested 
Marsh/Fen (>7400') 13 6 Non forested 
Talus 14 6 Non forested 
Wet_Meadow (>7400') 15 6 Non forested 
Moist_Grassland/Meadow 16 6 Non forested 
Wet_Meadow 17 6 Non forested 
Low_Willow 18 6 Non forested 
Dry_Forb_Meadow (>7400') 19 6 Non forested 
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Moist_Forb_Meadow 20 6 Non forested 
Bedrock/Unvegetated 21 6 Non forested 
Wet_Forb_Meadow (>7400') 22 6 Non forested 
Spruce-Fir(1) 23 2 Spruce-fir 
Douglas-Fir(3) 24 1 Douglas-fir 
Water_Course 25 6 Non forested 
High_Elevation_Grassland 26 6 Non forested 
Douglas-Fir(2) 27 1 Douglas-fir 
Mixed_Forest(1) 28 2 Spruce-fir 
Tall_Shrub 29 6 Non forested 
Douglas-Fir(1) 30 1 Douglas-fir 
Spruce-Fir(0) 31 2 Spruce-fir 
Dry_Grassland/Meadow 32 6 Non forested 
Dry_Forb_Meadow 33 6 Non forested 
Dry-Moist_Forest_Opening 34 6 Non forested 
Wet_Forest_Opening 35 6 Non forested 
Whitebark(3) 36 3 High elevation spruce-fir 
Wet_Forb_Meadow 37 6 Non forested 
Cliff 38 6 Non forested 
Whitebark(2) 39 3 High elevation spruce-fir 
Dry_Sagebrush 40 6 Non forested 
Human_Development 41 6 Non forested 
Tall_Shrub (>7400') 42 6 Non forested 
Aspen(2) 43 5 Aspen 
Aspen(4) 44 5 Aspen 
Aspen(3) 45 5 Aspen 
Whitebark(1) 46 3 High elevation spruce-fir 
Aspen(0) 47 5 Aspen 
Mixed_Forest(2) 48 2 Spruce-fir 
Douglas-Fir(0) 49 1 Douglas-fir 
Aspen(1) 50 5 Aspen 
Graminoid/Forb-
dominated_Avalanche_Chute 51 6 Non forested 
Spruce-Fir(2) 52 2 Spruce-fir 
Shrub-
dominated_Avalanche_Chute 53 6 Non forested 
Moist_Sagebrush 54 6 Non forested 
Tundra 55 6 Non forested 
Mixed_Forest(4) 56 2 Spruce-fir 
Krumholtz 57 6 Non forested 
Forb-Dominated_Seep 58 6 Non forested 
Mixed_Forest(3) 59 2 Spruce-fir 
Cottonwood(3) 60 6 Non forested 
Agricultural 61 6 Non forested 
 62 6 Non forested 
Open_Woods/Juniper 63 6 Non forested 
Cottonwood(2) 64 6 Non forested 
Cottonwood(1) 65 6 Non forested 
Cottonwood(0) 66 6 Non forested 
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Table A-3. Reclassification of the Yellowstone National Park Vegetation Types into Forest Types.  
 

Original Map Cover Type Original Pixel Value Reclass Pixel Value Reclassified  Forest type 
Lodgepole Pine, climax 1 4 Lodgepole pine 
Whitebark Pine, post 
disturbance 2 3 High elevation spruce-fir 
Douglas Fir, post disturbance 3 1 Douglas-fir 
Lodgepole Pine, post 
disturbance 4 4 Lodgepole pine 
Lodgepole Pine, post 
disturbance 5 4 Lodgepole pine 
Lodgepole Pine, climax 6 4 Lodgepole pine 
Nonforested 7 6 Non forested 
Lodgepole Pine, successional 8 4 Lodgepole pine 
Engelmann Spruce & 
Subalpine Fir, climax 9 2 Spruce-fir 
Engelmann Spruce & 
Subalpine Fir, climax 10 2 Spruce-fir 
Whitebark Pine, climax 11 3 High elevation spruce-fir 
Whitebark Pine, climax 12 3 High elevation spruce-fir 
Whitebark Pine, climax 13 1 Douglas-fir 
Whitebark Pine, climax 14 3 High elevation spruce-fir 
Whitebark Pine, climax 15 3 High elevation spruce-fir 
Douglas Fir, climax 16 1 Douglas-fir 
Douglas Fir, climax 17 1 Douglas-fir 
Lodgepole Pine, climax 18 4 Lodgepole pine 
Pygmy Lodgepole Pine 19 2 Spruce-fir 
Lodgepole Pine, successional 20 4 Lodgepole pine 
Pygmy Lodgepole Pine 21 4 Lodgepole pine 
Lodgepole Pine, successional 22 4 Lodgepole pine 
Aspen 23 5  
Douglas Fir, successional 24 1 Douglas-fir 
Whitebark Pine, successional 25 3 High elevation spruce-fir 
Whitebark Pine, successional 26 3 High elevation spruce-fir 
Lodgepole Pine, climax 27 4 Lodgepole pine 
Lodgepole Pine, successional 28 4 Lodgepole pine 
Lodgepole Pine, successional 29 4 Lodgepole pine 
Lodgepole Pine, successional 30 4 Lodgepole pine 
Lodgepole Pine, successional 31 1 Douglas-fir 
Lodgepole Pine, successional 32 4 Lodgepole pine 
Lodgepole Pine, climax 33 4 Lodgepole pine 
Krummholz 34 6 Non forested 
Lodgepole Pine, successional 35 4 Lodgepole pine 
Krummholz 36 6 Non forested 
Aspen 37 5 Aspen 
Whitebark Pine, successional 38 3 High elevation spruce-fir 
Pygmy Lodgepole Pine 39 4 Lodgepole pine 
Water 40 6 Non forested 
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Table A-4. Reclassification of the Bridger-Teton National Forest Vegetation Types into Forest Types.  
 

Original Map Cover Type Original Pixel Value Reclass Pixel Value Reclassified  Forest type 
Subalpine Fir - Cc < 30% 1 2 Spruce-fir 
Subalpine Fir - Cc 30-59% 2 2 Spruce-fir 
Subalpine Fir - Cc > 59% 3 2 Spruce-fir 
Subalpine Fir/Doug Fir - Cc 
30-59% 5 1 Douglas-fir 
Subalpine Fir/Doug Fir - Cc 
> 59% 6 1 Douglas-fir 
Subalpine Fir/Lodgepole - 
Cc 30-59% 8 4 Lodgepole pine 
Subalpine Fir/Lodgepole - 
Cc > 59% 9 4 Lodgepole pine 
Subalpine Fir/Spruce - Cc < 
30% 10 2 Spruce-fir 
Subalpine Fir/Spruce - Cc 
30-59% 11 2 Spruce-fir 
Subalpine Fir/Spruce - Cc > 
59% 12 2 Spruce-fir 
Subalpine Fir/Whitebark - Cc 
30-59% 14 3 High elevation spruce-fir 
Doug Fir - Cc < 30% 16 1 Douglas-fir 
Doug Fir - Cc 30-59% 17 1 Douglas-fir 
Doug Fir - Cc > 59% 18 1 Douglas-fir 
Doug Fir/Lodgepole - Cc 30-
59% 23 1 Douglas-fir 
Juniper Utah - Cc < 30% 31 6 Non-forested 
Juniper Utah - Cc 30-59% 32 6 Non-forested 
Lodgepole - Cc < 30% 37 4 Lodgepole pine 
Lodgepole - Cc 30-59% 38 4 Lodgepole pine 
Lodgepole - Cc > 59% 39 4 Lodgepole pine 
Lodgepole Sapling 40 4 Lodgepole pine 
Engelmann Spruce - Cc 30-
59% 46 2 Spruce-fir 
Engelmann Spruce - Cc > 
59% 47 2 Spruce-fir 
Limber/Whitebark Pine - Cc 
< 30% 48 3 High elevation spruce-fir 
Limber/Whitebark Pine - Cc 
30-59% 49 3 High elevation spruce-fir 
Doug Fir/Limber - Cc 30-
59% 52 1 Douglas-fir 
Aspen - Cc < 30% 60 5 Aspen 
Aspen - Cc 30-59% 61 5 Aspen 
Aspen - Cc > 59% 62 5 Aspen 
Aspen/Conifer - Cc 30-59% 64 5 Aspen 
Maple - Cc 30-59% 67 6 Non-forested 
Maple - Cc > 59% 68 6 Non-forested 
Mountain Mahogany - Cc 
30-59% 70 6 Non-forested 
Mountain Mahogany - Cc > 
59% 71 6 Non-forested 
Big Sagebrush 75 6 Non-forested 
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Bitterbrush 76 6 Non-forested 
Burn_Shrub 77 6 Non-forested 
Low Sagebrush 80 6 Non-forested 
Montane Shrub 81 6 Non-forested 
Mountain Big Sage 82 6 Non-forested 
Mountain Low Sage 83 6 Non-forested 
Silver Sage 86 6 Non-forested 
Alpine Shrub 87 6 Non-forested 
Alpine Herbaceous 90 6 Non-forested 
Burn_Herbaceous 92 6 Non-forested 
Clearcut_Herbaceous 93 6 Non-forested 
Dry Meadow 94 6 Non-forested 
Perennial Grass 95 6 Non-forested 
Perennial Grass Slope 96 6 Non-forested 
Perennial Grass Montane 97 6 Non-forested 
Tall Forb Montane 98 6 Non-forested 
Wet Meadow 99 6 Non-forested 
Barren 101 6 Non-forested 
Rock 104 6 Non-forested 
Water 107 6 Non-forested 
Snow 108 6 Non-forested 
Deciduous Tree Riparian 111 6 Non-forested 
Riverine Riparian 112 6 Non-forested 
Herbaceous Riparian 113 6 Non-forested 
Shrub Riparian 114 6 Non-forested 
Deep Marsh 120 6 Non-forested 
Shallow Marsh 121 6 Non-forested 
Aquatic Bed 122 6 Non-forested 
Mud Flat 123 6 Non-forested 
Agricultural 126 6 Non-forested 
Disturbed High 129 6 Non-forested 
Disturbed Low 130 6 Non-forested 
Urban High Density 131 6 Non-forested 
Urban Low Density 132 6 Non-forested 

 



 

 142

  
Figure A-22.  The Mosaic to New Raster tool was used to combine the three forest type maps.  
The “last” mosaic method allowed the Grand Teton map to replace the Bridger-Teton map 
where they overlapped. 
 
 

 
Creating Three Spatial Resolutions 

 
 In order to make the spatial resolution of the predictor variables spatially 
compatible with the canopy mortality estimates, each raster layer was resampled to 1 and 
5 hectare circles.  The .07 hectare analysis used the original 30 meter resolution data 
layers because the 15 meter radius circle was completely contained in one pixel. This was 
accomplished using circular focal statistics calculations for the three appropriate radii: 
56.41 meters for 1 hectare and 126.16 meters for 5 hectares.  The ArcGIS 9.1 Focal 
Statistics tool was used to specify these operations (ArcToolbox > Spatial Analyst Tools 
> Neighborhood > Focal Statistics).  The numeric raster layers (dNBR, NBR post-fire, 
RdNBR, dNDVI, RdNDVI, TCT 1-3, elevation, slope, and aspect) used the focal mean 
statistics type (Figure A-23).  Each pixel value was replaced by the mean of all pixels that 
partially or completely intersected the specified radii.    Forest type, a categorical layer, 
used focal majority instead of mean to replace each pixel with the most prevalent forest 
type within the designated radii (Figure A-24).    
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Figure A-23.  The Focal Statistics tool was used to calculate the 1 hectare circular focal 
mean for the Tasseled Cap Transformation brightness (TCT-1) raster grid.   

 
 

 
Figure A-24.  The 5 hectare circular focal majority for forest type was calculated 
using a radius of 126.16 meters.  
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Point Extraction from Raster Data 
 

 The pixel values of each predictor variable raster layer were extracted for the 694 
canopy mortality estimate locations using The Hawth’s Analysis Tools 3.26 package, 
available at (http://www.spatialecology.com/htools/tooldesc.php).  The point shape file 
containing the 694 XY locations was used with the Intersect Point tool (Hawth’s Tools 
toolbar > Analysis Tools > Intersect Point Tool) (Figure A-25).  This operation appended 
a new field for each intersecting raster pixel at the three spatial resolutions to the attribute 
table of the point shapefile. The table was then exported to a database file (Open Attribute 
Table > Options > Export > Export Data) for statistical analysis.   
 

 
Figure A-25.  The Point Intersect tool dialog box from the Hawth’s Tools 
extension was used for extracting all pixel values for canopy mortality 
estimate locations.   

 
 
 

Accuracy Assessment 
 
 Random Point Generation 
 
 The Hawth’s Tools Extension for ArcGIS was used to generate random points 
within designated polygons for accuracy assessment of canopy mortality models.  In 
order to exclude nonforested areas from the random sample area, a polygon shapefile of 
nonforested vegetation was used.  This shapefile was made by converting a reclassified 

http://www.spatialecology.com/htools/tooldesc.php
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forest type raster layer to only nonforested vegetation and NoData (Figure A-26) 
(ArcToolbox > Spatial Analyst Tools > Reclass > Reclassify).  This was then converted 
to a polygon shapefile (Figure A-27) (ArcToolbox > Conversion Tools > From Raster > 
Raster to Polygon).   
 A simple random sample of 100 points was derived within each of the three fires 
chosen (Figure A-28), for a total of 300 (Hawth’s Tools > Sampling Tools > Generate 
Random Points). 
 
 

 
Figure A-26. Reclassification of the 1 hectare forest type raster layer to Nonforested and 
NoData  
 

 

 
Figure A-27. Converting the raster layer of nonforested vegetation to a shapefile for use as 
a mask in selecting random locations for accuracy assessment.  
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Figure A-28.  The Hawth’s Tools dialog box for generating 100 random points 
within the Wilcox fire, exclusive of nonforested vegetation  
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 Making Predicted Surfaces  
 
 Classification tree models were expressed in the form of conditional statements 
for conversion to raster form using the ArcGIS Spatial Analyst extension Raster 
Calculator.  An analysis mask was used that limited these surfaces to forested vegetation 
only (Spatial Analyst toolbar > Options > Analysis Mask> raster file name).  This mask 
layer was made from the forest type grids for .07, 1, and 5 hectare spatial resolutions 
using the Reclassify tool (ArcToolbox > Spatial Analyst Tools > Reclass > Reclassify) 
(Figure A-29).   
 
 

 
Figure A-29.  Creating the 1 hectare forested vegetation analysis mask layer for generating predicted 
surfaces of canopy mortality.  All five forest types were combined as value “1” and the nonforested 
category was excluded as “NoData.” 
 
 
 Figure A-30 shows how the Spatial Analyst Raster Calculator is used to generate 
the predicted surface for the classification tree model for three mortality categories at the 
.07 hectare spatial resolution (see original tree model diagram Figure A-31).  Tables A-5 
and A-6 show the conditional statements used for all models subjected to accuracy 
assessment in Chapters 2 and 3, respectively.  If both tree branches at a node resulted in 
the same mortality category, that step was omitted from the conditional statement.  
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Figure A-30.  Raster Calculator expression featuring conditional (con) 
statements used to generate the predicted raster surface for three levels of 
canopy mortality at the original 30 meter pixel scale.  
 

 

←dNDVI < 228.62

←RdNBR < 357.72

XX
YY

ZZZZ
ZZZZ

ZZ
←Elevation
< 2011.53

←Elevation < 2436.6

←RdNBR < 147.86

←RdNBR 
< 1353.07

0-20%         25-75%         80-100%XX YY ZZ

 
Figure A-32.  Original binary classification tree model 
diagram for three canopy mortality categories at .07 hectare 
resolution.  Note that the splits on the right side of the tree 
are not included in conditional statements (Figure A-30) 
because they all result in the 80-100% category. 
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Table A-5.  Raster Calculator Expressions used to create predicted surfaces for classification tree models 
for Chapter 2.  See Appendix B and the supplemental data DVD for model specifics.   
Tree Model Conditional Statement Used in Raster Calculator 
3- Category Air Photo 
Based Best Tree 
 

p_photo_3 = con ( [rdnbr30] < 357.72, con ( [rdnbr30] < 147.86 , 1 , con ( 
[elev_30] < 2011.53 , 3 , 2 )) , 3 ) 
 

3- Category Air Photo 
Based DNBR Only Tree 

p_ph_3_dnbr = con ( [dnbr30] < 99.98, 1 , con ( [dnbr30] < 352.9 , con ( 
[elev_30] < 2436.51 , 3, 2 ) , 3) ) 
 

 
Table A-6.  Raster Calculator Expressions used to create predicted surfaces for classification tree models 
for Chapter 3.  See Appendix B and the supplemental data DVD for model specifics.   
Tree Model Conditional Statement Used in Raster Calculator 
.07 Hectare Tree  
 

p_07h_3 = con ( [rdnbr30] < 357.72, con ( [rdnbr30] < 147.86 , 1 , con ( 
[elev_30] < 2011.53 , 3 , 2 )) , 3 ) 
 

1 Hectare Tree  p_1h_3 = con ( [dnbr_1h] < 100.235 , con ( [dndvi_1h] < 100.235 , 1 , 3 ) , 
con ( [rdnbr_1h] < 956.275 , con ( [elev_1h] < 2478.13 , 3 , 2 ) , 3 )) 
 
 

5 Hectare Tree  p_5h_3 = con ( [dndvi_5h] < 158.52, con ( [dnbr_5h] < 11.9,  con ( 
[nbrpost_5h] < 315.01 , 2, 1 ) ,  con ( [dnbr_5h] < 146.7,  2 , con ( [tc2_5h] < 
40.16 , con ( [elev_5h] < 1927.78 , 3 , 2 ) , 3))) , con ( [nbrpost_5h] < 135.5, 
3, 2 )) 
 

 
 
 
 Extracting Predicted Values for Accuracy Assessment Locations 
 
Canopy mortality estimates were made for the 300 accuracy assessment plots using the 
same digital orthophotography and buffer process used for the original 694 estimates at 
three scales (see Canopy Mortality Estimates from Digital Orthophotographs, page 
119). In order to construct error matrices comparing the estimated and predicted mortality 
levels, the pixel values for the model predicted surfaces were obtained with the Hawth’s 
Tools Point Intersect Tool, which appended them to the random location shape file for 
export to database format (see Point Extraction from Raster Data, page 143).   
 
 

Analysis of Sampling Bias for CBI Plot Locations 
 
 To evaluate the effects of using field selected CBI plots instead of random 
locations for this study, a comparison was made between slope, aspect, elevation, and 
distance from roads for the 694 plots and 700 points selected using the Hawth’s Tools 
Generate Random Points tool.  The random samples were selected within the 23 fire 
polygons with no mask for vegetation types.  The raster layer for distance from roads was 
created using the Euclidean Distance tool (ArcToolbox > Spatial Analyst Tools  > 
Distance > Euclidean Distance) and a shape file for roads (Figure A-32). The Hawth’s 
Tools Point Intersect Tool was used to extract the pixel values for slope, aspect and 
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elevation and road distance for the random point and CBI plot point shape files (see 
Point Extraction from Raster Data, page 143).  The attribute tables for these feature 
datasets were exported to database format for analysis. See Chapter 1 for the results of 
these comparisons.  
 
 

 
Figure AA-32. Creation of a road distance raster layer for the study area using the Spatial Analyst 
Euclidian Distance tool. 
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APPENDIX B 
 

Statistical Analysis:  R Script for Classification Tree Models 
 
 

Table of Contents 
 
Introduction.................................................................................................................. 
 
Chapter 2 Classification Tree Model Examples........................................................ 
Photo-Based 3 Category Model Script (Best Tree)……............................................... 
Photo-Based dNBR Only Model Script (dNBR Only Tree)............................................ 
 
Chapter 3 Classification Tree Model Example......................................................... 
.07 Hectare Resolution Model Script............................................................................. 
 

151
 
152
152
158
 
163
163

 
Introduction 

 
The R statistical package version 2.3.1 was used to build binary classification tree 

models as part of this study.  The program was developed by the R Project for Statistical 

Computing, and is available for download free of charge at http://www.r-project.org/.  

The R Graphic User Interface (GUI) consists of an “R Console” window for command 

line entry and program output, as well as windows for graphical outputs.  Commands can 

be typed directly into the R Console, or pasted in from word processing files.  The scripts 

below were developed for such copy-and-paste use.  Red text represents command entry, 

and blue text is R statistical output.  Black text is used to explain the operational steps 

and data characteristics.   

The R Tree package was used for classification tree modeling.  It can be 

downloaded from the R Project website (above), and installed from a .zip file from the R 

Packages pull-down menu. It must be loaded each time the program is restarted.  

Only three script examples are included in this appendix; however Microsoft 

Word document format scripts for all ten models referred to in chapters 2 and 3 are 

http://www.r-project.org/
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located on the supplemental data DVD. Electronic data files are also included.  To run the 

scripts, copy the data text files to a root directory.  If a drive designated “F” is used, no 

changes will be needed to read them into R using the pasted lines from the scripts.  

Otherwise, the drive letter will need to be changed when the read.table command is used.  

 
Chapter 2 Classification Tree Model Examples 

 
 
Photo-Based 3 Category Model Script (Best Tree) 
 
Categories for percent canopy mortality estimated from Air Photos  (30m diameter circle): 
 
X 0-20 
Y 25-75 
Z 80-100 
 
Tree Model selection process for model to predict canopy mortality levels using air photos. 
 
Read data into R: 
 
photo3<-read.table("F://Photo_3.txt", header=T,sep="") 
 
Check the number of columns: 
ncol(photo3) 
[1] 19 
 
Column: Data:    Column In subset: 
1  UNIT  
2  FIRE_NAME  
3  PLOT_NAME  
4  UTM_N  
5  UTM_E 
6  FIRE_DATE  
7  MORT_CATEG_3   1 
8  FORTYPE_30    2   
9  SLOPE_30    3 
10  ELEV_30    4 
11  ASPECT_30    5 
12  TC3_30     6 
13  TC2_30     7 
14  TC1_30     8 
15  RDNDVI_30    9 
16  RDNBR_30    10 
17  NBRPOST_30    11 
18  DNDVI_30    12 
19  DNBR_30    13 
 
Make a subset of columns of interest: 
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photo3.sub<- photo3[,7:19] 
 
Set response variable MORT_CATEG_3 as categorical:  
 
photo3.sub [,1]<-as.factor(photo3.sub [,1]) 
 
Set response variable FORTYPE_30 as categorical:  
 
photo3.sub [,2]<-as.factor(photo3.sub[,2]) 
 
Load tree package.    
 
photo3.tree<-tree(MORT_CATEG_3 ~.,, data = photo3.sub) 
 
summary(photo3.tree) 
photo3.tree 
plot(photo3.tree) 
text(photo3.tree) 
 
Classification tree: 
tree(formula = MORT_CATEG_3 ~ ., data = photo3.sub) 
Variables actually used in tree construction: 
[1] "RDNBR_30"   "NBRPOST_30" "FORTYPE_30" "ELEV_30"    "DNDVI_30"   
Number of terminal nodes:  11  
Residual mean deviance:  1.15 = 785.3 / 683  

Misclassification error rate: 0.2637 = 183 / 694 

|RDNBR_30 < 357.72

RDNBR_30 < 147.86

NBRPOST_30 < 214.305
FORTYPE_30:abceg

ELEV_30 < 2011.53

DNDVI_30 < 228.615

NBRPOST_30 < -129.065
ELEV_30 < 1916.13

ELEV_30 < 2436.6RDNBR_30 < 1353.0
X

X X Z Y Z
Z Z

Z
Z Z

 
 
‘node’ is the point of a binary split 
'var' is the variable used at the split (or leaf for a terminal node) 
'split' in the threshold value or category determining the split 
 'n' is the (weighted) number of cases reaching that node 
 'dev' the deviance of the node 
 'yval', is the fitted value at the node (majority class)  
('yprob')is  a matrix of fitted  probabilities for each response level. 
* denotes terminal node 
 
node), split, n, deviance, yval, (yprob) 
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      * denotes terminal node 
1) root 694 1324.000 Z ( 0.208934 0.194524 0.596542 )   
   2) RDNBR_30 < 357.72 215  421.200 X ( 0.567442 0.246512 0.186047 )   
     4) RDNBR_30 < 147.86 123  168.500 X ( 0.764228 0.170732 0.065041 )   
       8) NBRPOST_30 < 214.305 22   47.090 X ( 0.409091 0.363636 0.227273 ) * 
       9) NBRPOST_30 > 214.305 101  103.700 X ( 0.841584 0.128713 0.029703 )   
        18) FORTYPE_30: 0,1,2,4,6 80   57.040 X ( 0.912500 0.050000 0.037500 ) * 
        19) FORTYPE_30: 5 21   28.680 X ( 0.571429 0.428571 0.000000 ) * 
     5) RDNBR_30 > 147.86 92  201.800 Z ( 0.304348 0.347826 0.347826 )   
      10) ELEV_30 < 2011.53 19   19.560 Z ( 0.000000 0.210526 0.789474 ) * 
      11) ELEV_30 > 2011.53 73  156.900 Y ( 0.383562 0.383562 0.232877 ) * 
   3) RDNBR_30 > 357.72 479  614.200 Z ( 0.048017 0.171190 0.780793 )   
     6) DNDVI_30 < 228.615 197  344.900 Z ( 0.086294 0.304569 0.609137 )   
      12) NBRPOST_30 < -129.065 25    8.397 Z ( 0.000000 0.040000 0.960000 ) * 
      13) NBRPOST_30 > -129.065 172  316.900 Z ( 0.098837 0.343023 0.558140 )   
        26) ELEV_30 < 1916.13 19    7.835 Z ( 0.000000 0.052632 0.947368 ) * 
        27) ELEV_30 > 1916.13 153  292.300 Z ( 0.111111 0.379085 0.509804 ) * 
     7) DNDVI_30 > 228.615 282  211.600 Z ( 0.021277 0.078014 0.900709 )   
      14) ELEV_30 < 2436.6 142   48.290 Z ( 0.007042 0.028169 0.964789 ) * 
      15) ELEV_30 > 2436.6 140  149.200 Z ( 0.035714 0.128571 0.835714 )   
        30) RDNBR_30 < 1353.07 48   86.340 Z ( 0.104167 0.291667 0.604167 ) * 
        31) RDNBR_30 > 1353.07 92   32.910 Z ( 0.000000 0.043478 0.956522 ) * 
 
Perform a 10-fold cross validation of the tree model. Repeat 10 times. 
 
photo3.cv<-cv.tree(photo3.tree) 
photo3.cv 
plot(photo3.cv)  
 
$size 
[1] 11 10  8  7  5  4  3  2  1 
 
$dev 
[1] 1141.949 1050.311 1051.615 1025.315 1026.371 1014.699 1065.716 1083.888 
[9] 1327.773 
 
$k 
[1]      -Inf  16.74249  17.85462  19.63187  22.01071  25.36371  50.92354 
[8]  57.71470 288.41402 
 
$method 
[1] "deviance" 
 
attr(,"class") 
[1] "prune"         "tree.sequence" 
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The deviance starts to increase after about 7 nodes 
 
photo3.prune<-prune.tree(photo3.tree, best = 7)  
photo3.prune 
plot(photo3.prune) 
text(photo3.prune) 
summary(photo3.prune) 
 
Classification tree: 
snip.tree(tree = photo3.tree, nodes = c(4, 6)) 
Variables actually used in tree construction: 
[1] "RDNBR_30" "ELEV_30"  "DNDVI_30" 
Number of terminal nodes:  7  
Residual mean deviance:  1.248 = 857.4 / 687  
Misclassification error rate: 0.2637 = 183 / 694  
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|

RDNBR_30 < 357.72

RDNBR_30 < 147.86

ELEV_30 < 2011.53

DNDVI_30 < 228.615

ELEV_30 < 2436.6
RDNBR_30 < 1353.07

X
Z Y

Z
Z

Z Z
 

node), split, n, deviance, yval, (yprob) 
      * denotes terminal node 
 
1) root 694 1324.00 Z ( 0.208934 0.194524 0.596542 )   
   2) RDNBR_30 < 357.72 215  421.20 X ( 0.567442 0.246512 0.186047 )   
     4) RDNBR_30 < 147.86 123  168.50 X ( 0.764228 0.170732 0.065041 ) * 
     5) RDNBR_30 > 147.86 92  201.80 Z ( 0.304348 0.347826 0.347826 )   
      10) ELEV_30 < 2011.53 19   19.56 Z ( 0.000000 0.210526 0.789474 ) * 
      11) ELEV_30 > 2011.53 73  156.90 Y ( 0.383562 0.383562 0.232877 ) * 
   3) RDNBR_30 > 357.72 479  614.20 Z ( 0.048017 0.171190 0.780793 )   
     6) DNDVI_30 < 228.615 197  344.90 Z ( 0.086294 0.304569 0.609137 ) * 
     7) DNDVI_30 > 228.615 282  211.60 Z ( 0.021277 0.078014 0.900709 )   
      14) ELEV_30 < 2436.6 142   48.29 Z ( 0.007042 0.028169 0.964789 ) * 
      15) ELEV_30 > 2436.6 140  149.20 Z ( 0.035714 0.128571 0.835714 )   
        30) RDNBR_30 < 1353.07 48   86.34 Z ( 0.104167 0.291667 0.604167 ) * 
        31) RDNBR_30 > 1353.07 92   32.91 Z ( 0.000000 0.043478 0.956522 ) *        28) DNBR_30 < 352.9 
156  428.20 C ( 0.006410 0.134615 0.326923 0.269231 0.262821 )   
          56) ELEV_30 < 1918.32 15   15.01 E ( 0.000000 0.000000 0.000000 0.200000 0.800000 ) * 
          57) ELEV_30 > 1918.32 141  385.60 C ( 0.007092 0.148936 0.361702 0.276596 0.205674 ) * 
        29) DNBR_30 > 352.9 111  249.00 E ( 0.000000 0.063063 0.126126 0.270270 0.540541 ) * 
      15) RDNDVI_30 > 852.255 58   85.40 E ( 0.000000 0.086207 0.000000 0.172414 0.741379 ) * 
 
Which categories are differentiated in the first split? 
 
photo3.prune<-prune.tree(photo3.tree, best = 2)  
photo3.prune 
plot(photo3.prune) 
text(photo3.prune) 
summary(photo3.prune) 
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|RDNBR_30 < 357.72

X Z

 
Photo-Based dNBR Only Model Script (dNBR Only Tree) 
 
Categories for percent canopy mortality estimated from Air Photos  (30m diameter circle): 
 
X 0-20 
Y 25-75 
Z 80-100 
 
Tree Model selection process for model to predict canopy mortality levels using air photos. 
 
Read data into R: 
 
photo3dnbr<-read.table("F://Photo_3_dnbr.txt", header=T,sep="") 
 
Check the number of columns: 
ncol(photo3dnbr) 
[1] 15 
 
Column: Data:    Column In subset: 
1  UNIT  
2  FIRE_NAME  
3  PLOT_NAME  
4  UTM_N  
5  UTM_E 
6  FIRE_DATE  
7  MORT_CATEG_3   1 
8  FORTYPE_30    2   
9  SLOPE_30    3 
10  ELEV_30    4 
11  ASPECT_30    5 
12  TC3_30     6 
13  TC2_30     7 
14  TC1_30     8 
15  DNBR_30    13 
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Make a subset of columns of interest: 
 
photo3dnbr.sub<- photo3dnbr[,7:15] 
 
Set response variable MORT_CATEG_3 as categorical:  
 
photo3dnbr.sub [,1]<-as.factor(photo3dnbr.sub [,1]) 
 
Set response variable FORTYPE_30 as categorical:  
 
photo3dnbr.sub [,2]<-as.factor(photo3dnbr.sub[,2]) 
 
Load the tree package 
 
photo3dnbr.tree<-tree(MORT_CATEG_3 ~.,, data = photo3dnbr.sub) 
 
summary(photo3dnbr.tree) 
photo3dnbr.tree 
plot(photo3dnbr.tree) 
text(photo3dnbr.tree) 
 
Classification tree: 
tree(formula = MORT_CATEG_3 ~ ., data = photo3dnbr.sub) 
Variables actually used in tree construction: 
[1] "DNBR_30"    "FORTYPE_30" "ELEV_30"    "ASPECT_30"  "TC3_30"     
Number of terminal nodes:  9  
Residual mean deviance:  1.279 = 876 / 685  
Misclassification error rate: 0.2478 = 172 / 694  

|DNBR_30 < 99.98

FORTYPE_30:abcegDNBR_30 < 41.565 DNBR_30 < 352.9

ELEV_30 < 2436.51
ASPECT_30 < 138.07TC3_30 < -1.5ELEV_30 < 2600.85

X X X

Z Z Y Z
Z

Z

 
‘node’ is the point of a binary split 
'var' is the variable used at the split (or leaf for a terminal node) 
'split' in the threshold value or category determining the split 
 'n' is the (weighted) number of cases reaching that node 
 'dev' the deviance of the node 
 'yval', is the fitted value at the node (majority class)  
('yprob')is  a matrix of fitted  probabilities for each response level. 
* denotes terminal node 
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1) root 694 1324.00 Z ( 0.20893 0.19452 0.59654 )   
   2) DNBR_30 < 99.98 167  288.10 X ( 0.66467 0.20359 0.13174 )   
     4) FORTYPE_30: 0,1,2,4,6 139  228.50 X ( 0.69784 0.15108 0.15108 )   
       8) DNBR_30 < 41.565 85  104.40 X ( 0.81176 0.09412 0.09412 ) * 
       9) DNBR_30 > 41.565 54  110.80 X ( 0.51852 0.24074 0.24074 ) * 
     5) FORTYPE_30: 3,5 28   46.02 X ( 0.50000 0.46429 0.03571 ) * 
   3) DNBR_30 > 99.98 527  752.10 Z ( 0.06452 0.19165 0.74383 )   
     6) DNBR_30 < 352.9 260  475.90 Z ( 0.11154 0.29615 0.59231 )   
      12) ELEV_30 < 2436.51 154  229.00 Z ( 0.06494 0.21429 0.72078 )   
        24) ASPECT_30 < 138.07 74  138.00 Z ( 0.12162 0.29730 0.58108 ) * 
        25) ASPECT_30 > 138.07 80   74.52 Z ( 0.01250 0.13750 0.85000 ) * 
      13) ELEV_30 > 2436.51 106  220.30 Y ( 0.17925 0.41509 0.40566 )   
        26) TC3_30 < -1.5 73  136.70 Y ( 0.09589 0.50685 0.39726 )   
          52) ELEV_30 < 2600.85 37   59.45 Y ( 0.10811 0.70270 0.18919 ) * 
          53) ELEV_30 > 2600.85 36   62.66 Z ( 0.08333 0.30556 0.61111 ) * 
        27) TC3_30 > -1.5 33   70.00 Z ( 0.36364 0.21212 0.42424 ) * 
     7) DNBR_30 > 352.9 267  210.10 Z ( 0.01873 0.08989 0.89139 ) * 
 
Perform a 10-fold cross validation of the tree model. Repeat 10 times. 
 
photo3dnbr.cv<-cv.tree(photo3dnbr.tree) 
photo3dnbr.cv 
plot(photo3dnbr.cv)  
 
$size 
[1] 9 8 7 5 4 3 2 1 
 
$dev 
[1] 1177.9152 1121.1016 1124.7038 1085.7086  999.5689 1009.9677 1063.9208 
[8] 1328.7955 
 
$k 
[1]      -Inf  13.31859  13.52474  14.08859  16.54446  26.59085  66.04040 
[8] 283.64800 
 
$method 
[1] "deviance" 
 
attr(,"class") 
[1] "prune"         "tree.sequence" 
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The deviance starts to increase after about 5 nodes 
 
photo3dnbr.prune<-prune.tree(photo3dnbr.tree, best = 5)  
photo3dnbr.prune 
plot(photo3dnbr.prune) 
text(photo3dnbr.prune) 
summary(photo3dnbr.prune) 
 
 
Classification tree: 
snip.tree(tree = photo3dnbr.tree, nodes = c(2, 13)) 
Variables actually used in tree construction: 
[1] "DNBR_30"   "ELEV_30"   "ASPECT_30" 
Number of terminal nodes:  5  
Residual mean deviance:  1.351 = 931 / 689  
Misclassification error rate: 0.2738 = 190 / 694 
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|

DNBR_30 < 99.98

DNBR_30 < 352.9

ELEV_30 < 2436.51
ASPECT_30 < 138.07

X

Z Z
Y

Z

 
node), split, n, deviance, yval, (yprob) 
      * denotes terminal node 
 
1) root 694 1324.00 Z ( 0.20893 0.19452 0.59654 )   
   2) DNBR_30 < 99.98 167  288.10 X ( 0.66467 0.20359 0.13174 ) * 
   3) DNBR_30 > 99.98 527  752.10 Z ( 0.06452 0.19165 0.74383 )   
     6) DNBR_30 < 352.9 260  475.90 Z ( 0.11154 0.29615 0.59231 )   
      12) ELEV_30 < 2436.51 154  229.00 Z ( 0.06494 0.21429 0.72078 )   
        24) ASPECT_30 < 138.07 74  138.00 Z ( 0.12162 0.29730 0.58108 ) * 
        25) ASPECT_30 > 138.07 80   74.52 Z ( 0.01250 0.13750 0.85000 ) * 
      13) ELEV_30 > 2436.51 106  220.30 Y ( 0.17925 0.41509 0.40566 ) * 
     7) DNBR_30 > 352.9 267  210.10 Z ( 0.01873 0.08989 0.89139 ) * 
 
 

Chapter 3 Classification Tree Model Script Example 
 
.07 Hectare Resolution Model 

 
Categories for percent canopy mortality estimated from air photos for the 30 meter diameter circle: 
 
X 0-20 
Y 25-75 
Z 80-100 
 
Tree Model selection process for model to predict canopy mortality levels using air photos. 
 
Read data into R: 
 
res07h<-read.table("F://07h_3.txt", header=T,sep="") 
 
Check the number of columns: 
ncol(res07h) 
[1] 20 
 
Column: Data:    Column In subset: 
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1  UNIT  
2  FIRE_NAME  
3  PLOT_NAME  
4  UTM_N  
5  UTM_E 
6  FIRE_DATE  
7  MORT_CATEG_3   1 
8  FORTYPE_30    2   
9  SLOPE_30    3 
10  ELEV_30    4 
11  ASPECT_30    5 
12  TC3_30     6 
13  TC2_30     7 
14  TC1_30     8 
15  RDNDVI_30    9 
16  RDNBR_30    10 
17  NBRPOST_30    11 
18  DNDVI_30    12 
19  DNBR_30    13 
20  UNIT     14 
 
Make a subset of columns of interest: 
 
res07h.sub<- res07h [,7:20] 
 
Set response variable MORT_CATEG_3 as categorical:  
 
res07h.sub[,1]<-as.factor(res07h.sub[,1]) 
 
Set response variable FORTYPE_30 as categorical:  
 
res07h.sub[,2]<-as.factor(res07h.sub[,2]) 
 
Set response variable UNIT as categorical:  
 
res07h.sub[,14]<-as.factor(res07h.sub[,14]) 
 
Load tree package 
 
res07h.tree<-tree(MORT_CATEG_3 ~.,, data = res07h.sub) 
 
summary(res07h.tree) 
res07h.tree 
plot(res07h.tree) 
text(res07h.tree) 
 
Classification tree: 
tree(formula = MORT_CATEG_3 ~ ., data = cbi30m3.sub) 
Variables actually used in tree construction: 
[1] "RDNBR_30"   "NBRPOST_30" "FORTYPE_30" "ELEV_30"    "DNDVI_30"   
Number of terminal nodes:  11  
Residual mean deviance:  1.15 = 785.3 / 683  
Misclassification error rate: 0.2637 = 183 / 694 
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|RDNBR_30 < 357.72

RDNBR_30 < 147.86

NBRPOST_30 < 214.305
FORTYPE_30:abceg

ELEV_30 < 2011.53

DNDVI_30 < 228.615

NBRPOST_30 < -129.065
ELEV_30 < 1916.13

ELEV_30 < 2436.6
RDNBR_30 < 1353.07

X
X X Z Y Z

Z Z
Z

Z Z  
 
‘node’ is the point of a binary split 
'var' is the variable used at the split (or leaf for a terminal node) 
'split' in the threshold value or category determining the split 
 'n' is the (weighted) number of cases reaching that node 
 'dev' the deviance of the node 
 'yval', is the fitted value at the node (majority class)  
('yprob')is  a matrix of fitted  probabilities for each response level. 
* denotes terminal node 
 
node), split, n, deviance, yval, (yprob) 
      * denotes terminal node 
 
1) root 694 1324.000 Z ( 0.208934 0.194524 0.596542 )   
   2) RDNBR_30 < 357.72 215  421.200 X ( 0.567442 0.246512 0.186047 )   
     4) RDNBR_30 < 147.86 123  168.500 X ( 0.764228 0.170732 0.065041 )   
       8) NBRPOST_30 < 214.305 22   47.090 X ( 0.409091 0.363636 0.227273 ) * 
       9) NBRPOST_30 > 214.305 101  103.700 X ( 0.841584 0.128713 0.029703 )   
        18) FORTYPE_30: 0,1,2,4,6 80   57.040 X ( 0.912500 0.050000 0.037500 ) * 
        19) FORTYPE_30: 5 21   28.680 X ( 0.571429 0.428571 0.000000 ) * 
     5) RDNBR_30 > 147.86 92  201.800 Z ( 0.304348 0.347826 0.347826 )   
      10) ELEV_30 < 2011.53 19   19.560 Z ( 0.000000 0.210526 0.789474 ) * 
      11) ELEV_30 > 2011.53 73  156.900 Y ( 0.383562 0.383562 0.232877 ) * 
   3) RDNBR_30 > 357.72 479  614.200 Z ( 0.048017 0.171190 0.780793 )   
     6) DNDVI_30 < 228.615 197  344.900 Z ( 0.086294 0.304569 0.609137 )   
      12) NBRPOST_30 < -129.065 25    8.397 Z ( 0.000000 0.040000 0.960000 ) * 
      13) NBRPOST_30 > -129.065 172  316.900 Z ( 0.098837 0.343023 0.558140 )   
        26) ELEV_30 < 1916.13 19    7.835 Z ( 0.000000 0.052632 0.947368 ) * 
        27) ELEV_30 > 1916.13 153  292.300 Z ( 0.111111 0.379085 0.509804 ) * 
     7) DNDVI_30 > 228.615 282  211.600 Z ( 0.021277 0.078014 0.900709 )   
      14) ELEV_30 < 2436.6 142   48.290 Z ( 0.007042 0.028169 0.964789 ) * 
      15) ELEV_30 > 2436.6 140  149.200 Z ( 0.035714 0.128571 0.835714 )   
        30) RDNBR_30 < 1353.07 48   86.340 Z ( 0.104167 0.291667 0.604167 ) * 
        31) RDNBR_30 > 1353.07 92   32.910 Z ( 0.000000 0.043478 0.956522 ) * 
 
Perform a 10-fold cross validation of the tree model. Repeat 10 times. 
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res07h.cv<-cv.tree(res07h.tree) 
res07h.cv 
plot(res07h.cv)  
 
$size 
[1] 11 10  8  7  5  4  3  2  1 
 
$dev 
[1] 1218.248 1039.704 1031.253 1033.250 1024.306 1020.988 1045.580 1058.417 
[9] 1328.790 
 
$k 
[1]      -Inf  16.74249  17.85462  19.63187  22.01071  25.36371  50.92354 
[8]  57.71470 288.41402 
 
$method 
[1] "deviance" 
 
attr(,"class") 
[1] "prune"         "tree.sequence" 
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The deviance starts to increase after 5 nodes 
 
res07h.prune<-prune.tree(res07h.tree, best = 5)  
res07h.prune 
plot(res07h.prune) 
text(res07h.prune) 
summary(res07h.prune) 
 
Classification tree: 
snip.tree(tree = cbi30m3.tree, nodes = c(4, 6, 7)) 
Variables actually used in tree construction: 
[1] "RDNBR_30" "ELEV_30"  "DNDVI_30" 
Number of terminal nodes:  5  
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Residual mean deviance:  1.308 = 901.4 / 689  
Misclassification error rate: 0.2637 = 183 / 694 

|

RDNBR_30 < 357.72

RDNBR_30 < 147.86

ELEV_30 < 2011.53

DNDVI_30 < 228.615

X
Z Y

Z Z

 
node), split, n, deviance, yval, (yprob) 
      * denotes terminal node 
 
 1) root 694 1324.00 Z ( 0.20893 0.19452 0.59654 )   
   2) RDNBR_30 < 357.72 215  421.20 X ( 0.56744 0.24651 0.18605 )   
     4) RDNBR_30 < 147.86 123  168.50 X ( 0.76423 0.17073 0.06504 ) * 
     5) RDNBR_30 > 147.86 92  201.80 Z ( 0.30435 0.34783 0.34783 )   
      10) ELEV_30 < 2011.53 19   19.56 Z ( 0.00000 0.21053 0.78947 ) * 
      11) ELEV_30 > 2011.53 73  156.90 Y ( 0.38356 0.38356 0.23288 ) * 
   3) RDNBR_30 > 357.72 479  614.20 Z ( 0.04802 0.17119 0.78079 )   
     6) DNDVI_30 < 228.615 197  344.90 Z ( 0.08629 0.30457 0.60914 ) * 
     7) DNDVI_30 > 228.615 282  211.60 Z ( 0.02128 0.07801 0.90071 ) * 
 
Which two classes are differentiated by the first split? 
 
res07h.prune<-prune.tree(res07h.tree, best = 2)  
res07h.prune 
plot(res07h.prune) 
text(res07h.prune) 
summary(res07h.prune) 

|RDNBR_30 < 357.72

X Z
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APPENDIX C 
 

Contents of Supplemental DVD Rom 
 

The Attached DVD contains electronic files for GIS products, statistical analysis, 
databases, and other documents.  The diagram below describes the directory structure, 
with GIS files appearing as they do in ArcCatalog.  Text in italics provides descriptive 
information. All GIS data are projected to NAD 1983 Zone 12, and are accompanied by 
metadata.     

 
 

 Abendroth_Data_DVD

D:\ 

Accuracy_Assessment

Databases

Blin_Trail_Extract.xls   -  Spreadsheet comparing mortality estimates and predicted surface values 
                                       for the Blind Trail Fire      

Broad_Extract.xls  -  Spreadsheet comparing mortality estimates and predicted surface values for 
                                 the Broad Fire     
Wilcox_Extract.xls  -   Spreadsheet comparing mortality estimates and predicted surface values for 
                                  the Wilcox Fire     

Shapefiles

3_AA_Fires.shp  -  Polygon shapefile of all three fires used in accuracy assessment

Blind_Trail_Fire.shp  -  Perimeter shapefile of the Blind Trail Fire

Wilcox_Fire.shp  -  Perimeter shapefile of the Wilcox Fire

Broad_Fire.shp  -  Perimeter shapefile of the Broad Fire

Canopy_Mortality_Estimates

Databases

Abendroth_database.xls  -  Entire canopy mortality modeling database for 694 locations  

Shapefiles

Shapefiles

cbi_buffer_07.shp  -  Polygon shapefile with 15 meter radius circles for estimating canopy mortality 
                                  at each location 

cbi_buffer_1h.shp  -  Polygon shapefile with 56.41 meter radius circles for estimating canopy mortality 
                                  at each location 

CBIplots.shp  -  Point shapefile for each of 694 canopy mortality observations

cbi_buffer_5h.shp  -  Polygon shapefile with 126.16 meter radius circles for estimating canopy 
                                  mortality at each location 

Nonforested.shp  -  Polygon shapefile of nonforested vegetation for the entire study area (used to 
                               exclude these areas from random sampling)

Digital_Orthophotographs

2006_True_Color

 naip_1-1_1n_s_sy039_2006.htm  -  Example metadata for the 2006 true color digital orthophoto of 
                                                          Teton County, Wyoming

2001_2002_Color_Infrared

ProspectSW.htm  -  Example metadata for the 2001 color infrared DOQ for the Prospect Southwest 
                               Quadrangle, Wyoming
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Fire_Perimeters

BTNFCBIfires.shp  -  Perimeter shapefile of the Bridger-Teton National Forest fires used in this study

GRTECBIfires.shp  -  Perimeter shapefile of the Grand Teton National Park fires used in this study

YELLCBIfires.shp  -  Perimeter shapefile of the Yellowstone National Park fires used in this study

Model_Predicted_Surfaces

Chapter_2_Models

Predictor_Variables

Chapter_3_Models

p_ph_3_dnbr  -  Raster surface generated to predict three canopy mortality classes for the dNBR 
                          Only Tree model

p_photo_3  -   Raster surface generated to predict three canopy mortality classes using photo 
                       estimates (Best Tree model)

p_5h_3  -  Raster surface generated to predict three canopy mortality classes at 5 hectare resolution

p_1h_3  -  Raster surface generated to predict three canopy mortality classes at 1 hectare resolution

p_07h_3  -  Raster surface generated to predict three canopy mortality classes at .07 hectare 
                   resolution

Forest_Type

Forested_Analysis_Masks

Forested_1h  -  Raster designating forested vegetation at 1 hectare resolution (analysis mask)

Forested_07h  -  30 m raster surface designating forested vegetation (analysis mask)

Forested_5h -   Raster designating forested vegetation at 5 hectare resolution (analysis mask)

Con_Statements.doc  -   Word document with scripts used to generate predicted surfaces in Raster 
                                      Calculator 

Original_Vegmaps_Metadata

6typeslookup.dbf  -  Lookup file database for use in displaying names of six forest types for rasters 
                                in ArcGIS 

Mosaics_1h (Zip file)

aspect_1h  -  DEM-derived aspect mosaic for 23 fires, filtered to 1 hectare 

dnbr_1h  -   Differenced Normalized Burn Ratio for 23 fires, standardized, mosaicked 
                   and filtered to 1h resolution

dndvi_1h  -  Differenced Normalized Differenced Vegetation Index for 23 fires, 
                    standardized, mosaicked and filtered to 1h resolution

elev_1h  -   DEM-derived elevation mosaic for 23 fires, filtered to 1 hectare resolution

fortype_1h  -   Raster map of six forest types for the study area, filtered to 1 hectare 
                       resolution

nbrpost_1h  -   Post-fire Normalized Burn Ratio for 23 fires, mosaicked and filtered to 1h 
                       resolution

btnf_veg_metadata.htm  -  Bridger-Teton National Forest pre-fire vegetation map metadata 
                                          (used to derive forest type) 

gtnp_veg_metadata.htm  -  Grand Teton National Park pre-fire vegetation map metadata 
                                           (used to derive forest type) 

yell_veg_metadata.htm  - Yellowstone National Park pre-fire vegetation map metadata (used 
                                         to derive forest type) 
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rdnbr_1h  -   Relative dNBR for 23 fires, standardized, mosaicked and filtered to 1h 
                    resolution

rdndvi_1h  -   Relative dNDVI for 23 fires, standardized, mosaicked and filtered to 1h 
                     resolution

slope_pct_1h  -  DEM-derived percent slope mosaic for 23 fires, filtered to 1 hectare 
                          resolution

tc1_1h  -  Pre-fire Tasseled Cap Transformation brightness mosaic for 23 fires, filtered 
                to 1h resolution 

tc2_1h  -  Pre-fire Tasseled Cap Transformation greenness mosaic for 23 fires, filtered 
                to 1h resolution 

tc3_1h  -  Pre-fire Tasseled Cap Transformation wetness mosaic for 23 fires, filtered to 
               1h resolution 

Mosaics_5h (Zip file)

Original_Mosaics (Zip file)

aspect_5h  -  DEM-derived aspect mosaic for 23 fires, filtered to 5 hectare resolution

dnbr_5h  -  Differenced Normalized Burn Ratio for 23 fires, standardized, mosaicked 
                  and filtered to 5h resolution

dndvi_5h  -  Differenced Normalized Differenced Vegetation Index for 23 fires, 
                    standardized, mosaicked nd filtered to 5h resolution

elev_5h  -   DEM-derived elevation mosaic for 23 fires, filtered to 5 hectare resolution

fortype_5h  -   Raster map of six forest types for the study area, filtered to 5 hectare 
                       resolution

nbrpost_5h  -  Post-fire Normalized Burn Ratio for 23 fires, mosaicked and filtered to 5h 
                       resolution

rdnbr_5h  -  Relative dNBR for 23 fires, standardized, mosaicked and filtered to 5h 
                     resolution

rdndvi_5h  -  Relative dNDVI for 23 fires, standardized, mosaicked and filtered to 5h 
                     resolution

slope_pct_5h -  DEM-derived percent slope mosaic for 23 fires, filtered to 5 hectare 
                         resolution

tc1_5h  -  Pre-fire Tasseled Cap Transformation brightness mosaic for 23 fires, filtered 
                to 5h resolution 

tc2_5h  -  Pre-fire Tasseled Cap Transformation greenness mosaic for 23 fires, filtered 
               to 5h resolution 

tc3_5h  -  Pre-fire Tasseled Cap Transformation wetness mosaic for 23 fires, filtered to 
               5h resolution 

aspect30  -  30m DEM-derived aspect mosaic for 23 fires, mosaicked

dnbr30  -  Landsat 30m Differenced Normalized Burn Ratio for 23 fires, standardized  
                 and mosaicked 

dndvi30 -  Landsat 30m Differenced Normalized Differenced Vegetation Index for 23 
                 fires, standardized, mosaicked

elev_5h  -   DEM-derived elevation mosaic for 23 fires, filtered to 5 hectare resolution

forest_type  -   30m Raster map of six forest types for the study area

nbrpost30  -  Landsat 30m Post-fire Normalized Burn Ratio for 23 fires, mosaicked

rdnbr30  -  Landsat 30m Relative dNBR for 23 fires, standardized and mosaicked

rdndvi30  -  Landsat 30m Relative dNDVI for 23 fires, standardized and mosaicked 

slope_pct_30  -  30m DEM-derived percent slope mosaic for 23 fires  
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Palmers_ZNDX

Fires and zndx.xls  -  Speadsheet with Palmer's ZNDX data summaries for each fire

R Classification Tree Analysis

Ch 2 Models

Datafiles  -  space delimited text files of all variables used for each classification tree model script  - Chapter 2

Field_2.txt  -  Field estimates of mortality, in two categories 

R Scripts  -  Word documents for copying and pasting commands into R, including outputs

Field_3.txt  -  Field estimates of mortality, in three categories 

Field_5.txt  -  Field estimates of mortality, in five categories 

Photo_2.txt  -  Digital orthophoto-based estimates of mortality, in two categories

Photo 3.txt -  Digital orthophoto-based estimates of mortality, in three categories

Photo_3_dnbr.txt -  Digital orthophoto-based estimates of mortality, in two categories , using only dNBR

Photo_5.txt  -  Digital orthophoto-based estimates of mortality, in five categories

Field_2.doc  - Tree modeling with field estimates of mortality in two categories

Field_3.doc  -  Tree modeling with field estimates of mortality in three categories

Field_5.doc  -  Tree modeling with field estimates of mortality in five categories

Photo_2.doc - Tree modeling with photo estimates of mortality in two categories

Photo_3.doc - Tree modeling with photo estimates of mortality in three categories  

Photo_3_dnbr.doc - Tree modeling with photo estimates of mortality in three categories, using only dNBR

Photo_5.doc - Tree modeling with photo estimates of mortality in five categories

Ch 2 Models

Datafiles  -  space delimited text files of all variables used for each classification tree model script  - Chapter 3

1h_3.txt  -   Digital orthophoto-based estimates of mortality in three categories at 1h resolution

5h_3.txt  -   Digital orthophoto-based estimates of mortality in three categories at 5h resolution

07h_3.txt  -   Digital orthophoto-based estimates of mortality in three categories at .07h resolution

R Scripts  -  Word documents for copying and pasting commands into R, including outputs

1h 3.doc  - Tree modeling at 1h spatial resolution 

5h_3.doc  - Tree modeling at 5h spatial resolution 

07h_3.doc - Tree modeling with .07h estimates of mortality and 30m predictor rasters

Contents.doc  -  Word document of Appendix C

Contents.txt  -  Text file of complete disk directory

Abendroth_MS_Thesis.pdf  -  Electronic version of thesis document

tc230 -  30m Pre-fire Tasseled Cap Transformation greenness mosaic for 23 fires

tc330 -  30m Pre-fire Tasseled Cap Transformation wetness mosaic for 23 fires

tc130  -  30m Pre-fire Tasseled Cap Transformation brightness mosaic for 23 fires
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