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Background 
The National Park Service plans to substantially reduce the abundance of elk wintering in Rocky 
Mountain National Park by culling animals within park boundaries. Population reductions will 
occur adaptively. Each year, the size of the population will be assessed relative to objectives and, 
based on this assessment, the following year’s removal efforts effort will be adjusted to assure 
that the trajectory of the population remains within acceptable limits.  Essential to the success of 
this adaptive approach is a model of elk population dynamics that allows managers to forecast 
the effect of alternative management actions on the elk population.  This model should a provide 
a framework for continuously updating estimates of the current size of the population using all of 
the data at hand, including census, harvest and culling data, and observations of sex and age 
composition.  The model should base each year’s forecasts on data from the current year as well 
as from previous years.  The model must plainly show all sources of uncertainty in its 
predictions; it must explicitly consider uncertainties arising from natural variation in population 
processes (emigration, immigration, natality, survival) as well as those caused by errors in 
observations of the population and uncertainty about the harvest.  The model must improve as 
the data improve. 
 
The foundation for such a model exists in the work of  Lubow and colleagues (2002), who used 
data from 1965 – 2001 to develop an age and sex structured model of elk population growth 
inside and outside of the park.  Before their model can be used to guide efforts to guide current 
park management, it must be updated with data accumulated during 2001-2006.  In addition, the 
analytical procedures used by Lubow and colleagues can be improved using more modern 
techniques.  The likelihood approach used by Lubow (2002) assumed that all uncertainty resulted 
from errors in observations.  Variance in population processes was not explicitly included in 
estimates of the model’s parameters.  Failure to include process variance as well as observation 
error in estimates of model parameters can cause misleading results (Carpenter et al. 1994, De 
Valpine and Hastings 2002, Dennis et al. 2006, Freckleton et al. 2006).  Thus, there are two 
needs.  First is to use the most recent data to estimate model parameters and second is to develop 
a modeling framework that includes additional sources of uncertainty in parameter estimates and 
model predictions. 
 
Data 
There are three data sets that can be used to estimate parameters in an updaated population 
model.  The park elk population has been censused almost continuously since the mid 1960’s 
(Figure 1).  Before 1994, the census data include total counts unadjusted for sightability;  
thereafter, population estimates were adjusted to account for animals that were not observed 
using a multiple regression model (Figure 1).  Until the 1990’s, the population appeared to be 
regulated by density dependent feedback to population growth rate, producing a clear, 
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asymptotic trend in the data.  However during the last decade, the population has appeared to 
decline substantially, resulting in a hump-shaped relationship between population size and time 
(Figure 1).   
 
In addition to estimates of total population size, observations of the sex and age composition of 
the population composition were made during 1969-1978 and 1992-2008.  Animals were 
classified as bulls (males older than 1.75 years), spikes (males approximately1.75 years old), 
cows (females 1.75 years old and older) and calves (males and females approximately 8 months 
of age).  Conversations with park staff and census observers led us to conclude that bulls were 
strongly under-represented in classification counts.  Therefore we chose to include only cows 
and calves in the classification data used in parameter estimation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Data are also available on annual harvest for the Colorado Division of Wildlife Game 
Management Unit 20 for 1969-2008 (Figure 2).  These data are assembled over an area roughly 
four times as large as the area of the park east of the continental divide.  Thus, while it is 
plausible that a certain fraction of the elk harvested in GMU 20 spend the winter in Rocky 
Mountain National Park, that fraction remains unknown.  The boundaries of GMU changed in 
1988, expanding the unit east and south to increase its area by approximately 340 square miles.  
This implies that differences in the impact of harvest on RMNP elk population before and after 
1988 must be accounted for in the model.   
 
 

Figure 1.  Data on abundance and composition of the Rocky Mountain National 
Park Elk herd.  Vertical bars show + 1 standard deviation of the mean estimate.
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Trends in the Data 
There are three notable trends in the data. The first is the apparent decline in population size that 
has occurred since the mid 1990’s.  Earlier modeling efforts focused on the asymptotic trends in 
estimated population size that were evident during 1970-1995, and invoked density dependent 
feedbacks from population size to juvenile recruitment and survival as the primary control on the 
populations dynamics.  However, the current data suggest a hump-shape trend over time (Figure 
1) rather than the s-shaped pattern seen earlier. 
 
A second notable trend is the dramatic, linear increase in harvest that has occurred outside the 
park boundary.  Since 1970, total harvest and cow harvest have grown by a factor of four, from 
fewer than 100 animals harvested per year to almost 400.  The model of Lubow et al.  2002 
lumped harvest mortality with other sources of mortality and assumed, implicitly, that mortality 
from harvest was constant over time.   Thus, although harvest was largely ignored in earlier 
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Figure 2.  Number of elk harvested from Game Management Unit 20 during 1970 – 2008.  An 
unknown number of animals in this harvest come from the park herd. 
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population models, the strong temporal trends in the number of animals harvested from GMU 20 
suggest it must be included here. 
 
The third trend of note is a linear decline in cow calf ratios that occurred from 1990 to 2008.  
Over this time interval, observed ratios of calves per cow declined from approximately 0.35 to 
0.10.   The fact that these trends occurred concomitant with declines in population size argues 
against density dependent feedback in calf recruitment.  That is, if recruitment were strongly 
density dependent, we would expect increases in the number of calves per cow during 1995 – 
2008 because population numbers appeared to be declining over this interval. 
 
State Space Modeling  
State-space models (Calder et al. 2003, Newman et al. 2006) are ideally suited for representing 
the dynamics of populations when there is uncertainty about the processes that control the 
dynamics and when observations of the population are made with error.  Failing to use the state 
space approach can lead to erroneous conclusions about the factors that control population 
growth and decline (Dennis et al. 2006, Freckleton et al. 2006).  In particular, unless errors in 
observations can be separated from variance arising from the failure of the model to perfectly 
represent the population process, time series of data will show strongly density dependent 
dynamics even when the density dependent signal may be weak or absent (Freckleton et al. 
2006).  
 State space models include two components, the process model and the data model (Calder et al. 
2003, Newman et al. 2006).  The process model represents the true state of the population and 
any uncertainty that results because the model is unable to portray all of the sources of variation 
in the population’s dynamics.  The data model relates the true state of the population to the 
observations of the state and associated uncertainties arising from our inability to observe the 
true state perfectly.   
In the remainder of this document, we develop and implement a state space model in the 
Bayesian framework following approaches described by Millar and Meyer (2000b, 2000c, 
2000a) and Brooks et al. (2004). 
 
Organization of this Document 
In the next section, we describe a highly general process model that will serve as base for 
constructing a candidate set of more detailed models.  We then describe the data model that we 
used to link the predictions of the process model to data on total population size and population 
composition.  Next, we show how we bring the data and process models together in a 
hierarchical Bayesian framework. We describe alternative process models and then discuss the 
results of parameter estimation and model selection.  We close by drawing conclusion from the 
modeling results.  
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Process model 
Here, we develop and implement a state space model in the Bayesian framework following 
approaches described by Millar and Meyer (2000b, 2000c, 2000a) and Brooks et al. (2004). We 
represent the Rocky Mountain National Park using a discrete time, stage structured model 
portraying dynamics of three age/sex classes:  juveniles, adult males, and adult females. Our 
choice of model structure is based on the following biological reasoning.  We assumed that there 
were no differences in survival of male and female juveniles, allowing use to lump them into a 
single class. Moreover, although, virtually all offspring are produced by females that are older 
than two years, we decided to include a single female age classes in the model for two reasons. 
First, it is not possible to differentiate adult from yearling females in sex and age classification 
counts, which requires these segments of the population to be pooled in the data.  Second, and 
most importantly, the harvest data did not distinguish between adult and yearling females.  
 
Equations in our model assume that a birth pulse occurs in June and that census occurs in 
February. As is traditional for models of this type, the time step is one year. We define 
recruitment as the number of calves produced per cow that survive from birth to their first census 
and we define juvenile survival as the proportion of calves alive at census that survive to become 
yearlings.  We assume that the preponderance of adult mortality occurs after census and before 
the next birth pulse, that is, during the interval between February and June.  
 
We first describe the general formulation of a base process model, a formulation that will serve 
as a foundation for more specific models discussed in a later section.  Thus, all of the more 
specific models will start with the equations we offer here. The general model includes juveniles, 
defined as male and female animals aged 8 months at the time of census and adult males and 
females, aged 1.75 years and older at census.   
We define the three element vector Nt = (N1,t, N2,t, N3,t ) as the abundances of each age class at 
time t indexed by i=1 for juveniles, 2 for adult females, and 3 for adult males. Thus, in our 
notation, N1,t gives the number of juveniles at time t. The estimate of total population size at time 

t is given by 
3

, ,
1

 total t i t
i

N N
=

= ∑ .   

We define three time invariant survival rates: s1 is the probability of survival of juveniles from 
age  8 months to age 1.75 years;  s2 is the probability of survival of females aged 1.75 years and 
older, and s3 is the probability of survival of adult males 1.75 years and older.  We define 
recruitment (r) as the number of offspring that survive to their first census produced per adult 
female.  Thus, recruitment includes the number of offspring born per adult female and survival 
between birth and approximately 8 months of age.  Let m be the proportion of newborns that are 
female. 
 
We assume that the true population size for the ith age/sex class at time t can be represented as a 
lognormal distribution with shape parameters ,i tμ  and standard deviation σi , where ,i tμ  is the 
mean and  σi  is the process standard deviation on the log scale for age class i at time t.  In the 
following, the posterior distribution of the total population size will be denoted 

by
3

, ,
1

total t i t
i

N N
=

=∑ .  
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The base process model is given by 
( )1, 1 1, 1 1~ lognormal ,  ,t tN μ σ+ +  

where ( )1, 1 2 2,logt ts rNμ + = is the deterministic estimate of the mean number of juveniles, 

( )2, 1 2, 1 2~ lognormal ,  , t tN μ σ+ +  

where ( )2, 1 1 1, 2 2,logt t tm s N s Nμ + = + is the mean number of adult females, and 

( )3, 1 3, 1 3~ lognormal ,  , t tN μ σ+ +  

where ( )3, 1 1 1, 3 3,log 1t t tm s N s Nμ + ⎡ ⎤= − +⎣ ⎦ is the mean number of adult males. 
 
We assume that this model, or its elaborations described below, represents the “true” model and 
that the observed data are generated from this model.  We model the observations as follows. 
 
Observation model  
In the observation model we incorporate the observed data. We have data on the total population 
size for n years contained in the vector ( )1 2 40, ,...,O O O=O .  So O1 is the observed population 
size in 1969 and 40O is the observed population size in 2008 (left panel of Figure 1).  The 
observations of total population size are counts, so it is reasonable to assume that they should 
follow a Poisson distribution.  However, it is clear from the census data during 1994-1998, which 
include estimates of observation uncertainty, that the variance of the counts is greater than the 
mean and is not constant with time. To account for this over-dispersion we treated the count data 
as a gamma -Poisson mixture.  Using the method of moments we have: 

 

( )

2
, ,

2 2~ gamma , ,

~ Poisson ,

total t total t
t

o o

t t

N N

O

λ
σ σ

λ

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠  

where Ntotal,t is the model’s estimate of the posterior distribution of the true population size 
and oσ represents the estimate of observation error.  We obtained two separate estimates for 
observation error.  Census data before 1994 lacked annual estimates of standard deviations of 
counts.  For these data (years 1-25), we estimated oσ from the census data alone.  After 1994 
(years 26-40) we assumed that the measured standard deviations were random effects drawn 
from a gamma distribution,  
 ( )~ gamma ,tse α γ , 
where set is the observed census data standard error for year t.  The mean of this distribution was 
used to estimate oσ , so /oσ α γ= . 
 
We also have classification data which include estimates of sex and age composition for 
juveniles and cows. To use the classification data in estimating model parameters, we composed 
the following likelihood.  Let Tt be the total number of adult females and juveniles classified at 
time t and Ct be then number of juveniles classified (thus Tt – Ct is the number of adult females 
classified). Because there are years with missing data for classification, we will simplify notation 
below by assuming that that the elements of the vectors of classification data are properly 
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aligned in time with the elements of the prediction vectors (i.e, the subscripts on O and T are 
aligned in time with the subscripts on the N) .  For the years in which we had classification data, 
we compose a binomial likelihood, 

 1,

1, 2,

~ binomial ,t
t t

t t

N
C T

N N
⎛ ⎞
⎜ ⎟⎜ ⎟+⎝ ⎠

 

where N1, t is the process model prediction of the number of juveniles in the population at time t 
and N2,t  is the process model prediction of the number of adult females in the population at time 
t. 
 
Hierarchical, state-space model 
Let θ  be a vector of the parameters in the process model, excluding the variances. Thus, θ  will 
include the parameters describe above (survival rates and recruitment) as well as any additional 
parameters that are needed to implement more detailed, specific process models described 
subsequently. Let σ be the vector of process standard deviations, so ( )1 2 3, ,σ σ σ=σ .  Let ηbe a 
vector containing the estimates of the initial conditions for each age class.  We need a model that 
expresses the probability of observing the ensemble of the observed and “true” values.  We say 
“true” because in the state-space framework, we assume that the process model gives rise to the 
observations.  Thus, it is “true” because it quantifies the deterministic prediction of the model 
and the associated uncertainty created by process variance, that is, all of the factors that influence 
the value of state variables but that are not included in the deterministic prediction. Recall that 
the vector C includes the number of juveniles counted in classifications and the vector T is the 
corresponding total number of juveniles and adult females counted.  The vector O contains the 
census data across all years for which we have classification data.  
 
The fully stochastic, Bayesian model is specified by: 
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Given the assumptions on distributions above, we have: 

 

( ) ( )
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( ) ( ) ( ) ( ) ( ) ( )                           op p p p p p vσ σ θ η α  
 
The prior distributions ( ) ( ) ( ) ( ) ( ) ( ) op p p p p pσ α γ× × × × ×⎡ ⎤⎣ ⎦σ θ η  were chosen as conjugates 
whenever possible.  Prior distributions and their parameters are summarized in Table 1. 
 
Table 1.  Prior distributions for model parameters. (Some of the parameters listed here are 
defined in the next section). 
Parameter Prior and parameters Notes 
s1,  juvenile survival 
 

beta(1.49,2.7) weakly informative1   

s2, adult female survival 
 

uniform(.85, .98) weakly informative. 

s3, adult male survival 
 

uniform(.85,.98) weakly informative 

m, sex ratio at birth 
 

beta(49.5, 49.5) informative 

r, number of offspring surviving to 8 
months of age produced per adult 
female in absence of density 
dependence 

 
 
 
uniform(.1, 1) 

 
 
 
uninformative 

a1, proportion of harvest from GMU 
20 that comes from the park before 
1988 

 
 
uniform(0, .5) 

 
 
uninformative 
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Parameter Prior and parameters Notes 
a2, proportion of harvest from GMU 
that comes from the park during and 
after 1988 

 
 
uniform(0, .5) 

 
 
uninformative 

a3, the proportion of calves whose 
mothers were harvested from the park 
who die as a result of cow harvest. 

 
 
uniform(0, .5) 

 
 
uninformative 

β0, intercept of logit relationship for 
density dependent effects on 
recruitment, the number of offspring 
surviving to 8 months of age 
produced per adult female 
 

 
 
 
 
uniform(0.847, 3.0) 

 
 
 
 
weakly informative 

β1, slope of logit relationship for 
density dependent effects on 
recruitment, the number of offspring 
surviving to 8 months of age 
produced per adult female 
 

 
 
 
 
uniform(–0.5, 0) 

 
 
 
 
weakly informative 

τ = 1/σ2, the reciprocal of the process 
variance  

 
gamma(0.001,0001) 

 
uninformative 

 
σo, the standard deviation for 
observation uncertainty 

 
 
uniform(0,500) 

 
 
uninformative 

 
α, hyperparameter for observation 
uncertainty 

 
 
gamma(0.001,0.001) 

 
 
uninformative 

 
γ , hyperparameter for observation 
uncertainty 

 
 
gamma(0.001, 0.001) 

 
 
uninformative 

1 Based on data in Raithel(2007) 
 
Alternative Models 
We composed eight alternative models (Table 2) representing effects of density dependence, 
harvest, weather, and their combinations.  The density dependent models assumed that 
recruitment was an inverse logit function of the total population size, i.e.,  

 
0 1

0 11

t

t

N

t N

er
e

β β

β β

+

+=
+

 

1, 1 2 2,so in equation (1) the mean becomes . t t ts r Nμ + =  
 
We also examined effect of winter weather.  Winter weather was represented as the departure of 
annual temperature measurements from the long term average, calculated as the observation of 
the temperature for a given year minus the mean temperature across all years divided by the 
mean temperature.  Defining this quantity as xt, we modeled the combined effect of density and 
weather on recruitment as:  
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0 1 2

0 1 21

t t

t t

N x

t N x
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β β β

β β β

+ +

+ +=
+

 . 

 
To investigate the impact of harvest outside the park, we considered several harvest models.  In 
the harvest models the estimated number of animals in each age class was reduced by the 
estimate of the proportion of the total harvest that came from the park population.  Let hi,t  be the 
estimated number of animals in age class i harvested from game management unit 20 during time 
t and a be the estimated proportion of the harvest taken from the park population. Then the 
means in equations (1)-(3) become 

 

( )
( )
( )

1, 1 2 2, 1,

2, 1 1 1, 2 2, 2,

3, 1 1 1, 3 3, 3,

log  ,   

log , 

log 1 .  

t t t

t t t t

t t t t

s rN ah

m s N s N ah

m s N s N ah

μ

μ

μ

+

+

+

= −

= + −

⎡ ⎤= − + −⎣ ⎦

 

We allowed for observation error in harvest rates as follows.  Let Hi,t be the observed number of 
animals harvested from age class i at time t. Using the method of moments, we estimated harvest 
rates as  

 
2

2 2~ gamma ,t t
t

H Hσ σ
⎛ ⎞
⎜ ⎟
⎝ ⎠

H Hh  

where ht is a vector of 3 harvest rates, one for each age class; Ht is the corresponding vector of 
observed harvest rates, and σH is the estimate of the observation uncertainty.   
During years before 1988, there were no data on the observation error of the harvest, so we 
estimated a coefficient of variation using 
 ( ). ~ 0,1cv h uniform  
From 1988 forward, we used observed, age specific standard deviations on harvest rates to 
estimate σH for each age class.  So, for example, to estimate the number of juveniles harvested 
incorporating the measured observation error for juvenile harvest (se.calvest ): 

 
2

1, 1,
, 2 2~ gamma ,

. .
t t

i t
t t

H H
h

se calves se calves
⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

 

We created two harvest models. Harvest model 1 estimated two values for the parameter a; a1 is 
the estimated proportion of harvest taken from park residents for the years before 1988, and a2 is 
the estimation proportion for the years including and after 1988.  We reasoned that the 
proportion of the harvest taken from park likely became smaller as the area of GMU 20 increased 
in 1988.  Harvest model 2 represents additional juvenile mortality that resulted because mothers 
were harvested, leaving juveniles orphaned.   This model was the identical to the harvest model 
above, except that it included an additional proportionality term, a3 to represent the juvenile 
mortality that added to adult female mortality.  So in equation (1) the mean juvenile population 
at time t is given by 
 ( )1, 1 2 2, 1, 3 2,t t i t i ts rN a h a a hμ + = − − . 
where i indexes the time period for differences in GMU boundaries. We used annual data on the 
standard deviation of harvest estimates for each age class to estimate Hσ . 
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Table 2.  Alternative models of dynamics of the Rocky Mountain National Park elk population. 
Model name Description  
Density dependence Base model + density dependent feedback on juvenile 

recruitment. 
Density dependence + weather A suite of 4 models that included different independent 

variables explaining effects of winter weather on 
recruitment. 

Harvest 1 
 

Base model + harvest with two estimates of a¸ one 
before the boundary change for GMU 20 and one after. 

Harvest 2 Same as harvest 1, but with additional term to represent 
mortality of juveniles resulting from harvest of adult 
females. 

Density dependence + harvest  Harvest model 2 + density dependent feedback on 
juvenile recruitment.  

 
Model Implementation 
Before any parameters were estimated with the empirical data, we conducted exhaustive model 
tests using simulated data to assure that our estimation procedures were able to accurately 
estimate known, generating parameter values.   
 
We estimated the posterior distribution for each parameter and for derived quantities of interest 
using Monte-Carlo Markov Chain (MCMC) methods implemented in WinbBUGS (Lunn et al. 
2000) and R (R_Development_Core_Team 2007).  MCMC chains were initialized with five 
different sets parameter values chosen within biologically plausible bounds for each parameter.  
After an initial burn-in period of 20,000 iterations, we obtained 50,000 iterations of each of the 
five chains, thinning each by 10, thereby providing a sample of 25,000 observations across the 5 
chains.  Gelman-Rubin-Statistics were used to assure convergence (Brooks and Gelman 1988).   
We used the Deviance Information Criterion (DIC) to evaluate models (Spiegelhalter et al. 
2002).   
 
Derived quantities of interest included the probability that the current population exceeds or falls 
below management targets.  These probabilities were calculated empirically from MCMC output 
using the ecdf() function in R.  
 
Results 
Model Selection 
Harvest model 2 emerged as the best approximating model based the Deviance Information 
Criterion (Table 3, Figure 1).  Models that included harvest parameters were strongly supported 
in the data, while density dependence alone and density dependence + weather had virtually no 
support relative to the best harvest model.  Although Harvest model 1 was also supported relative  
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Figure 1. Model estimates of the elk population size in Rocky Mountain 
National Park during 1969 – 2008.   
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Table 3.  Results of model comparisons 
 
Model 

Mean 
deviance  

 
DIC 

Harvest 2 712  774.7 
Harvest 1 713  776.6 
Density dependence + 
harvest 

 
716  

 
778.4 

Density dependence 717  781.0 
Density dependence + 
weather 

  
> 781 

 
 
 
 
to Harvest 2, its predictions were similar.  Averaged over the last 5 years (2003-2008), there was 
only a 5% difference in the predictions of the two models (mean Harvest 2 = 668 animals, 95% 
credible interval = 508, 827, mean Harvest 1 = 705, 95% credible interval = 564 , 866).  
Hereafter, we will make inferences using Harvest 2. 
 
Parameter Estimates  
Vital rates estimated from Harvest model 2 were consistent with current knowledge of elk life 
history (Table 4).  Adult survival for males and females was greater than 90% and juvenile 
survival (i.e., the proportion of animals 8 months old that survive to 1.75 years) averaged 63%.  
Recruitment rates were .35 juveniles per adult female. As expected from previous work (Gaillard 
et al. 1998), process variance was greatest for juveniles and adult males and lowest for females.      
 
We estimated that approximately one quarter of the animals harvested from GMU 20 came from 
the park population during 1967 to 1987 (a1  in Table 4).  During 1988-2008, about a tenth of the 
harvest from GMU 20 included park animals (a2  in Table 4).  We estimated that 40% of 
juveniles whose mothers were harvested failed to survive to their first census (a3  in Table 4).   
Credible intervals on all of these proportions were broad. 
 
Table 4.  Parameter estimates for Harvest 2 model of dynamics of the 
Rocky Mountain National Park elk population. 
Parameter Mean 95% credible interval 
Juvenile survival (s1) 0.62 0.29-89 
Adult female survival (s2) 0.94 0.87 –0.98 
Adult male survival (s3) 0.94 0.860 –  0.98 
Neonate sex ratio (m) 0.50 0.40 –  0.59 
Recruitment rate (r)  0.34 0.27 –0.40 
Proportion of harvest from park, pre-
1988 (a1) 0.24

 
0.11 –  0.47 
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Proportion of harvest from park, 
1988 and after (a2) 0.089

 
0.0052 –0.22 

Additive calf mortality resulting 
from cow harvest (a3) 

0.39 0.16 – 0.49 

Observation uncertainty for census, 
pre 1994 (σ0)  133

 
65 – 210 

Observation uncertainty for census, 
1994 and after (σ0) 147

 
80 – 231 

Process uncertainty1 for juveniles  75.6 12.2 – 163 
Process uncertainty1 for adult 
females 47.8

 
8.8–95 

Process uncertainty1 for adult males 99.7 10 – 317 
1 Mean of estimates of standard deviation of lognormal, posterior distribution at a mean population size = 300 
animals in each age class. 
 
 
Population Predictions 
The estimate of the current population size was 560 animals (95% credible interval = 312 – 778).   
 
Population Predictions Relative to Management Objectives 
The RMNP Elk and Vegetation Management Plan calls for maintaining the elk population 
between a 600 and 800 animals, an interval we will call the target range.  Because our model 
incorporates process variance and observation error in our estimates of the population size, we 
are able to make statements about the probability that the population is currently within this 
range.  We are also able to estimate the probability that the population will be outside the target 
range in the future given hypothetical management actions. 
 
We constructed an empirical, cumulative distribution function for the 2008 population size based 
the posterior distributions of the park population size (Figure 2). Using this cumulative 
distribution, we estimated that the there is a 36% chance that the current population falls within 
of the target range.  There is a 63% chance that the current population is below 600 animals and 
a 1% chance that the population exceeds 800 animals. 
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We constructed four scenarios for future removals and estimated cumulative distributions for the 
2009 population size based on these scenarios.  Scenario 1 assumed that the harvest from GMU 
20 for 2008 will be identical to the harvest for 2007 and that no culling will occur in the park.  
Scenario 2 assumed 2007 harvest levels would be maintained in 2008 and that there would be an 
additional culling of 40 cows.  Scenario 3 assumed the same harvest and culling of 100 cows.  
Scenario 4 assumed harvest at half 2007 levels and culling of 40 cows. Under all scenarios, there 
was a very substantial probability that the 2009 population size target would be less that the 
lower bound of the target range.    
 
 
 
 
 
 
 
 

Figure 2.   The probability that the Rocky Mountain National park elk population 
was less than a given target population size during 2008.   
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Table 3.  Probability that the RMNP elk population is within the target range during 2009 given 
different assumption on culling and harvest. 
Scenario P(N < 600) P(600 < N < 800) P(N > 800) 
Harvest same as 2007, no 
culling 

 
.72 

 
.27 

 
.02 

Harvest same as 2007, cull 
40 females 

 
.81 

 
.17 

 
.01 

Harvest same as 2007, cull 
100 females 

 
.91 

 
.08 

 
.00 

Harvest ½ 2007, cull 40 
females 

 
.77 

 
.21 

 
.01 

 
 
Discussion  
We developed a state-space model of the dynamics of the Rocky Mountain National Park elk 
population, a model that incorporates multiple sources of uncertainty in its predictions.  The 
model offered plausible estimates for all parameters, although some of these estimates, (for 
example, juvenile survival) were not estimated precisely.  These imprecise estimates simply 
point to the fact that the data used to estimate the model parameters are quite variable.  
 
Harvest outside the park emerged as a strong influence on the abundance of elk within park 
boundaries.  Previous models (Lubow et al. 2002) subsumed estimates of harvest effects within 
the estimate of survival.  This was a reasonable approach as long as harvest levels were relatively 
low and the population was increasing toward an asymptote.  In this case, density dependence 
could be invoked to explain the asymptotic trends in the data and the effects of harvest on 
abundance could be assumed to be time invariant.  However, in the time since that work was 
done, census estimates have declined dramatically, from 1461 animals in 2001 to 566 in 2008 
(Figure 1).  Steep declines in cow-calf ratios (Figure 1) imply reduced recruitment in the face of 
declining densities.  These patterns argue strongly against density dependence as the primary 
mechanism regulating dynamics of the park elk herd.   
 
Instead, our results show that a relatively small contribution of the park population to the overall 
harvest (about 10% annually since 1988) was sufficient to cause declines in abundance when 
harvest, particularly harvests of adult females, was large and increasing over time (Figure 2).  
Harvest models without any density dependent terms were able to produce asymptotic patterns in 
the data prior to the year 2000.  Thus, it is possible that asymptotic patterns in the data which 
were previously ascribed to feedbacks of increasing population density (Lubow et al. 2002) were 
actually caused by accelerating increasing harvest. This emphasizes the importance of collecting 
data to help estimate the impacts of harvest on the park population.  This could be achieved by 
marking animals in the in the park and determining the proportion of those marks show up in the 
harvest.   
 
To our knowledge, our work is the first to quantify the interactive effects of adult and juvenile 
survival mediated by harvest.  We show that the magnitude of juvenile mortality depended on the 



 17

number of adult females harvested.  The idea behind this interaction is that orphan juveniles are 
exposed to increased risk of mortality following harvest of their mothers.  This interaction also 
may result, at least in part, from under-reporting of juvenile harvest by surveyed hunters.   
 
Our work strongly suggests that the current park population may be below the lower end of the 
desired range established in the Elk and Vegetation Management Plan. The Harvest 2 model had 
the greatest support in the data and also predicted the smallest population size. Hence, it is the 
most conservative in terms of supporting removals. There are two kinds of errors that could be 
made in implementing the elk management plan. If the population is underestimated, then it may 
take somewhat longer to achieve management goals. However, if the population is over 
estimated, the managers run the risk of reducing the population to unacceptably low levels.  
Because this outcome has particularly undesirable political, social, and economic consequences, 
it is fortunate that the model that had the greatest support in the data was also the model that is 
most precautionary.  
 
Future Work 
Model Refinements and Management Experiments 
There are at least two promising ways that the structure of our model might be improved.  
Although we did explore the effects of weather on recruitment, we have not yet explored the 
influence of winter weather on the proportion of harvest that comes from the park herd.  It is 
plausible that some of the variance in the process model could be absorbed by weather covariates 
that help explain annual variation in the effect of harvest.  It would be useful to explore adding a 
third age class.  Although we do not believe that composition counts of bulls are reliable, the 
data on yearling males is likely to be more accurate.  These data might improve estimates of 
juvenile survival.  This would raise some important challenges in applying the harvest data 
because the data fail to discriminate among yearlings and adults.   Finally, there may be a better 
approach to estimating the age composition data.  The current estimates the proportion of calves 
in the population using a binomial likelihood.  It is also possible to use data on individual groups 
to estimate this proportion assuming that each group represents a draw from a beta distribution.  
This approach would better represent the sampling design. 
 
It may be possible to take advantage of any planned variation in harvest outside of the park to 
understand the role of harvest in regulating the population within the park.  The model suggest 
the hypothesis that reductions in the number of cows killed in DAU 9 should translate into 
increases in the Park elk population and vice versa.   
 
Supporting Decisions on Future Monitoring 
The model provides an ideal framework for analyzing the potential benefits of alternative tactics 
for population monitoring.  For example, we could evaluate the relative benefits of conducting 
the census less frequently, but with more census points within a year.  We could evaluate the 
relative return on composition counts versus total census.  Our results strongly suggest it would 
be extremely worthwhile to attempt to get a better understanding of the effects of harvest on park 
animals, which could be relatively straightforward to accomplish using marked animals.   
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Adaptive Management 
Our model provides a basis for adaptive management as it was originally defined in the seminal 
work of Walters(1986).  The Bayesian framework that we implemented is ideally suited to this 
interplay between management and research and, although it is not widely appreciated, is the 
approach that was originally advocated by Walters (1986). This approach is cyclic—we have a 
model that makes predictions relevant to management decisions; management actions are taken.  
We compare the models predictions with observations, and, as a result of this comparison, the 
model is revised and improved.  As this cycle proceeds, there is continuous improvement in the 
model and in the quality of the  model quality of management decisions. We look forward to 
participating in this process as the Elk and Vegetation Management Plan is implemented.  
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