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Our initial objective was to investigate the influence of the 1970s mountain pine beetle (MPB) 
outbreak on subsequent wildfire severity. We planned to use the US Forest Service annual forest 
health aerial detection surveys (ADS). However, within Glacier National Park the historical ADS 
data rarely included information on the number of trees killed per acre (severity), which is 
commonly included in contemporary ADS data and is critical to relating outbreaks to forest 
processes and change. Furthermore, the forest patches identified in the ADS data were very large 
(e.g. > 70,000 ha) and even incorporated areas that did not have host species for mountain pine 
beetle. Although useful for broad-scale monitoring, we suspect the historical ADS data does not 
represent the heterogeneous impacts of the disturbance. Because both MPB outbreaks and 
wildfires are heterogeneous at relatively fine scales (~20-30m), identifying relationships between 
the two disturbances necessitated a more fine-scale map of the MPB outbreak. Consequently, 
developing a method that used archival remote sensing data to reconstruct the MPB outbreak 
became the primary focus of this project. 
 
In the first phase of our work, 
we developed a new method 
for reconstructing past bark 
beetle outbreaks using a novel 
combination of multiple lines 
of evidence, including aerial 
photography and Landsat 
imagery (Figure 1). The lack of 
spatially explicit data on this 
disturbance represents both a 
major data gap and a critical 
research challenge in that 
wildfire fire has removed some 
of the evidence from the 
landscape. This is a critical first 
step in our overall goal of 
identifying the ecological 
consequences of the 
interactions of bark beetles 
with subsequent fire events over 
the last several decades in the US 
Rocky Mountains. We believe 
the method provides a 
quantitative application of remote 
sensing to forest disturbance. 
Furthermore, our work affords a 

Figure 1. (Left) Landscape photo taken in the Summer of 1980 showing a mixture 
of live and dead trees in the red attack stage in Waterton Valley (source: Glacier 
National Park Research Library). (Right) A color-infrared aerial photo of the same 
area acquired in October 1980 (source: NASA/Glacier National Park). The mosaic 
of live and dead forest can be identified in both images. The letters correspond 
to the same area in each photo (A = stream confluence, B = small patch of live 
trees, surrounded by dead forest, C = linear ribbon of dead forest). See attached 
manuscript for full description of methods.   



platform for future research of historical forest disturbance that would be very beneficial to the 
field of forest ecology.  
 
In February 2014 we submitted a manuscript detailing our methods and findings to the journal 
Remote Sensing of Environment, where it is currently in review. A copy of the manuscript is 
attached to the report. Please do not distribute or cite the paper as it has not yet been published. 
The final product of this analysis is a model of mountain pine beetle severity in Glacier National 
Park (Figure 2). We were able to identify a gradient of mountain pine beetle mortality on the 
landscape using changes in satellite imagery reflectance over time. Our findings confirm that 
outbreak severity was significantly heterogeneous across the landscape.  
 
We are now using this information to investigate the influence of mountain pine beetle mortality 
on fire severity. We are using GIS overlay analysis with our newly developed MPB outbreak 
severity map and maps of wildfire severity from the Monitoring Trends in Burn Severity data for 
all wildfires in the park between 1984 and 2006. Coupling these two data sets will allow us to 
gather additional information about the interaction of these two disturbances. For example, we 
can now calculate that 98% of the area that burned inside the park in the 1988 Red Bench Fire 
was impacted by some level of the mountain pine beetle outbreak. Of that area, 85% was 
impacted by mountain pine beetles as first detected in 1976. Moreover, we are comparing burn 
severity and mountain pine beetle outbreak severity to investigate how MPB outbreak severity 
interacts with wildfires to shape patterns of fire severity (Figure 3). Whereas it is only a single 
fire event, MPB-wildfire interactions in the Red Bench Fire indicate a positive relationship 
between MPB severity and fire severity. More specifically, forests that experienced no MPB 
outbreak or low-severity MPB outbreak experienced more low- and moderate-severity burned 
areas, and forests that experienced moderate- and high-severity MPB outbreak had more areas 
that experienced moderate- and high-severity fire. We are currently testing these relationships for 
all fires that burned in the study area to test if the relationships identified for the Red Bench Fire 
are consistent. Furthermore, we are testing if relationships between MPB and fire are contingent 
on the time interval between MPB outbreak and fire. 



 

Figure 2. The output of the spatial model classified into three severity levels. 

  
 
 
 
 
 
 
 
 
 



 

 

Figure 3. A comparison between the severity of the 1970s mountain pine beetle outbreak and burn severity of the 1988 Red 
Bench fire. 
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ABSTRACT 23 

Mountain pine beetles are significant forest disturbance agents, capable of inducing widespread 24 

mortality in coniferous forests in western North America. Various remote sensing approaches 25 

have assessed the impacts of beetle outbreaks over the last two decades. However, few studies 26 

have addressed the impacts of historical mountain pine beetle outbreaks, including the 1970s 27 

event that impacted Glacier National Park. The lack of spatially explicit data on this disturbance 28 

represents both a major data gap and a critical research challenge in that wildfire fire has 29 

removed some of the evidence from the landscape. We utilized multiple lines of evidence to 30 

model forest canopy mortality as a proxy for outbreak severity. We incorporate historical aerial 31 

and landscape photos, aerial detection survey data, a nine-year collection of satellite imagery and 32 

abiotic data. This study presents a remote sensing based framework to (1) relate measurements of 33 

canopy mortality from fine-scale aerial photography to coarse-scale multispectral imagery and 34 

(2) classify the severity of mountain pine beetle affected areas using a temporal sequence of 35 

Landsat data and other landscape variables. We sampled canopy mortality in 267 plots from 36 

aerial photos and found that insect effects on mortality were evident in changes to the 37 

Normalized Difference Vegetation Index (NDVI) over time. We tested multiple spectral indices 38 

and found that a combination of NDVI and the green band resulted in the strongest model. We 39 

report a two-step process where we utilize a generalized least squares model to account for the 40 

large-scale variability in the data and a binary regression tree to describe the small-scale 41 

variability. The final model had a root mean square error estimate of 9.8% canopy mortality, a 42 

mean absolute error of 7.6% and an R2 of 0.82. The results demonstrate that a model of percent 43 

canopy mortality as a continuous variable can be developed to identify a gradient of mountain 44 

pine beetle severity on the landscape.  45 
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1. Introduction 46 

Temperate forest ecosystems are subject to various ecological disturbances that can have 47 

profound effects on the structure of the ecosystem for many years after the event (Turner & Dale, 48 

1998) and influence the likelihood, severity and spread of subsequent disturbances (Veblen et al., 49 

1994). In western North America, native bark beetles are a major disturbance agent capable of 50 

regional-scale forest mortality (Raffa et al., 2008). Remotely sensed imagery has been used to 51 

characterize such widespread disturbance events over the last two decades (Wulder et al., 2006a). 52 

However, very little research has employed these techniques to study insect disturbance prior to 53 

the recent period of extended outbreak (~pre late 1990s). The northern Rocky Mountains 54 

experienced a widespread mountain pine beetle outbreak in the late 1970s to early 1980s (Logan 55 

& Powell, 2001). However, the lack of spatially explicit data on the extent and severity of this 56 

outbreak limits our understanding of the influence that this disturbance had on the landscape. To 57 

overcome this challenge, we utilized multiple lines of evidence to retrospectively characterize 58 

forest canopy mortality from the outbreak by comparing temporal changes in archived satellite 59 

imagery.  60 

1.1 Mountain Pine Beetle Overview  61 

The mountain pine beetle (Dendroctonus ponderosae) is a native species found in the 62 

western United States and Canada that attacks and reproduces in live trees (Bentz et al., 2010). 63 

The mechanisms with which populations switch to epidemic levels are complex (Bentz et al., 64 

2010; Raffa et al., 2008), but include suitable host availability (amount, vigor, age and density) 65 

and condition (Fettig et al., 2007), along with beetle population survival and growth given 66 

thermal conditions (Powell & Logan, 2005). Epidemic populations are capable of landscape-67 

scale forest mortality leading to cascading effects on forest structure, species composition and 68 
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function (Raffa et al., 2008). Major host species include lodgepole pine (Pinus contorta), 69 

ponderosa pine (P. ponderosa), and whitebark pine  (P. albicaulis) (Bentz et al., 2010). Impacted 70 

forests exhibit unique and visible characteristics at each stage of a mountain pine beetle attack 71 

(Wulder et al., 2006a). Killed trees begin to show visible changes as the foliage changes from 72 

green to yellow to red over the first year after the attack. The gray attack stage typically 73 

commences three years after the attack, as most trees will have lost all needles at that time 74 

(Wulder et al., 2006a).  75 

1.2 Remote Sensing and Disturbance 76 

Historical aerial photography is a valuable research tool providing detailed records of forest 77 

landscapes over the last half century or more. Although limited in spatial extent, these records 78 

provide a fine-scale snapshot of landscapes at one or multiple points in time. Previous studies 79 

have successfully used aerial photos collected during two or more time periods to measure 80 

changes in tree cover (Brown et al., 2006; Di Orio et al., 2005; Kadmon & Harari-Kremer, 1999; 81 

Kennedy & Spies, 2004; Manier et al., 2005; Platt & Schoennagel, 2009; Strand et al., 2006). 82 

The use of satellite multispectral imagery to map and monitor forest condition over larger 83 

regions is also well documented (Cohen et al., 2001; Maselli, 2004; Nemani et al., 2009; 84 

Schroeder et al., 2006; Townshend et al., 2012; Volcani et al., 2005) dating back to the early 85 

1970s with the initiation of the Landsat program (NASA, 2013). Several studies have used aerial 86 

photos as a surrogate for field data collection and then used that information to scale up to 87 

satellite imagery. This technique has been accomplished to map various attributes including land 88 

cover type (Parmenter et al., 2003), tree cover (Carreiras et al., 2006; Cohen et al., 2001; Homer 89 

et al., 2007), and surface imperviousness (Homer et al., 2007). Photos can be used to sample 90 

post-disturbance forest patterns, such as canopy mortality. The aerial photo reference data can be 91 
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used to bridge the gap in scale between localized tree mortality measures and the more coarse 92 

scale of satellite imagery (Meddens et al., 2013). This hybrid approach allows for detection of 93 

fine-scale disturbance patterns captured in the aerial photos, while taking advantage of the 94 

multispectral and multitemporal components of Landsat imagery at the landscape scale. 95 

Furthermore, it provides a pathway to conduct a retrospective analysis.        96 

Ecological disturbance alters ecosystem structure by both abrupt, conspicuous change and by 97 

gradual, slow change over some period of time. Such impacts allow remote sensing to capture 98 

the pre- and post-landscape, and in some cases, the duration of the event. Aerial photos have 99 

been utilized to investigate the impacts of fire (Bebi et al., 2003; Johnson & Fryer, 1987), insect 100 

damage (Bebi et al., 2003; White et al., 2005), extreme drought (Allen & Breshears, 1998), and 101 

blowdown (Baker et al., 2002) on forest and woodland ecosystems. At regional scales, 102 

multispectral satellite imagery has been employed to study diverse types of forest disturbance 103 

including fragmentation (Fuller, 2001), fire (Turner et al., 1994), drought (Huang et al., 2010) 104 

and insect induced mortality (DeRose et al., 2011; Vogelmann et al., 2009). Numerous studies 105 

have utilized multispectral imagery to document the extent and severity of the recent mountain 106 

pine beetle outbreak over the last decade. Efforts range from fine-scale satellite and aerial 107 

multispectral imagery acquired from one time period (Coops et al., 2006; Dennison et al., 2010; 108 

Hicke & Logan, 2009; Meddens et al., 2011), to moderate resolution sensors incorporating 109 

multiple time periods (Goodwin et al., 2008; Meddens et al., 2013; Meigs et al., 2011; Wulder et 110 

al., 2006b).    111 

We found few studies in the literature that used the first generation of Landsat data to detect 112 

mountain pine beetle outbreaks or other insect-driven forest disturbance. The Landsat 113 

Multispectral Scanner System (MSS) sensor was carried onboard the first five Landsat satellites 114 
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and provided imagery from 1972 until 1995 (NASA, 2013). Researchers in British Columbia 115 

(Harris et al., 1978) used single date MSS imagery to detect damage caused by the Douglas-fir 116 

tussock moth and western spruce budworm with little success. Weber et al. (1975) employed 117 

single date MSS imagery to map mountain pine beetle damage in Ponderosa pine. Rencz and 118 

Nemeth (1985) tested both a single date approach and a change detection approach over a six-119 

year period to map mountain pine beetle damage in British Columbia. Both mountain pine beetle 120 

studies concluded that MSS imagery does not have the capability to detect beetle damage given 121 

the spatial resolution of the imagery. However, the British Columbia study (Rencz & Nemeth, 122 

1985) noted greater detection accuracy at sites with heavy, continuous damage, suggesting the 123 

spatial resolution is less limiting in areas with high-severity outbreaks.         124 

1.3 Outbreak Impacts to Forest Vegetation Spectral Properties 125 

Living vegetation absorbs blue and red light energy, while radiation in the green and near-126 

infrared portion of the electromagnetic spectrum is reflected (Jones & Vaughan, 2010). 127 

Therefore, color-infrared photos can be used to distinguish between areas of live trees and dead 128 

trees. As the foliage of killed trees changes during the first year after the attack, the spectral 129 

response also begins to change (Rencz & Nemeth, 1985). At the cellular level, mortality 130 

contributes to a reduction in foliar moisture and chlorophyll, as other pigments and cellular 131 

structure begins to break down (Mauseth, 1988). As a result, the spectral reflectance in the red 132 

wavelength (630-690 nm) increases, whereas the reflectance in the green wavelength (520-600 133 

nm) decreases (Ahern, 1988).  134 

Disturbances where large portions of forest vegetation are removed from the landscape, such 135 

as fire and clear cutting, create a drastic change in spectral reflectance. Conversely, subtle 136 

changes in foliage color associated over time may prove more difficult to detect. Nevertheless, 137 
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the phenology associated with mortality caused by an outbreak will lead to a change in satellite-138 

detected reflectance of the forest canopy. An analysis of multiple years of moderate spatial 139 

resolution imagery has the potential to capture reflectance patterns before, during and after 140 

landscape-scale disturbance events (Goodwin et al., 2008; Wulder et al., 2006a). 141 

Multiple types of spectral indices have been employed to detect the impacts of mountain pine 142 

beetle disturbance over the last decade. Examples of indices include the Normalized Difference 143 

Moisture Index (Goodwin et al., 2008, 2010; Meddens et al., 2013), the Tasseled Cap (Meddens 144 

et al., 2013), the Enhanced Wetness Disturbance Index (Skakun et al., 2003; Wulder et al., 145 

2006b), the Normalized Burn Ratio (Meigs et al., 2011), the Red-Green Index (RGI) (Coops et 146 

al., 2006; Hicke & Logan, 2009; Meddens et al., 2013), the Band 5/Band 4 Ratio (Meddens et 147 

al., 2013), and the Normalized Difference Vegetation Index (Meddens et al., 2013). Various 148 

levels of success were obtained with each index. Many of these indices are derived from Landsat 149 

TM or ETM+ imagery. However, Landsat TM imagery is not available prior to 1984 and 150 

Landsat ETM+ imagery is not available before 1999. Because the outbreak that is the focus of 151 

this study erupted in the mid-1970s, Landsat MSS imagery represents the only available satellite 152 

imagery. Given the four multispectral bands of MSS (Table 1), we were only able to utilize a 153 

subset of these indices.  154 

1.4 Aerial Detection Survey Data  155 

The US Forest Service (USFS) has been conducting annual forest health aerial detection 156 

surveys (ADS) since the middle of the 20th century. In summary, human observers record the 157 

type and extent of abiotic and biotic disturbances and host species onto sketch maps  (Meigs et 158 

al., 2011). The sketch maps are hard copy maps used by human observers in planes that are later 159 

converted to digital form. This data has successfully been integrated into remote sensing 160 
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detection studies of insect disturbance (Meddens et al., 2012; Meigs et al., 2011). The Forest 161 

Health Protection Aviation Program in USFS Region 1 (including Glacier National Park) 162 

maintains digital files of the ADS data since 2000. Staff at Glacier National Park digitized the 163 

ADS data from 1962-1998. The data include information about insect species, host tree species, 164 

damage type, and forest type. However, very few polygons contained information on the number 165 

of trees killed per acre (severity), which is commonly included in contemporary ADS data and is 166 

critical to relating outbreaks to forest processes and change. Furthermore, the disturbance 167 

polygons identified in the ADS data were very large (e.g. > 70,000 ha). Although useful for 168 

broad-scale monitoring, we suspect the ADS data does not represent the heterogeneous impacts 169 

of the disturbance. Since we are interested in both the extent and severity of the disturbance, 170 

these missing details heavily influenced the direction of this study.  171 

1.5 Objectives  172 

The goal of the study was to test an approach combining multiple lines of evidence to 173 

reconstruct the extent and severity of a mountain pine beetle outbreak in a topographically 174 

complex landscape. Furthermore, subsequent disturbance (fire) has removed evidence from large 175 

areas of the study area. To accomplish this, we used a combination of aerial detection survey 176 

data, historical aerial and landscape photos, National Park Service reports and a temporal 177 

sequence of satellite imagery. Each data source has limitations in the spatiotemporal record. 178 

However, by combining disparate sources of data across spatial and temporal scales, we aimed to 179 

reduce the uncertainty associated with reconstructing outbreak parameters. Employing multiple 180 

lines of evidence from independent data sources has the potential to extend the information 181 

associated with each piece of data and create a robust composite picture of the outbreak 182 

(Swetnam et al., 1999). Reference data was collected from aerial photos and scaled up to satellite 183 
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imagery measurements over time. We hypothesized that the impacts of the disturbance to the 184 

forest canopy (i.e. mortality) would be captured in spatiotemporal changes in reflectance. Finally 185 

we sought to demonstrate a novel approach in the use of existing data to assess an historic 186 

disturbance. 187 

The objectives of this study are to: 188 

1. Relate measurements of canopy mortality from fine-scale aerial photography to coarse-189 

scale multispectral imagery; 190 

2. Classify the severity of mountain pine beetle affected areas using a temporal sequence 191 

of Landsat data and other landscape variables.     192 

2. Methods 193 

2.1 Study Area 194 

The study was located in Glacier National Park in northwestern Montana, USA (Figure 1). 195 

The area was chosen because of the extensive mountain pine beetle epidemic that occurred there 196 

in the 1970s (Hamel et al., 1977; McGregor et al., 1975). The park encompasses 4,080 km2 197 

(408,000 ha) of diverse terrain on either side of the Continental Divide. Mean average annual 198 

precipitation is 73.1 cm, and average annual maximum and minimum temperatures are 11.9 ºC 199 

and -0.2 ºC, respectively (1971-2000) (Western Regional Climate Center, West Glacier station, 200 

elevation: 970 m, http://www.wrcc.dri.edu; accessed 17 December 2012).  The climate averages 201 

from this station are consistent with stations on the east side of the park. Elevation ranges from ~ 202 

950 m to 3184 m above sea level and major cover types include grasslands, conifer and 203 

deciduous forests, lakes, wide glacial valleys and steep alpine zones. Forests are dominated by 204 

lodgepole pine (Pinus contorta), western larch (Larix occidentalis), Engelmann spruce (Picea 205 

engelmannii) and Douglas-fir (Pseudotsuga menziesii). 206 

http://www.wrcc.dri.edu/
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Given the size and diverse landscape of the park, we limited the study area based on several 207 

assumptions. First, vegetation cover types not susceptible to mountain pine beetle attack were 208 

identified using ReGAP (Davidson et al., 2009) and omitted. Second, we calculated the 209 

cumulative extent of mountain pine beetle damage identified by the ADS data between 1971 and 210 

1987. The area not impacted by the mountain pine beetle outbreak during the buffered time 211 

period was omitted from further analysis. The area of interest was also confined by the extent of 212 

available satellite imagery used in the analysis. The confined area of interest is 1195 km2 213 

(119,552 ha) and ranges in elevation from ~ 950 m to 2960 m above sea level (Figure 1). 214 

2.2 Aerial and Landscape Photograph Processing 215 

Six color infrared aerial photographs were obtained in digital format from the US Geological 216 

Survey’s Earth Resources Observation and Science Center (Figure 1). Four of the photos were 217 

acquired in 1982 (west of the Continental Divide), two in 1984 (east of the divide). All photos 218 

have a scale of 1:58,000 and were scanned at a resolution of 1800 dots per inch. The photos were 219 

orthorectified to a 2009 NAIP photo (National Agriculture Imagery Program) using numerous 220 

ground control points (GCPs) and a 30 m digital elevation model (DEM). The average root mean 221 

square error (RMSE) for each photo was less than two meters. We independently assessed the 222 

average displacement between each of the orthorectified images and the 2009 NAIP image at 223 

multiple locations within each image pair. The average displacement between both sets of 224 

images was less than two meters and deemed acceptable. The orthorectification was 225 

accomplished using the Leica Photogrammetry Suite (LPS) (Erdas, Inc., Norcross, GA, USA).    226 

We searched two landscape photographic archives in an effort to locate additional sources 227 

with evidence of the disturbance. The US Geological Survey’s Photographic Library contains 228 

hundreds of photographs of Glacier National Park, dating back more than 100 years. 229 
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Unfortunately there were no photos from the 1970s and 1980s that captured any apparent stage 230 

of the outbreak. However, the Glacier National Park Research Library contained several color 231 

photos taken in the late 1970s or 1980 that contained evidence of the outbreak. In several cases 232 

the extent of the aerial color infrared photo and the color landscape photo were congruent. We 233 

were able to match the two photos and identify unique patterns and patches of mortality in each 234 

photo. Although this was a qualitative analysis, the additional information provided us with 235 

concrete evidence of the disturbance in the aerial photos (Figure 2).    236 

2.3 Aerial Detection Survey Data  237 

Glacier National Park supplied us with a digital version of the ADS data from 1962-1998. 238 

We subset annual shapefiles from 1971 to 1987 since this corresponded with the start of the 239 

outbreak and the last year before extensive fires in the park (1988). We queried polygons 240 

associated with mountain pine beetle using the Damage Causal Agent attribute code and clipped 241 

the shapefile to the extent of the park for each year. Each annual shapefile was converted to an 242 

annual grid (30 m) and snapped to the master Landsat image. The grids were aggregated to form 243 

a cumulative mountain pine beetle extent and used to constrain the study area. We did examine 244 

the ADS data for other disturbance agents within the park to ensure there were no unaccounted 245 

disturbances. However, we found very few disturbance polygons, accounting for a very small 246 

area, within the analysis mask.     247 

2.4 Satellite Image Processing 248 

We conducted a search of the US Geological Survey’s EarthExplorer archive (USGS, 249 

2012) to acquire relatively cloud-free scenes of the study area before, during and after the peak 250 

of the outbreak. We acquired 24 Landsat Multispectral Scanner System (MSS) scenes for 251 

preliminary evaluation. However, many of the scenes contained clouds, were acquired too early 252 
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or late in the growing season or contained striping in the data. We retained nine scenes to be used 253 

in the investigation (Table 2). Late summer data were used (late August-September) due to 254 

availability of cloud-free imagery and the presumed relative phenological stability of the forests 255 

during this time period (Vogelmann et al., 2009). All of the scenes were preprocessed by the US 256 

Geological Survey to level 1T (terrain corrected data) and therefore we did not apply a 257 

topographic normalization. MSS imagery has a spatial resolution of 60 m in four spectral bands 258 

(Table 1).  259 

Twenty GCPs were established to compare the spatial accuracy between the 2009 NAIP 260 

photo and a 2010 Landsat Thematic Mapper (TM) image of the study area. We used the 261 

AutoSync module in Erdas Imagine to georectify the image to the 2009 photo (RMSE < 0.5 262 

pixel). This process was then repeated to georectify each of the 9 Landsat MSS images to the 263 

2010 TM image. Each MSS image had an RMSE < 0.4 pixel and was resampled in AutoSync 264 

during the georectification process. The MSS images were resampled to 30 m using a nearest 265 

neighbor transformation to minimize geometric offsets in the image stack (Goodwin et al., 2008). 266 

However, the spatial resolution of the data is still considered 60 m.      267 

Radiometric calibration of imagery is an important step for creating a consistent, high-268 

quality temporal image series for use in change detection analysis. We converted the four bands 269 

of each image from Digital Numbers to absolute units of at-sensor spectral radiance using the 270 

formula (Chander et al., 2009): 271 

Lλ = (LMAXλ – LMINλ / Qcalmax – Qcalmin) * (Qcal – Qcalmin) + LMINλ           (1)  272 

where 273 

Lλ = Spectral radiance at the sensor’s aperture [W/(m2 sr µm)]   274 

Qcal = Quantized calibrated pixel value [DN] 275 
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Qcalmin = Minimum quantized calibrated pixel value corresponding to LMINλ [DN] 276 

Qcalmax = Maximum quantized calibrated pixel value corresponding to LMAXλ [DN] 277 

LMINλ = Spectral at-sensor radiance that is scaled to Qcalmin [W/(m2 sr µm)]   278 

LMAXλ = Spectral at-sensor radiance that is scaled to Qcalmax [W/(m2 sr µm)]   279 

 280 

The spectral radiance values were converted to Top-Of-Atmosphere (TOA) reflectance  281 

to account for differences in sensor and viewing angle using the formula (Chander et al., 2009):  282 

ρλ = π * Lλ * d2 / ESUNλ * cosθs                   (2)  283 

where 284 

ρλ = Planetary TOA reflectance [unitless] 285 

π = Mathematical constant equal to ~3.14159 [unitless]  286 

Lλ = Spectral radiance at the sensor’s aperture [W/(m2 sr µm)]   287 

d = Earth-Sun distance [astronomical units] 288 

ESUNλ = Mean exoatmospheric solar irradiance [W/(m2 µm)]   289 

θs = Solar zenith angle [degrees] 290 

 291 

All scenes were processed by the USGS using the Level 1 Product Generation System 292 

(LPGS) and therefore included a header file (.MTL). Inputs used in the formulas above were 293 

supplied by the header file for each scene and Chander et al. (2009). 294 

Each image was then snapped to the reference image (1979 image) in ArcGIS to ensure 295 

that each 30 m pixel for every year was exactly congruent with the master image. An absolute 296 

normalization was applied to the 1979 master image using a dark object subtraction technique 297 

(Chavez 1988). The minimum pixel value of each band (recorded in at least 1000 pixels), 298 
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representing deep glacial lakes and shadows, was identified (Chavez, 1996). The theoretical 299 

radiance of a dark object is assumed to have 1% reflectance (Chavez, 1996; Moran et al., 1992) 300 

so the minimum identified pixel value was multiplied by 0.99 to generate the presumed dark 301 

object of each image band. 302 

The remaining images were normalized to the master image using a relative 303 

normalization technique. This procedure removes non-surface noise and improves the temporal 304 

homogeneity between images so that spectral change associated with surface phenomena can be 305 

detected (Yuan & Elvidge, 1996). Psuedo-Invariant Features (PIFs) are targets in each image that 306 

are not expected to change between image dates (Schott et al., 1988). Relative normalization is 307 

based on the assumption that a linear relationship exists between the reference image and the 308 

image to be normalized (Schott et al., 1988; Yuan & Elvidge, 1996). This technique has been 309 

applied in many studies to analyze vegetation change (Bradley & Fleishman, 2008; Schroeder et 310 

al., 2006; Vicente-Serrano et al., 2008). We identified 60 PIFs that encompassed a range of 311 

pseudo-invariant reflectance values in each band. Each PIF was 32,400 m2 in size; equivalent to 312 

a 3x3 block of 60 m Landsat MSS pixels. The mean of the reflectance values at these sites were 313 

used to fit an ordinary least squares regression model between the image to be normalized for 314 

each year and the reference image for each of the four bands. We tested the residuals for spatial 315 

autocorrelation using the Moran’s I statistic and the Likelihood Ratio Test (Legendre & Fortin, 316 

1989). If spatial autocorrelation was detected, a spatially autoregressive model was used to fit the 317 

data (Cressie, 1993). In all cases, the fit of lines used to spectrally align the images had R2 values 318 

> 0.92. Statistical analysis was conducted using the r package (R Development Core Team, 319 

2011) and the linear regression was applied to each image in Erdas Imagine.   320 
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Given the four multispectral bands of MSS, we were only able to utilize three spectral indices 321 

in the model evaluation process (Table 3). The GNDVI is sensitive to the presence of chlorophyll 322 

since the green spectral region is used instead of the red region (Carreiras et al., 2006). We did 323 

not use Band 3 as a covariate as it is often highly correlated with band 4 of MSS data. A 324 

preliminary investigation identified that NDVI performed the best among spectral indices. In an 325 

effort to limit redundancy in the data, we transformed the NDVI time series using principal 326 

component analysis. The principal components were used as predictor variables in one of the 327 

five models tested.       328 

2.5 Sampling 329 

We estimated beetle induced forest mortality using data collected from the aerial photos and 330 

compared these measurements with changes in spectral values over time. We segregated the 331 

landscape into 12 different facets based on slope and aspect. These two variables influence forest 332 

composition, tree vigor and subsequent susceptibility to mountain pine beetle (Raffa et al., 333 

2008). Furthermore, dividing the landscape into sub-regions of similar biophysical characteristics 334 

can isolate spectral gradients (Homer et al., 2004). Both variables were derived from the 335 

elevation dataset. Aspect was classified into four categories (north, east, south or west) while 336 

slope was classified into three quantiles: low (<12%), moderate (12-29%) and high (>29%). 337 

Initially 350 random points were proportionally allocated in each of the 12 landscape classes, 338 

and square plots of 180 m x 180 m were delineated around the center of each point. The plot size 339 

was chosen considering the spatial resolution of the satellite imagery, i.e. 3 x 3 Landsat MSS 340 

pixels. A negative buffer was used to insure that plots were located completely within one 341 

landscape facet. Many of the initial plots were deleted (10%) because they did not completely 342 

fall within a landscape facet. In addition, limitations due to topographic shadow or image blur 343 
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from the orthorectification process warranted the omission of some plots (13%). As a result, each 344 

landscape facet did not contain the same number of sampling plots.   345 

An unsupervised classification in Erdas Imagine was conducted on each air photo resulting in 346 

20 classes. We used an iterative approach to determine the number of unsupervised classes that 347 

maximized spectral separation without generating an unwieldy number of classes. For each plot, 348 

we manually interpreted the 20 classes and assigned each class to live forest, dead forest, or 349 

shadow (Figure 3). We then calculated the ratio of dead canopy cover to total canopy cover in 350 

each plot. We omitted shadow pixels as they represent unknown cover types.   351 

2.6 Statistical Analysis 352 

Regression analysis can be used to explain large-scale variability, while model residuals can 353 

be used to describe small-scale variability in the data (Cressie, 1993). We used a generalized 354 

linear model (GLM, Gaussian distribution, Identity link function) to identify a set of explanatory 355 

variables to estimate canopy cover change on the sample plots over time. Predictor variables 356 

included spectral indices derived from nine years of Landsat MSS data, topography (elevation, 357 

slope, aspect and topographic position index), and variables derived from the ADS data (first 358 

year detected, last year detected and total number of years detected). Aspect and the variables 359 

derived from the aerial survey data were treated as indicator variables in the analysis. Aspect was 360 

binned into four classes: North (0-45º; 315-365º), East (45-135º), South (135-225º), and West 361 

(225-315º). Three categorical variables were derived from the aerial survey data: first year of 362 

attack (early, mid, or late in the outbreak), last year of attack (early, mid, or late in the outbreak) 363 

and total number of years recorded during the outbreak (low, moderate, or high).  364 

We tested five models in our analysis using different combinations of vegetation indices as 365 

the primary biotic variables. For each model, a stepwise selection by Akaike’s Information 366 
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Criterion (AIC) was used to identify the best subset of independent variables to include in the 367 

regression models (R Development Core Team, 2011). The aspect variable was allowed to 368 

interact with the primary vegetation index in each model. We evaluated the models through 369 

consideration of AIC, the mean absolute error of prediction (MAE) and the root mean square 370 

error of prediction (RMSE). Furthermore, a ten-fold cross validation procedure (DAAG package 371 

in R) was employed to calculate the prediction error of each model.    372 

Residual error from the regression model can be utilized to describe the small-scale 373 

variability in the data (Manier et al., 2005; Reich et al., 2011). We modeled the residual error 374 

from the selected regression model using a binary regression tree. We tested the residuals of the 375 

selected GLM model and the regression tree model for spatial autocorrelation using the Moran’s 376 

I statistic (Legendre & Fortin, 1989). The sampled plots were clustered on the landscape into 377 

three distinct groups based on the availability of the aerial photos. We assumed points between 378 

each cluster were spatially independent and employed a block diagonal spatial weights matrix 379 

(Upton & Fingleton, 1985) to account for the clustered nature of the plots.  380 

The residuals of the GLM-CART model exhibited spatial autocorrelation. We addressed 381 

the issue by running the regression analysis using a Generalized Least Squares (GLS) model. A 382 

variogram was fit using the residuals of the GLM model to describe the degree of spatial 383 

dependence in the residuals. A Gaussian variogram model was fit to the sample variogram using 384 

least squares to estimate the nugget, sill and range. The GLS regression was used to estimate the 385 

parameters of the trend surface model in the presence of spatial autocorrelation. We allowed plot 386 

location (east or west of the Continental Divide) to enter the model to test if the outbreak impacts 387 

were different on either side of the divide.   388 
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After parameterizing and validating the models, forests canopy change was projected to 389 

the landscape area of interest in three steps. First a trend surface was created from the parameters 390 

of the GLS model using the raster calculator in ArcGIS. Next, a surface of the residuals 391 

generated from the regression tree model was created using a series of conditional statements in 392 

the raster calculator. Finally, the trend and residual surfaces were added together to create a 393 

continuous surface of forest canopy change scaled between 0 and 1. Areas of cloud cover, cloud 394 

shadow and topographic shadows represent uncertainty and were omitted from the analysis. Only 395 

two years of data (1978 and 1983) contained sparse clouds, but topographic shadows were 396 

present in all years. We applied a NDVI threshold (< 0.2) to remove clouds and topographic 397 

shadows (Hicke & Logan, 2009) and cloud shadows were manually delineated and removed.  398 

3. Results 399 

3.1 Aerial Detection Survey Data  400 

Our analysis of the aerial survey data indicates the outbreak was first identified in 1971 in the 401 

north-west portion of the park in very small isolated patches. The outbreak continued to spread 402 

from these centers until the mid-1970s when it was reported widely across the western portion of 403 

the park (Figure 4). There was no data available for 1975, and the following year the area 404 

affected by beetles significantly expanded on the western side of the park. The aerial survey 405 

continued to report large areas impacted from 1977 through 1980. The outbreak was first 406 

identified east of the Continental Divide in the north central and north east portion of the park in 407 

1979.  In the early 1980s, the area affected by beetles quickly decreased (Figure 5).    408 

3.2 Determination of Tree Canopy Cover 409 

A total of 267 plots were used to estimate tree canopy mortality from the air photo analysis 410 

(Table 4). Initially, 282 plots were analyzed, but 15 were removed from the data set because the 411 
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photo plots fell within topographic shadows, cloud cover or cloud shadows in the satellite 412 

imagery. The study area is dominated by west facing slopes, followed by south, east and north. 413 

Each aspect class did not contain the same number of plots (see Section 2.5). However, the 414 

number of plots in each aspect class is an adequate reflection of the percentage of the study area 415 

in each aspect class. Plots ranged from very little mortality (4.4%) to nearly complete mortality 416 

(99.8%). West-facing plots had the highest mean mortality (68.3%), while plots in the east aspect 417 

class had the lowest mean mortality (49.4%) (Table 4). The majority of the data is concentrated 418 

in mortality classes ranging from 40-90% (Figure 6). Given the severity and extent of the 419 

outbreak, this is not an unexpected finding.        420 

3.3 Model Adjustment and Validation 421 

The model that employed NDVI and the Green Band (NDVI+G) (Table 5) provided the best 422 

estimation of canopy change over time. This model had the lowest AIC (-237.55), MAE 423 

(10.8%), and RMSE (13.6%) values while accounting for the greatest amount of explained 424 

variability (65.4%) (Table 5). Furthermore this model had the lowest prediction error (15.4%) of 425 

any model from the cross validation procedure. The incorporation of a green band resulted in a 426 

stronger model than using NDVI alone (Table 5). The NDVI and PCA models had identical 427 

coefficients of determination, and similar MAE and RMSE. However, the PCA model had 428 

substantially higher prediction error. The GNDVI model did not perform as well as the three 429 

NDVI based models and the red-green index proved to be a poor indicator of mortality.  430 

The NDVI+G model was selected to describe the large-scale variability of canopy change 431 

over time. However, the residuals of the GLM model exhibited spatial autocorrelation (Moran’s I 432 

test; p < 0.0001) indicating that the null hypothesis of spatial independence in the residuals be 433 

rejected. The variables included in the NDVI+G model were then analyzed using a GLS model 434 
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that explained 62% of the variability with higher MAE (18%) and RMSE (21.1%) than the GLM 435 

model (Table 6, Figure 7). However, the residuals of the GLS model did not exhibit spatial 436 

autocorrelation (Moran’s I test; p =0.64). The green band from 1978 was the most important 437 

predictor west of the Continental Divide, with a relative contribution to the model of 10.7%. The 438 

green band from 1987 was the most important predictor east of the divide, with a relative 439 

contribution to the model of 11.8%.  Decreased values of green band reflectance indicated a 440 

substantial increase in canopy mortality. NDVI from 1977 and 1981 were highly significant in 441 

the model on the west side of the park (p<0.001) and also exhibited a negative relationship with 442 

canopy mortality. NDVI from 1977 was also significant on the east side of the park. 443 

The residuals were used to model the small-scale variation in the data using binary regression 444 

trees. The initial regression tree identified 27 nodes and location (east or west of divide) did not 445 

enter the analysis, so one tree was used to fit both sides of the Continental Divide. Given that 446 

regression trees are prone to overfitting, we conducted a 10-fold cross validation on the data and 447 

subsequently pruned the tree to 22 nodes. This simplified the model while still accounting for 448 

spatial autocorrelation. The combined model (GLS + CART), which captures both the large- and 449 

small-scale variability, had a lower rate of MAE (7.6%) and RMSE (9.8%) than the GLS model. 450 

The combined model increased the amount of explained variability in the data by nearly 20% (R2 451 

= 0.819) (Figure 8). The residuals of the combined model are spatially independent (Lagrange 452 

multiplier test; p=0.27) and the standardized mean square error (SMSE) of the combined model 453 

is 0.996. An SMSE value of one indicates consistency between the estimation error variance and 454 

the observed error variance in the model (Hevesi et al., 1992).   455 

The combined model was then applied spatially to the study area as a continuous surface 456 

with modeled canopy cover change scaled between 0 and 1. We binned the modeled data into 457 
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three categories based on natural breaks in the data (Figure 9). This classification resulted in 20% 458 

of the project area in the low category (< 0.37 canopy change), 46% in the moderate and 34% in 459 

the severe category (>0.62 canopy change). Pockets of high severity are found throughout the 460 

park across the elevation gradient present. The three classes are generally represented across the 461 

study area. However, it should be noted that pockets of low and severe impacts are clustered, 462 

with the moderate severity often forming a transition between the classes.  463 

To provide perspective on the classification, a color-infrared photo and corresponding 464 

classification map is shown in Figure 10. Based on these visual comparisons, our model appears 465 

to capture high levels of mortality associated with beetle attack areas as well as areas not as 466 

heavily impacted. Furthermore, the gradient of impact on the landscape appears to be well 467 

represented in the model. Example spectral trajectories of the three classes show clear 468 

delineation during extent of the outbreak (Figure 11).  469 

4. Discussion 470 

A primary objective of our analysis was to develop a methodology to reconstruct the extent 471 

and severity of the outbreak. We were able to identify a gradient of mortality on the landscape 472 

using changes in NDVI and the green band reflectance over time. Our findings confirm the 473 

outbreak was not homogenous across the landscape (Figure 9). The reported error metrics are 474 

reasonable given limitations in the data and comparable to related studies of insect impacts on 475 

the forest canopy (Townsend et al., 2012). Error associated with the ADS data was not 476 

quantified. Furthermore, this information was collected by observers presumably working under 477 

difficult conditions. Therefore we suggest our model represents an unbiased view of the 478 

disturbance. In addition, the modeling framework we applied in this study should be transferable 479 

to other areas with similar forest disturbance characteristics.  480 
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This study builds on the ideology of many of the aforementioned studies which used 481 

remotely sensed data to document various stages of the late 1990s-mid 2000s mountain pine 482 

beetle outbreak. The common theme is the development of a time series imagery stack to assess 483 

spectral changes over time (Goodwin et al., 2008; Meddens et al., 2013; Meigs et al., 2011). 484 

However, we were unable to utilize many of the vegetation indices (e.g. Normalized Difference 485 

Moisture Index) used in these studies. Given that our study objectives hinged around an historic 486 

disturbance that occurred in the mid-1970s and early 1980s, we were unable to use imagery with 487 

the spectral resolution needed for many of those indices. The major difference in our study and 488 

those described in section 1.3, is that the disturbance we are interested in occurred in the 1970s 489 

and early 1980s. This predates the advent of Landsat TM/ETM+ imagery and other finer scale 490 

imagery employed in those studies. 491 

There were two main differences between our study and those that used MSS data (Harris et 492 

al., 1978; Rencz & Nemeth, 1985; Weber et al., 1975). First, we attempted to capture the 493 

gradient of the disturbance on a continuous scale between 0 and 1. Second, we employed 494 

multiple time periods of imagery to assess spectral changes at sites over time. Although Rencz 495 

and Nemeth (1985) used a change detection procedure, there was a gap of six years between 496 

images. The use of just two images was likely insufficient to capture the full range of phenology 497 

associated with the disturbance from pre-attack through the green, red and gray stages, followed 498 

by the likely expansion of understory growth following canopy mortality. Conducting a 499 

retrospective analysis afforded us several advantages over the prior MSS studies. The Landsat 500 

archive is now readily available at no cost, removing the financial burden that inhibited prior 501 

investigators from developing a time series imagery stack (Woodcock et al., 2008). Furthermore, 502 
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advances in radiometric calibration provide a basis for standardized comparison between images 503 

acquired on different dates and by different sensors (Chander et al., 2009).  504 

There are several strengths associated with our study that allowed us to overcome numerous 505 

limitations. Overall, we provide an objective framework that can be applied to other areas, at 506 

other time periods, involving other types of forest disturbance. The major limitation of 507 

quantifying a disturbance over a large, topographically complex landscape where subsequent fire 508 

has erased some of the evidence was overcome using existing data that has been archived for a 509 

number of years. The remote sensing archive allowed us to extract information about the 510 

condition of the forest canopy across spatiotemporal scales. By employing multiple lines of 511 

evidence, each independent data source contributed to a composite picture of the disturbance 512 

(Swetnam et al., 1999). Several key factors led to a successful analysis. The first was employing 513 

a mask to restrict the area of analysis (Garrity et al., 2013) to forest types where mountain pine 514 

beetle had the potential to impact. The second critical element was the development of a 515 

normalized time series of reflectance (Townsend et al., 2012; Vogelmann et al., 2012) to 516 

characterize changes over time. We obtained many more images (24) than we ultimately used 517 

(9), but this was necessary to conduct an exhaustive evaluation of available imagery. The 518 

consistent level of pre-processing performed on the imagery by the USGS and our procedure to 519 

convert data to at-surface reflectance aided in the success. Furthermore, the image acquisition 520 

dates were within a six-week window, which limited intra-year differences. The final critical 521 

element was the development of a novel approach to measure mortality in available aerial photos 522 

and scale up to multiple years of satellite imagery. This procedure was crucial given the absence 523 

of field data. 524 

4.1 Ecological Considerations   525 
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In areas where mountain pine beetle disturbance induces high mortality in the forest canopy 526 

over a short time period, there will be a relatively quick change in NDVI. Therefore these areas 527 

will have a heightened chance of detection by remote sensing methods. In addition, the release of 528 

light, nutrients and moisture will occur at one time period. Therefore the flush of understory 529 

growth will likely occur over a relatively short time period. This increases the likelihood of 530 

obtaining a tight sequence of images to detect these rapid changes. Given the high severity of the 531 

impact, the model identified large negative relative contributions of the green band in the 1970s 532 

on the west side of the divide, indicative of an increase in canopy mortality. However, the 1987 533 

green band was significant, with a large positive relative contribution to the model. This can be 534 

interpreted ecologically in that there was a sharp increase in canopy mortality during the late 535 

1970s, but understory growth was prevalent in these high severity areas by the late 1980s. The 536 

outbreak moved from the west to east over the divide. The 1987 green band had a large negative 537 

contribution to the east side model, suggesting recent canopy mortality dominated the spectral 538 

signature, while understory regrowth was likely not widespread.         539 

However, the impacts of mountain pine beetle disturbance on the forest canopy do not 540 

always exhibit characteristics that are easily identified by remote sensing methods. Areas that 541 

have lower amounts of mortality will be composed of a mix of live and dead trees resulting in a 542 

gradient of mortality over the duration of the disturbance. As trees die over this time period, they 543 

will likely be interspersed with live trees. Given that the spectral response of a pixel is an 544 

amalgamation of all elements present (Lefsky & Cohen, 2003), there will be a smaller change in 545 

reflectance. Additionally, as individual trees die, the release of resources will impact a smaller 546 

area of understory regrowth. The localized understory regrowth could offset or suppress the 547 

change in reflectance associated with canopy mortality. This problem is manifested on the 548 
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landscape as the cycle of canopy mortality, resource release, and understory flush could be 549 

occurring simultaneously in localized areas. 550 

Several ecological phenomena could pose challenges to this methodology, particularly if the 551 

recent disturbance history of the study area is unknown. Other disturbances could be identified 552 

by this method, without being attributed to mountain pine beetle. We were able to incorporate 553 

ancillary data about the mountain pine beetle outbreak such as ADS data, park reports and 554 

knowledge from park staff to supplement the primary imagery method. Harvest events typically 555 

have sharp geometric boundaries (Goodwin et al., 2008) that often persist in reflectance patterns 556 

for quite some time after the event. Unknown fires that are low severity or small in area could be 557 

difficult to segregate from insect disturbance mortality, particularly if the event corresponds with 558 

a gap in satellite imagery. Other insect disturbances such as mortality or defoliation events in the 559 

study area could be detected as well (Meigs et al., 2011; Townsend et al., 2012). We analyzed 560 

the Damage Causal Agent attribute code of the aerial survey data and found nearly no other 561 

disturbance types recorded within the study area during the time periods 1971-87. Given that our 562 

objective was to detect landscape-scale mortality associated with a widespread, high-severity 563 

disturbance, we were not concerned with these small disturbances. 564 

Periods of drought and fluctuations in hydrologic year (Oct.-Sept.) precipitation could impact 565 

inter-annual indices of vegetation reflectance in areas of low mortality. However, our 566 

normalization procedure should account for some of these differences between imagery years. 567 

The establishment of appropriate reference conditions of an area remains a challenge in 568 

ecological studies (Millar et al., 2007). Finally, all of the aforementioned challenges are made 569 

more complex when attempting to conduct a retrospective analysis of historical forest 570 

disturbance.    571 
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4.2 Technical Considerations    572 

The technological challenges associated with this study are centered on the spatial, temporal 573 

and spectral resolution of the aerial photographs and satellite imagery. Although we were 574 

constrained to the use of best available data for the time period, consideration of some of the 575 

shortcomings is necessary. We used aerial photographs collected in 1982 (four) and 1984 (two). 576 

The scale of each photograph (1:58,000) was relatively coarse. This scale does not allow for the 577 

identification of an individual tree crown. However, we believe the size of the photo plots (180 578 

m x 180 m) was adequate to characterize the level of mortality within a stand. Given that our 579 

objective was to measure canopy mortality, we were confined to using color-infrared 580 

photographs. We would have considered natural color photographs if they had been available in 581 

the archive. There were additional photographs available in the archive that were not selected 582 

due to a combination of acquisition date, coarse resolution and gray scale film. Although 583 

nominal, there are acquisition costs associated with historic aerial photos, and the 584 

orthorecticfication process can be time consuming. 585 

Additional landscape photographs would have been extremely helpful. However, we were 586 

limited by those that were taken by park staff at the end of the outbreak and housed in the 587 

National Park Service archive. Although they were not used in a quantitative analysis, they 588 

provided valuable evidence of the impact of disturbance.   589 

The Landsat MSS imagery employed in this study is also subject to spatial, temporal and 590 

spectral constraints. Although we resampled the MSS imagery from 60 to 30 m to aid in the 591 

georectification process, we still considered the spatial resolution to be 60 m. Pixels represent an 592 

amalgamation of all spectral properties of elements found within a 60 x 60m footprint on the 593 

ground (Lefsky & Cohen, 2003). Therefore the spatial resolution of MSS imagery is limiting to 594 
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the amount of mortality that can be detected at one pixel between multiple time periods. As a 595 

result, areas that experienced low mortality may have been underestimated by our model. The 596 

temporal limitations of the image archive are two-fold. The study may have benefited from a 597 

higher frequency of images collected every calendar year. Also, it would have been preferable to 598 

have additional image years to establish pre-outbreak conditions. However, it was not tenable to 599 

alleviate these constraints given the available imagery and the timing of the disturbance. The 600 

spectral resolution of MSS imagery is limited compared to TM/ETM+ imagery. Many of the 601 

indices that have been successfully applied to recent outbreaks are developed from a wider 602 

spectral range than that of MSS. All of these factors may limit the sensitivity of the study to 603 

detect different levels of mortality, especially low levels of mortality. However, given the scale 604 

and severity of the disturbance, coupled with the dense imagery stack that was assembled, we 605 

were still able to achieve acceptable results.  606 

The Tasseled Cap transformation for Landsat data has been used to distill information from 607 

Landsat imagery in forest disturbance mapping (Healey et al., 2005). However, we did not use 608 

the Tasseled Cap transformation in our analysis. Unlike Landsat TM and ETM+, Tasseled Cap 609 

coefficients have not been developed for MSS imagery that has been converted to reflectance 610 

data (Schowengerdt, 2007). Our normalization process depended on normalized reflectance 611 

values and not Digital Numbers. The established Tasseled Cap transformation can only be 612 

applied to Landsat MSS imagery in Digital Numbers. 613 

We chose to classify the continuous output into three categories based on natural breaks in 614 

the data. Although relative differences are taken into account, the threshold between each class is 615 

somewhat subjective. Prior investigators have used lower thresholds (low <= 10%, moderate 616 

(11-29%), and severe > 30% of stands killed) (Aukema et al., 2006) or additional classes of 617 
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mortality severity (e.g. trace, light, moderate, severe, and very severe) (Meddens et al., 2012). 618 

However, these two studies were considering ADS data which contained a measure of the 619 

number of trees or the percentage of stand killed. This type of classification scheme does not 620 

translate directly to our model. For example, if 15% of the trees were killed in a localized area, it 621 

could have a large impact on the reflectance of those pixels and overestimate the severity. This 622 

issue could be exacerbated by the coarse resolution of Landsat MSS pixels. Given that there is no 623 

precedent for this type of analysis we opted for a natural break classification scheme.   624 

Our modeling framework was exhaustive in using multiple lines of evidence that represented 625 

the best available data. Our model incorporated the full extent of available spectral reflectance in 626 

MSS imagery (green, red and near infrared bands). Only band 3 was discarded given that it was 627 

highly correlated with band 4. Furthermore, the spectral information used by the model can be 628 

readily interpreted. NDVI is a commonly used index to assess ecological change (Pettorelli et al., 629 

2005) and its behavior can be reasonably predicted from plant physiology theory (Garrity et al., 630 

2013). Plant material containing chlorophyll reflects in the green wavelength. The reflectance in 631 

the green band would be expected to decrease as the amount of chlorophyll in a pixel is reduced 632 

from plant mortality. Therefore, the inclusion of the green band provides a measure of the 633 

amount of chlorophyll present within a pixel over time.  634 

5. Conclusions 635 

We have presented a framework that incorporates multiple lines of evidence to 636 

retrospectively characterize a landscape scale mountain pine beetle disturbance. Furthermore, we 637 

have demonstrated that Landsat MSS data is a valuable tool to extend the moderate resolution 638 

imagery record back to the early 1970s. We conclude that our approach is suitable to characterize 639 

the extent and severity of the event despite initial data limitations. Key considerations of the 640 
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application of our model include the size and severity of the disturbance, as well as the timing 641 

(first date, last date, and duration) of the satellite imagery. Our approach captures the 642 

characteristics of a disturbance event that significantly impacts numerous ecological processes. 643 

Given the availability of these data sources, the characterization of recent events will afford 644 

investigators additional tools to study disturbance interactions and ecological legacies at the 645 

landscape scale.        646 
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Table 1. Spectral characteristics of Landsat MSS imagery (NASA, 2013).  914 

Band Wavelength Spectral Region 
1 500-600 nm Green 
2 600-700 nm Red 
3 700-800 nm Near-infrared 
4 800-1100 nm Near-infrared 

 915 

 916 

Table 2. Satellite imagery scene information and acquisition date used in the analysis. 917 

Satellite Scene Path/Row Acquisition Date (year-month-day) 

Landsat 1 44/26 19730910 

Landsat 1 44/26 19740923 

Landsat 2 44/26 19760921 

Landsat 2 44/26 19770811 

Landsat 3 44/26 19780902 

Landsat 3 44/26 19790915 

Landsat 2 44/26 19810913 

Landsat 4 41/26 19830924 

Landsat 5 41/26 19870911 

 918 

Table 3. Spectral indices calculated with the Landsat MSS reflectance data; NDVI (Normalized 919 
Difference Vegetation Index), RGI (Red Green Index), and GNDVI (Green Normalized 920 
Difference Vegetation Index). 921 

Spectral Index Equation Source 
NDVI NDVI = MSSBand4 – MSSBand2/MSSBand4 + MSSBand2 Rousse et al. 1974 
RGI RGI = MSSBand2/MSSBand1 Coops et al. 2006 

GNDVI GNDVI = MSSBand4 – MSSBand1/MSSBand4 + MSSBand1 Gitelson et al. 1996 
 922 

 923 
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Table 4. Descriptive statistics of estimated tree canopy mortality from the aerial photo plots 924 
grouped by aspect class (n=267).    925 

Aspect Number of 
Plots 

Tree Canopy Mortality Statistics 
Mean Minimum Maximum S.D. 

North 46 54.9 4.4 91.8 23.6 
East 47 49.4 12.8 93.9 24.0 

South 75 54.1 17.0 99.2 20.8 
West 93 68.3 12.7 99.8 21.3 

 926 

 927 

 928 

Table 5. Comparison of model evaluation metrics. 929 

Model AIC R2 MAE RMSE 
10-fold Cross 

Validation Prediction 
Error 

NDVI + G -237.55 0.65 10.8% 13.6% 15.4% 

NDVI -204.44 0.60 11.6% 14.5% 16.8% 

PCA -193.43 0.60 11.9% 14.6% 20.4% 

GNDVI -183.13 0.55 12.4% 15.6% 17.3% 

RGI -87.32 0.34 15.3% 18.8% 20.7% 

 930 

931 
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Table 6. Predictor variables used in the NDVI + G GLS model. Estimates of the model 932 
parameters are listed for the west and east sides accordingly. The variables Aspect and Total # of 933 
Years (low was the only category retained in the stepwise model) were treated as indicator 934 
variables in the analysis. *P-value is significant at 0.05 or lower.     935 

Variable West Coefficient East Coefficient 
(Intercept) 3.18413* 3.43654* 
Aspect    
     N 0.13478  -1.42706* 
     S -0.24309       - 
     W -0.58963* -0.17668* 
green.1973 -9.58080* - 
green.1974 -8.60109* - 
green.1977 -9.97942* - 
green.1978 -10.69192* -12.20042 
green.1979 -5.24848 - 
green.1983 6.49274 - 
green.1987 8.11468* -11.77014* 
Total # of Years - Low 0.15773* - 
ndvi.1973 - -0.37092 
ndvi.1974 -0.03773 - 
ndvi.1976 0.41517* - 
ndvi.1977 -1.08326* -1.74362* 
ndvi.1978 -0.36746 - 
ndvi.1979 0.40112 - 
ndvi.1981 -1.42992* - 
ndvi.1983 -0.40449* -0.50511 
ndvi.1973 x N  - 2.01483 
ndvi.1974 x N -1.24923* - 
ndvi.1978 x N 1.69811* - 
ndvi.1978 x W 1.10049* - 
ndvi.1979 x N -1.78641* - 
ndvi.1979 x S -1.18434* - 
ndvi.1979 x W -1.49155* - 
ndvi.1981 x S 1.52377* - 
ndvi.1981 x W 1.20919* - 
ndvi.1983 x N 0.9887* - 

 936 

  937 

 938 
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 939 

 940 

 941 

 942 

 943 

 944 

 945 

 946 

  947 

Figure 1. Location of study area and extent of aerial photo coverage. Background image is 948 
Landsat Thematic Mapper (TM) Imagery (bands 3, 2, 1) acquired on August 25, 2010. 949 
Yellow polygons represent the location and extent of aerial photograph coverage; tan area 950 
represents the confined study area. 951 
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 955 

Figure 2. (Left) Landscape photo taken in the Summer of 1980 showing a mixture of live and 956 
dead trees in the red attack stage in Waterton Valley (source: Glacier National Park 957 
Research Library). (Right) A color-infrared aerial photo of the same area acquired in 958 
October 1980 (source: NASA/Glacier National Park). The mosaic of live and dead forest 959 
can be identified in both images. The letters correspond to the same area in each photo (A = 960 
stream confluence, B = small patch of live trees, surrounded by dead forest, C = linear 961 
ribbon of dead forest).   962 
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 970 

 971 

 972 

Figure 3. (A) Plot used to sample aerial photos. The 180 m x 180 m plot size was chosen to 973 
include a 3 x 3 block of Landsat MSS pixels. (B) Sampling plot overlaid on color infrared 974 
photo at a low mortality site. (D) Sampling plot overlaid on color infrared photo at a high 975 
mortality site. (C) Output classification from sampling plot in panel B (live canopy cover = 976 
83%). (E) Output classification from sampling plot in panel D (live canopy cover = 10%).       977 
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 992 

Figure 4. Mapped area impacted by mountain pine beetle according to the aerial detection survey 993 
data. Note: there was no data available for 1975.   994 
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 995 

Figure 5. Area impacted by mountain pine beetle annually based on aerial detection survey data. 996 
Note: there was no data available for 1975.  997 
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Figure 6. Histogram of canopy tree mortality (%) for all plots (n=267).    1002 
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 1004 

Figure 7. The output of the NDVI+G GLS model used to estimate canopy change over time due 1005 
to mortality.   1006 
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Figure 8. The output of the combined GLS-CART model used to estimate canopy change over 1009 
time due to mortality.    1010 
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Figure 9. The output of the spatial model classified into three severity levels.  1015 
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 1017 

Figure 10. (Left) Color-infrared photo (year acquired = 1982). (Right) Classified map result of 1018 
the same area (focal window applied). Black polygons correspond to spectral trajectories in 1019 
Figure 11 (A=Moderate, B=Severe, C=Low). Note: tick marks are spaced on a 2 km grid; 1020 
black polygons are 0.2 km2 (20 hectares) in size.    1021 
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 1024 

   1025 

Figure 11. Spectral trajectories of classified outbreak severity. The three trajectories correspond 1026 
to the polygons identified in Figure 10. Note: rock features are included to demonstrate the 1027 
success of the image normalization process and the stability of pseudo-invariant features 1028 
over time.      1029 
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