Rocky Mountains Cooperative Ecosystem Studies Unit (RM-CESU) RM-CESU Cooperative Agreement Number: H1200090004 (IMR) J1526105315 CSURM-208

Project Interim Report, Feb. 3, 2011

<u>TITLE OF PROJECT</u>: Regeneration Status and Dynamics of Rare Ponderosa Pine (*Pinus Ponderosa*) Stands in Western Rocky Mountain National Park

NAME OF PARK/NPS UNIT: Rocky Mountain National Park

NAME OF UNIVERSITY PARTNER: Colorado State University

<u>NPS KEY OFFICIAL/ATR:</u> Judy Visty, Research Administrator, Rocky Mountain National Park, 1,000 Highway 36, Estes Park, CO, 80517; 970-586-1434; judy_visty@nps.gov

<u>PRINCIPAL INVESTIGATOR</u>: Jason Sibold, Department of Anthropology, Colorado State University, Fort Collins, CO 90523; 970/491-4801; <u>Jason.sibold@colostate.edu</u>

Over the past three months we have focus on processing the tree-ring samples, and preliminary analyses of stand dynamics. We completed dating all of the tree-ring samples including samples collected to date ponderosa pine establishment, fire events, and spruce budworm outbreaks.

Preliminary Results:

Disturbance history: Three fire years, 1667, 1732, and 1851, were recorded at the site. The mean fire return interval at the site was 92 years with a range from 65 to 119 years and 159 years from the last fire event (1851) to present. More significant spruce budworm (SBW) outbreaks (recorded by >25% of Douglas-fir core samples) occurred at various severities for several decades in the second half of the 1600s, 1820s-1840s, 1900-1909, 1941-1949, and 1967-1988 (Fig. 1).

Ponderosa pine establishment: Ponderosa pine establishment dates in the North Inlet are temporally clustered in pulses lasting from 30 to 60 years (Fig. 1).Visibly apparent pulses of establishment occurred in 1560-1610, 1680-1710, 1740-1770, 1850-1910, and 2000-present. While the 1560-1610 pulse predates the disturbance history for the site, the 1680-1710, 1740-1770 and 1850-1910 pulses follow fires in 1667, 1732, and 1851 respectively. The tail end of the relatively long post-fire establishment period following the 1851 fire corresponds to a SBW outbreak from 1900-1909. The recent pulse in seedlings from ca. 1990 to present corresponds to the recent high-severity MPB outbreak. Other known MPB outbreaks in the region (1930s, late 1970s) do not correspond to pulses of establishment; however, we did not detect that these previous outbreaks resulted in ponderosa pine mortality in the North Inlet.

Current Status of Ponderosa Pine: Of the 467 ponderosa pine trees recorded at the site 378 (81%) are dead as a result of the recent MPB outbreak. MPB preferentially killed larger diameter trees (Fig. 2 and 3) with very few larger individuals (>30 cm dbh) surviving. The majority of surviving trees are <20 cm dbh. In contrast to tree diameter, tree age did not

influence mortality patterns (Fig. 3). Larger-diameter trees in all age classes were killed at higher rates than smaller-diameter trees of similar age. While this pattern is apparent across all age classes, mortality among the post-1851 fire cohort clearly demonstrates that larger trees in similar age ranges were killed at much higher rates (Fig. 3).

Establishment Dates of Ponderosa Pine

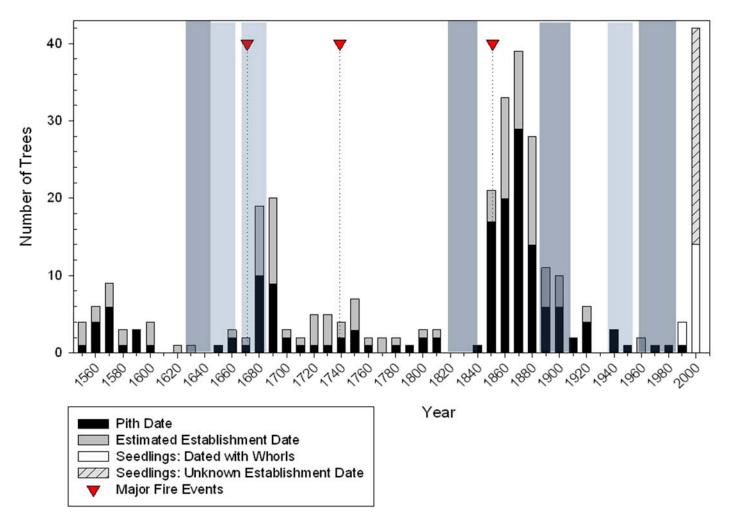
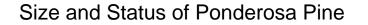



Figure 1. Ponderosa pine establishment dates (in ten-year bins; note that decadal bins are centered on the first year of the 10-year period) in the context of fires and spruce budworm outbreaks in the North Inlet of ROMO. Shaded areas represent spruce budworm outbreaks. Darker areas = outbreak recorded by >50% of trees, lighter areas = outbreak recorded by >25% of trees.

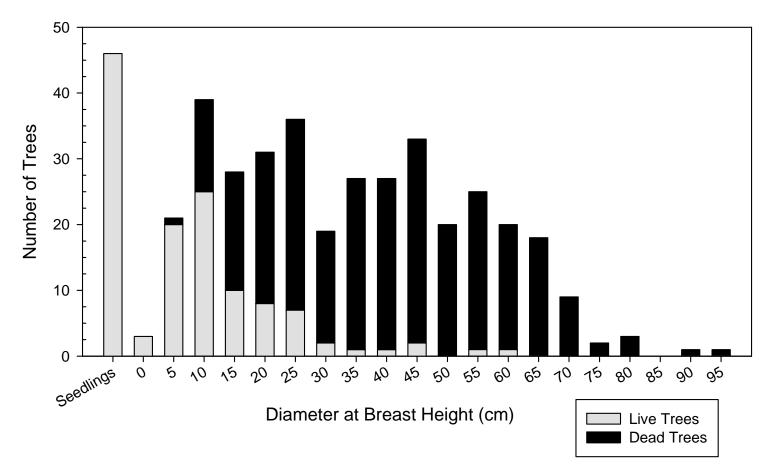
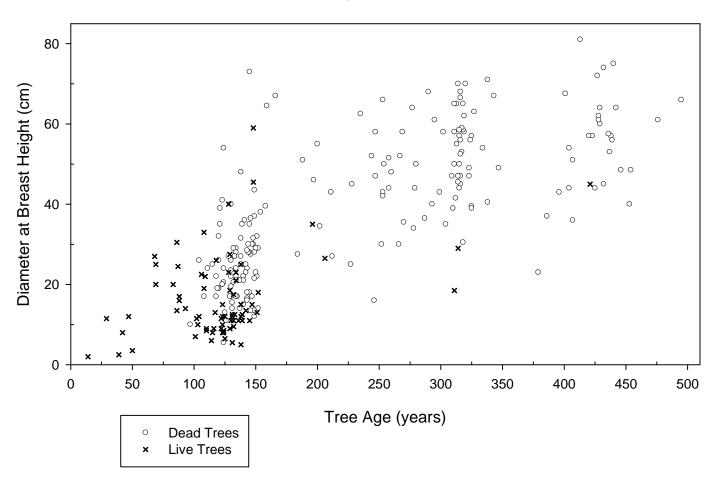



Figure 2. Number of live and dead ponderosa pine in 5 cm diameter at breast height size categories.

Tree Age and Diameter

Figure 3. Patterns of ponderosa pine mortality in the context of tree age (x axis) and diameter (y axis).