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Abstract 
 
Field observations of areas burned within Glacier National Park (GNP) over the last twenty 
years suggest that substantial delayed post-fire tree mortality may be occurring in some areas 
classified as low-moderate burn severity by initial assessments. To quantify the spatio-temporal 
patterns and potential causes of delayed tree mortality, we combined remote sensing and field 
survey data for five fires burned between 1999-2003 in the western portion of GNP. We 
developed a remote sensing monitoring tool based on spectral and textural features derived 
from 1 m2 color imagery from NAIP that produces validated time series maps of tree- to stand-
level forest condition including: mature green trees, regenerating trees, dead red-phase trees, 
dead grey-phase trees, snags, non forest vegetation, shadows, water, and snow/ice. Based on 
these maps, we document that delayed tree mortality occurred throughout a substantial 
portion of the fires studied. Geographical variation in the magnitude and timing of delayed tree 
mortality was observed—in some cases delayed mortality completely transformed landscape 
conditions since the initial post-fire assessments, while in others it had minimal effects. Lagged 
detection of initial fire effects (e.g. girdling), primary and secondary bark beetles, and 
potentially climate all influenced the spatio-temporal patterns of delayed tree mortality that we 
documented. Forest cover composition was a key determinant of the likelihood of the 
magnitude of delayed mortality and its likely causal mechanisms. Thus, cover type may be a 
useful guide for prioritization of future post-fire monitoring efforts.  
 
 
Introduction 
 
Since the early 1980s, over one quarter of a million acres have burned west of the Continental 
Divide through forest-dominated areas of Glacier National Park (GNP). Initial aerial post-fire 
assessments of fire severity, a measure of tree mortality, and field observations indicate that 
these fires have created a mosaic of different burn severities, with substantial areas of forest 
surviving in moderate- and low-severity burn patches. Quantitative estimates of burn severity 
derived from pre- and post-fire analysis of Landsat imagery using the differenced normalized 
burn ratio (dNBR) for all fires > 400 ha in size within western GNP between 1984-2010 
corroborate this interpretation. These data show that a minority of burn area (29%) within 
western GNP have burned at high severity, killing most trees, while 38% and 34% of the total 
burn area was influenced by low- and moderate-severity fire effects, respectively. However, 
field observations and aerial assessments of tree survival in previously burned areas made 
more recently—years after the Park’s major fire events—suggest that some areas classified as 
low- or moderate-severity have experienced significantly higher mortality than expected based 
on the one year post-fire field, aerial, and remotely sensed assessments. These observations 
have raised the question of how much forest mortality may occur in burned areas after the one 
year timeframe at which most post-fire severity assessments are conducted. This question is of 
fundamental importance because mid- (i.e. post-fire management) to long-term (i.e. habitat 
management, fuels forecasting, fire modeling and suppression strategies) planning and 
management objectives that are based on one year post-fire assessments may not account for 
the changing landscape conditions that unfold following fires. If delayed post-fire mortality is 
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common, initial post-fire assessments may become quickly outdated in portions of the 
landscape. Currently, the degree, extent of and mechanisms underlying this delayed tree 
mortality in burned areas of GNP are not well understood.  
 
This project addresses these knowledge gaps by (i) developing a robust remote sensing tool 
that uses high resolution aerial imagery to track changes in forest mortality and live vegetation 
structure over time, (ii) applying the tool to a network of patches within recently burned areas 
to estimate the magnitude and spatiotemporal patterns of delayed tree mortality caused by 
recent fires in western GNP, and (iii) evaluating the potential causes of delayed tree mortality 
using a combination of remote sensing, field data and statistical modeling.  
 
Background 
 
Ecological importance and causes of delayed mortality 
Delayed tree mortality has been documented previously in a number of fires in different forest 
types within the northern U.S. Rocky Mountains (Ryan and Ammann 1994, Ryan and Ammann 
1996, McHugh and Kolb 2003, Perrakis and Agee 2006, Hood et al. 2007), but it has not been 
systematically quantified previously. As a result, the frequency, ecological importance and 
causes of delayed mortality are unknown. Much of the delayed mortality observed in previous 
fires has been attributed to bark beetles (Ryan and Ammann 1996, Santoro et al. 2001, McHugh 
et al. 2003, Hood and Bentz 2007, Davis et al. 2012), whose populations may switch from 
endemic to epidemic levels when abundant fire-weakened host trees become susceptible to 
mass attack. The timing and degree of delayed mortality documented in these studies is quite 
variable, often occurring within 1-8 years and causing anywhere from low (5-30%) to high (60-
80%) levels of post-fire tree mortality. Some of this variability is clearly contingent on the 
specific dynamics of unique bark beetle-host tree interactions. For instance, fires and 
associated increases in fire-weakened trees do not stimulate strong shifts towards epidemic 
outbreak stages in the mountain pine beetle (Dendroctonus ponderosae), the primary lethal 
bark beetle species affecting ponderosa and lodgepole pine (Safranyik & Wilson 2007). Rather, 
low level post-fire tree mortality (5-30%) in pine species has mostly been observed over short 
periods (1-3 years) as a result of western pine beetle (Dendroctonus brevicomis) or secondary 
bark beetles (e.g. Ips sp.) that tend to infest trees likely to die directly as a result of fire impacts 
(McHugh et al. 2003, Perrakis and Agee 2006, Davis et al. 2012). In contrast, epidemic 
outbreaks of Douglas-fir beetles often cause high mortality of Douglas-fir trees (30-70%) and 
can last for over four years following fires (Ryan and Ammann 1996, Hood and Bentz 2007). 
These results, however, are based on limited case studies and there is currently no robust 
theoretical or empirical framework that explains the great variability in the likelihood, timing 
and severity of post-fire bark beetle attacks that could explain delayed forest mortality in 
different forest cover types. Moreover, post-fire bark beetle epidemics cannot explain delayed 
tree mortality in a number of dominant tree species in western GNP, such as western larch or 
western hemlock, which do not experience lethal attack by bark beetles. 
 
 Alternative explanations of the cause of delayed mortality have not been thoroughly explored, 
but may include (1) climate-tree physiology-fire interactions or (2) delayed visual detection of 
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tree mortality due to fire. Delayed tree mortality could occur following fire as a result of 
interactions with pre-fire, year-of-fire, or post-fire climatic conditions that affect tree 
physiology and resilience. Recent research (Kavanagh et al. 2010, Michaletz et al. 2012) 
suggests that surface fire-induced tree death may be more due to heat impairment of xylem 
function, and ultimately to systemic hydraulic failure, rather than direct cambial damage. 
According to this hypothesis, drought in years prior to a fire may predispose trees to greater 
mortality independent of fire behavior simply because xylem function is already impaired when 
a fire occurs. Following fire, surviving trees that sustained fire-caused damage to xylem tissues 
may have impaired water relations and significantly reduced resilience to post-fire drought. 
Thus, climatic influences at multiple temporal scales may be important contributors to delayed 
tree mortality that warrant thorough exploration. 
 
Finally, apparent delayed tree mortality may result from lags between fire-caused mortality and 
the ability to visually detect tree death. For example, surface fires may leave substantial 
portions of the overstory canopy intact, yet still result in widespread canopy tree mortality as a 
result of cambial damage, partial crown scorch, or other physiological impacts to trees. In these 
cases, delayed mortality does not actually occur (i.e. tree death is actually caused directly and 
immediately by fire) but is incorrectly inferred as a result of the delayed visual detection of tree 
death. This mechanism is especially likely to occur where fire-sensitive trees are present. Fire-
sensitive trees often have thin bark, shallow root systems or roots that grow in duff layers (not 
mineral soil), and may have abundant lower crown foliage that can lead to more intense 
understory burning or torching (Peterson and Ryan 1986, Brown et al. 2004). In GNP, fire-
sensitive species such as lodgepole pine, Engelmann spruce, subalpine fir, western red cedar, 
western hemlock, birch, and aspen are widespread, so there is potential for this mechanism of 
delayed mortality to operate within GNP. Although the mechanism of apparent delayed 
mortality is relatively simple in this case, the end effect is that initial fire severity assessments 
quickly become inaccurate as tree mortality progresses beyond what was visually apparent in 
the initial post-fire years. 
 
Remote sensing methods for mapping delayed mortality 
To quantify tree mortality, it is necessary to track changes either in living or dying (or both) 
components of stand structure for several years following fire. Existing methods for assessing 
fire severity (Key and Benson 2006) and mapping tree cover changes are generally not 
adequate for this task (Kokaly et al. 2007), principally due to their dependence on the spectral 
properties of medium-resolution pixel objects from sensors such as Landsat. In these images, 
the minimum pixel size is coarse relative to the fine-scale heterogeneity of post-fire vegetation 
structures in areas burned by low-moderate severity (Larson & Churchill 2012). As a result, 
medium-resolution sensors tend to mix the spectral properties of regenerating understory 
vegetation (e.g. herbaceous layers, shrubs and post-fire tree regeneration) and residual 
overstory layers (Lefsky et al. 2002, Wulder et al. 2012). This is problematic because understory 
regeneration can recover quickly after wildfire (Chen et al. 2011, Romme et al. 2016) and may 
dominate or saturate spectral indices of vegetation recovery (Lefsky et al. 2002) even where 
tree recovery or delayed overstory tree mortality continue to impact residual overstory 
structure. High-resolution imagery (i.e. ≤ 15m2 pixels) is more appropriate for the 
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characterization of vegetation at the tree- to stand-scale (Wulder et al. 2004a, Wulder et al. 
2004b) and it has been used to characterize overstory and understory vegetation components 
more effectively than moderate-resolution spectral imagery (van Wagtendonk et al. 2004, 
Kokaly et al. 2007). Although there is a rich archive of high-resolution aerial imagery (see 
Methods) for GNP that is available from multiple sources, this resource has not been leveraged 
to develop methods for characterizing post-fire changes in forest structure or to evaluate the 
ecological ramifications of such changes.   
 
Methods 
Study areas & research design 
Significant fire years in the park have occurred in 1988, 1999, 2001, and 2003, with most of the 
area burned occurring in 2003. Initial field visits suggested that insufficient evidence remained 
in areas burned in 1988, preventing accurate characterization of fire behavior, post-fire forest 
structures, and tree mortality agents. To account for these limitations only fire years from 
1999-2003 were selected for this study. We further restricted the number of study fires by 
eliminating those that burned predominantly in high-severity fire regime forest zones, such as 
subalpine forests, where fire-sensitive species (e.g. spruce, fir) are common, trees that survive 
fire are rare, and delayed tree mortality is therefore unlikely to be of great ecological 
importance. Fires were included if they burned predominantly in cover types dominated by 
ponderosa pine, western larch, Douglas-fir, lodgepole pine, cedar-hemlock or mixed conifer-
deciduous cover types. These selection criteria resulted in a final set of five large fires in three 
major fire years (Fig. 1, Table 1), including: Anaconda Fire (1999), Moose Fire (2001), Roberts 
Fire (2003), Harrison (2003), and Center Mountain (2003). For areas burned in these years, a 
time series of aerial imagery was compiled to characterize the spatial patterns of delayed tree 
mortality and field data were collected to evaluate the causes of delayed mortality. 
 
Remote sensing research design and image analysis techniques 
Imagery available for each of these fires years included National Agriculture Imagery Program 
(NAIP) imagery from 2005, 2009, 2011, and 2013, providing a 2-14 year time series of post-fire 
imagery. The NAIP imagery provides high resolution (1m2), orthorectified, color imagery with 
red, green and blue bands (available for years 2005-2013) and infrared bands (available only for 
2009-2013). We used this time series of imagery to (1) train and validate a predictive machine 
learning model of vegetation cover type and (2) use the model to map changes in vegetation 
cover types over the time series for a statistically valid portion of each of the five major study 
fires. For the first step, we manually selected 50 pixels from each of nine cover types for each 
year of the time series, for a total of 1,800 pixels (50 pixels/cover type * 9 cover types * 4 
years). The nine cover types that we selected were: green mature trees (MT), post-fire 
regenerating trees (R), recently dead red-needled trees (RT), dead grey trees (GT) that have 
recently shed their needles, non forest vegetation comprised by shrub or herbaceous life forms 
(NF), long dead snags with little to no fine fuels (S), shadows (SH), snow (SN), and water (W). 
MT are the primary focus of this study, as they comprise trees that survived fire and are 
susceptible to delayed mortality. R and NF vegetation has relatively similar spectral 
characteristics to MT and represents the dominant understory vegetation that is most likely to 
cause classification errors of MT trees in post-fire environments, so it was important to assess 
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the ability to model overstory and understory vegetation separately.  RT and GT are dead trees 
that are at different times since death or may capture unique species-specific spectral 
signatures associated with dead and dying trees. RT have died recently, likely within the last 1-3 
years, whereas GT may either be recently killed trees (for species that lack a red-needle stage) 
or older dead trees, 3-15 years, that have shed red needles but still have fine fuels, e.g. small 
branch and twigs. S are trees that have been dead for longer periods of time, >10-15 years, 
have few fine canopy fuels remaining and are often sun-bleached. SH are widespread in 
forested environments and represent areas with insufficient spectral information for successful 
classification. SN and W are widespread features whose area may change interannually, 
depending on climatic conditions and the timing of imagery acquisition. Thus, it is useful to be 
able to mask these temporally varying features from analysis.  
 
For each of the 1800 pixels, we extracted a series of raw and derived spectral features. Raw 
spectral properties included the red, green, blue and near-infrared bands. From these, we 
calculated two spectral ratio indices, the red-green index (RGI) and the blue-red index (BRI), 
calculated as: 
 

(Eq. 1): RGI = 
     

       
   (Eq. 2): BRI = 

     

      
 

 
where DN is the digital number for the subscripted bandwidth. These indices have been used in 
previous research (Coops et al. 2006, Meddens et al. 2011, Gartner et al. 2015, Hart and Veblen 
2015) to effectively distinguish green trees and other living vegetation from dead trees in the 
red and grey phases. Because spectral properties alone may be insufficient to distinguish 
between some cover types (e.g. green overstory trees and live understory vegetation), we also 
calculated a series of textural features to describe the characteristic spectral variation around 
each pixel from the different cover type classes. Textural features can greatly improve 
classification results (Coops and Culvenor 2000, Franklin et al. 2000, Moskal and Jakubauskas 
2013) where spectral features between cover type classes are similar. To calculate the texture 
features of each image, we first calculated the grey level co-occurrence matrix (GLCM) using a 5 
x 5 pixel window size. This procedure (Haralick and Shanmugam 1973, Hall-Beyer 2017) 
calculates the number of occurrences of unique pairs of pixels in quantized grey tone levels 
within the specified spatial window. A series of textural indices are then calculated for the 
central pixel of the analysis window based on its GLCM. We used the R package glcm to 
calculate the GLCM and 8 textural indices, including: mean GLCM, GLCM variance, 
homogeneity, contrast, entropy, angular second moment and correlation. In total, each image 
pixel was associated with 14 features (4 raw spectral features, 2 derived spectral features, and 
8 textural features). 
 
Model construction 
The 1,800 manually selected pixels with known cover types were split into training (70% of 
pixels) and validation datasets (30% of pixels) and used to build a Random Forest model using 
cover type as the response variable and the 14 remotely-sensed pixel features as predictors. 
Random Forests is a machine learning ensemble algorithm that is a robust predictor even 
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where high dimension, non linear relationships exist between the response and predictor 
variables (Breiman 2001, Cutler et al. 2007). We used the Caret package (Kuhn 2008) in R to 
tune the Random Forest parameters and to perform a 10-fold repeated cross-validation 
procedure to assess model performance. Repeated cross-validation is a robust method of 
evaluating the performance of models (Kuhn and Johnson 2013) built using the training dataset 
and assessed using the independent validation dataset. We repeated the cross-validation 
procedure 10 times to stabilize the performance measures. We used the average accuracy and 
Kappa statistic values from all 10 repeated cross-validations as the primary model performance 
measures. We used variable importance rankings to evaluate the relative importance of 
different spectral and textural feature predictors of cover types. 
 
Mapping the magnitude and spatial patterns of delayed mortality  
To evaluate the spatio-temporal patterns of delayed mortality across the five study fires, we 
applied the Random Forest model predict changes in cover types for a subset of spatially 
distributed patches in each of the five fires that experienced low-moderate fire severity. We 
used dNBR maps (Key & Benson 2006) from the Monitoring Trends in Burn Severity program to 
exclude burn areas that were influenced by high severity fire. Areas affected by high severity 
were excluded because these areas had little tree survival and therefore could not experience 
substantial delayed mortality. We then used the GNP vegetation layer, derived from visual 
photointerpretation of color infrared imagery from the late 1990s (prior to our study fires) as 
the basis for selecting patches from the remaining portions of each fire in this study. The GNP 
vegetation layer groups areas with similar species composition and structural features (e.g. 
canopy cover), making them an appropriate unit for comparison of the ecological response to 
fire and patterns of delayed mortality between unique forest types. Patch forest types in our 
study fires from the GNP vegetation data layer include: western larch, Douglas-fir, ponderosa 
pine woodland, lodgepole pine, cedar-hemlock, and spruce-fir. We selected 40 spatially 
distributed patches within each of the five fires and in all forest types and we modeled changes 
in cover types within each study patch over the 2005-2013 period. Based on the observed cover 
type changes, delayed mortality was calculated as the percent of all non-shadowed pixels (e.g. 
the percent of patch area with spectral information) consisting of green mature trees between 
each time interval (e.g. 2005 to 2009) and for the overall period (2005-2013). To identify trends 
in other cover types and evaluate the utility of our model data products for tracking ecological 
change, fuel structures and habitat characteristics, we also explored changes in other cover 
types over time. 
 
Causes of delayed mortality 
We evaluated climate at 3 time steps (pre-fire, year-of-fire, and one to five years post-fire) and 
beetle outbreaks as the principal potential causes of delayed mortality other than delayed 
visual detection.  
 
We used observed monthly climate data from Division 1 (northwestern MT) of the National 
Climate Data Center (NOAA) to examine climatic conditions that might influence delayed 
mortality for the fire years studied. We used the Palmer’s Drought Severity Index, calculated for 
the April-September months for each year, to represent regional drought severity because the 
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PDSI is an integrated measure of temperature and precipitation that is closely linked to plant 
physiology (Stephenson 1990). To represent both the average condition and capture short (i.e. 
individual months) but extreme drought events, we determined the mean and minimum 
growing season PDSI values for each of the three time steps for each fire year. In addition to the 
one year post-fire drought calculations, we also calculated post-fire drought indices over a five 
year period to account for longer term chronic drought periods.  
 
To determine the extent and degree of beetle outbreak following fires, we conducted detailed 
field surveys in 2015 in a subset of the patches where delayed mortality was assessed via 
remote sensing. The purpose of these field surveys was to quantify species-specific tree 
mortality patterns, to document the presence of bark beetle species and measure the degree of 
beetle-caused mortality, to measure fire effects and fire behavior, and to document post-fire 
forest structures. Field plots were relatively evenly distributed between fire events and across 
all of the forest cover types found in our study fires. In order to validate our remote sensing 
interpretations over the full range of forest conditions, to have a set of control plots that were 
unaffected by fire (and potentially delayed mortality), and to evaluate the degree and causes of 
tree mortality in unburned stands, we also sampled plots in set of unburned patches. We 
sampled 2-4 plots per sample patch, spaced along a 420m randomly-generated sample grid, to 
ensure that a representative sample was collected from each patch. Each plot consisted of a 
15m radius circular area placed around the random grid point. From all trees above 4 cm DBH in 
each plot, we collected the following information: diameter at breast height (DBH), species, 
tree status (live or dead), tree canopy position (suppressed, intermediate, dominant, or 
emergent), beetle species presence as determined by examination of sub-cortical larval 
galleries and entrance/exit holes, the average percent of the bole affected by beetle galleries 
between ground level and DBH, the mortality agent for dead trees, the maximum char height 
and the maximum percent of the bole circumference that was charred.  We surveyed trees for 
both primary (lethal) and secondary (generally non lethal) beetle species that could affect any 
of the major tree species in our study area (Table 2). The mortality agent and timing of death 
were determined based on the condition of each tree and evidence of bark beetle attack (Table 
3). If a tree showed evidence of attack by primary bark beetles, we assigned bark beetles as the 
cause of mortality. If only secondary bark beetle species were present or no evidence of any 
beetle attack was found, we assumed that fire or an unknown factor (e.g. climate, pathogens) 
was the ultimate cause of tree mortality.  
 
We calculate the plot-scale beetle attack severity as the percent of the plot basal area of trees 
killed by primary and secondary bark beetles relative to the total number of trees alive 
following the fire.  To evaluate tree species-specific rates of mortality due bark beetles, we 
calculate the percentage of each tree species killed by primary and secondary beetles. 
 
Because most of the burn area in western GNP examined in this study were from two fire 
seasons, the 2001 and 2003 fire years, a robust statistical analysis of the causes of delayed 
mortality was not possible. Instead, we examine climate and field data to provide the most 
likely explanation for the patterns of observed delayed mortality. 
 



9 
 

Results 
 
Remote sensing of cover class features and model performance 
Spectral characteristics of the nine cover types were similar between images taken in the same 
acquisition year (data not shown) and although they were generally similar for each cover type 
between acquisition years, some marginal spectral differences between cover types were 
apparent (Fig. 2). When grouping pixels from all years together, clear differences in the spectral 
(Fig. 3) and textural (Fig. 4) features of each cover type were apparent. The spectral 
characteristics of green mature tree were most similar to regenerating trees, but were 
distinguishable using multiple texture features. The Random Forest models of cover types 
showed relatively high performance (Table 4a, Accuracy= 72-90%, Kappa=0.7-0.89). Model 
performance varied when constructed for each year individually, but an aggregate model built 
from all years performed as well as two of the individual year models. Based on these results, 
we used the aggregate model from all years for cover type modeling. The accuracy of specific 
cover type classes varied between models for different years, but some consistent trends were 
apparent (Table 4a). Red trees, grey trees, snags, non forest, shadows, snow, and water all had 
consistently high accuracies (mostly above 85%). Green mature and regenerating trees had 
more variable and slightly lower accuracies (mostly > 75%). Comparison of predicted vs. actual 
cover type (Table 4b) show a number of notable patterns. The models generally over-predicted 
the cover of mature green trees, mostly due to misclassification errors between mature and 
regenerating trees. Misclassifications between red and grey trees accounted for the majority of 
errors in these cover types, although grey trees were also occasionally misclassified as snags or 
green trees. Non forest was most frequently misclassified as regenerating forest.  
 
Figure 6 shows the modeled cover types for an entire patch and for a closeup section of the 
same patch over the period 2005-2013. Similar patterns of delayed mortality are evident in 
comparisons of the aerial photographs and the modeled cover type maps. This patch was 
heavily forested, with high canopy cover of green trees, immediately following the fire. By 
2005, significant tree mortality (red- and grey-stage trees) and some type conversion to non 
forest was apparent. Red trees had disappeared from the patch by 2009 and it was dominated 
by a mixture of mature green canopy cover at levels similar to those in 2005 and grey trees. By 
2011, a notable proportion of the patch was in a non forest state and the cover of red trees 
increased again, although not to the same levels as 2005. Similar canopy cover values in 2009 
and 2011, despite the increase in non forest area, may be in part a result of the higher number 
of shaded pixels in 2005 and 2009 compared with 2011. By 2013, non forest area had expanded 
and was reflected in a marked decrease in canopy cover. Few red trees were present in 2013, 
suggesting that continued mortality in this patch had stabilized. Patterns in this patch are not 
necessarily reflective of the larger patterns within GNP. We present them here to demonstrate 
the approach used to quantify delayed mortality across all patches in the study area, to 
illustrate the key patterns that can be detected with the remote sensing and machine learning 
modeling approach developed here, and to highlight the dramatic changes caused by delayed 
mortality in some portions of GNP. 
 
Landscape patterns of delayed mortality 
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The degree and distribution of delayed tree mortality in GNP was highly variable and likely 
driven by multiple factors. From 2005-2013, there was a trend towards decreasing canopy 
cover across the western portion of the park that was strongest between 2005 and 2011. On 
average, the median canopy cover of patches affected by wildfire declined from 74% in 2005 to 
62% in 2011, which represents a significant but not dramatic effect of delayed mortality overall. 
However, there was substantial variation around the average trends (Fig. 7) that is evidence of 
dramatic declines in canopy cover due to delayed mortality in portions of the park, even in 
areas that experienced very low tree mortality directly by fire (e.g. Fig. 6). Some of the 
variability in the degree of delayed mortality is related to the dominant species composition of 
different patches. While delayed mortality was observed in all forest types to some degree (Fig. 
7b-g), certain forest types were more susceptible to delayed mortality than others. In 
particular, ponderosa pine, Douglas-fir, and lodgepole pine forest types experienced notable 
delayed mortality, whereas western larch, spruce-fir and cedar-hemlock stands had mild or no 
no trends at all. Interestingly, a trend that was apparent in western GNP overall and several 
individual forest types, in particular, was a slight increase in canopy cover between the 2011-
2013 period. This could be partially due to radiometric differences in the imagery acquired 
between years that affected model performance between years or it could reflect a real 
ecological trend. Ecologically, this trend could be explained by recovery of leaf area by fire-
affected trees, especially those that were heavily scorched by fire, canopy expansion in 
surviving trees due to reduced competition to light, or epicormic sprouting (Hanson and North 
2006). Significant post-fire recovery of trees heavily damaged by fire have been observed in 
field studies of similar forest types in the region (Leirfallom and Keane 2011) and both western 
larch and Douglas-fir have the potential for epicormic sprouting following fire (Schmidt et al. 
1976, Bryan and Lanner 1981).  Both of these explanations are consistent with the much 
stronger positive trends in canopy cover over the 2011-2013 period in ponderosa pine-Douglas 
fir and western larch patches (Fig. 7b, d) compared to other cover types. 
 
The declines in canopy cover that were observed in burned stands were not apparent over the 
same time period in adjacent unburned patches (Fig. 8). In unburned patches, canopy cover 
remained relatively constant, with only small variations, and this effect was consistent across all 
vegetation types. These patterns both confirm the quality of our remote sensing approach and 
highlight that delayed mortality is a cascading ecological process triggered by fire. Some of the 
variation evident in these stands may represent low levels of bark beetle-caused mortality, 
other pathogenic or climate-driven marginal losses in canopy cover, or relictual effects of our 
analysis that resulted from image quality differences between years (i.e. the extent of shadows) 
or model errors.  
 
The magnitude and timing of delayed mortality varied between the five fires studied (Fig. 9). 
Interestingly, delayed mortality was detected in the 1999 Anaconda and 2001 Moose Fires, 
although to a lesser degree than in most of the 2003 fires, during 2009 and 2011, indicating 
that delayed mortality can occur for over 10 years after fire. The most severe delayed mortality 
occurred in the Center Mountain and Harrison Fires during 2011-13, resulting in decreases from 
median live tree canopy cover values of ~60% to < 40%.  
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Field plot observations of mortality agents 
In total, we surveyed 84 burned plots, primarily in patches burned by low severity fire, and 34 
unburned plots. In total, we determined the condition and causes of mortality in 7,490 trees 
(Table 1, Table 5, Table 6). Of the 84 burned plots, surveys in 51 plots (“Full” plots) included full 
surveys of post-fire forest structure, tree condition and mortality agents while 33 plots 
(“Structure” plots) only included surveys of post-fire forest structure. Most unburned plots 
showed very low levels of beetle attack, mostly by primary bark beetle species that affected < 
10% of plot basal area (Table 5). Many burned plots, on the other hand, showed no evidence of 
beetle attack. However, those that did generally experienced much higher beetle attack 
severity (up to 35% of plot basal area). The percentage of plots attacked and the severity of 
post-fire bark beetle attack varied by forest cover composition. Primary bark beetle attack was 
most severe in ponderosa pine, Douglas-fir and spruce-fir forest types and was lowest for 
lodgepole pine and cedar-hemlock forests. Secondary beetles (mostly Ips pini, Pseudohylesinus 
nebulosus, and Scolytus unispinosus) were most abundant in ponderosa pine, Douglas-fir and 
lodgepole pine forests. Most trees in burned plots were killed by fire (32-94%) and few (< 1%) 
had been killed by bark beetles prior to fire (Table 6). The most severe post-fire tree mortality 
caused by primary beetles was observed for Douglas-fir (29%) and Engelmann spruce (58%) 
trees and was caused by the Douglas-fir (Dendroctonus pseudotsugae) and spruce 
(Dendroctonus rufipennis) bark beetles. Post-fire secondary bark beetle attacks were most 
severe for true firs (63-79%), pine species (26%-41%), and Douglas-fir (20%).  
 
Causes of delayed mortality 
Although the largest fire year in GNP, the 2003 fire year, was characterized by a period of 
significant drought, both the 2001 and 1999 fire years had more significant drought events 
either preceding or following them (Table 7a). For the 1999-2001 fires, our time series from 
2005-2013 begins 4-6 years post-fire, a time when delayed mortality may be at its highest. 
Unfortunately, we cannot quantify delayed mortality in the 1999 and 2001 fires during these 
critical years using our time series and we cannot therefore directly evaluate the influences of 
pre- and post-fire climate on delayed mortality in these fires.  
 
For the 2003 fires, the most dramatic declines in canopy cover resulting from delayed mortality 
in our time series occurred during 2011 or 2013, depending on the fire (Fig. c-e). This 
represents a range of 8-10 years post-fire over which delayed mortality peaked. Climate data 
show that atmospheric water deficit during the year preceding the 2003 fire and for five years 
post-fire (Table 7a) was generally quite low. The most significant drought events following 2003 
were in 2007 and to a lesser extent in 2009. Therefore, the years of peak delayed mortality for 
the 2003 fires do not coincide directly with climatic conditions that would augment 
physiological tree mortality due to water stress. However, lagged effects (Bigler et al 2007), 
such as bark beetle attack, can be triggered by drought, leading to widespread tree mortality 
several years after a drought event (Chapman et al. 2012).  
 
Although we do not quantify delayed mortality in years 1-2 post-fire for the 2003 fire, visual 
comparisons of the 2003 burn area in fall of 2003, after the fire had subsided, with the 2005 
NAIP imagery shows that significant loss of green canopy cover had already occurred in some 
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areas by 2005 (Figs. 1, 6). This pattern of significant delayed mortality most apparent in the 
Middle Fork Complex fires (Center Mountain and Harrison Fires) and southwestern portions of 
the Robert fire, where forests were heavily dominated by even-aged lodgepole pine forests 
regenerating mostly after 2 major fire years in 1910 and 1929 (Barrett 1986, Naficy 2017). Not 
only were climatic conditions relatively mild following the 2003 fires, but we also observed very 
low levels of primary beetle attack in lodgepole pine trees within these forests. The most likely 
explanation of the extensive delayed mortality in these stands that was apparent in 2005 is that 
relatively low intensity surface fire behavior in 2003 left tree canopies largely intact and led to 
the classification of these stands in the dNBR analysis as low severity. However, fire intensity 
appears to have been sufficient to effectively girdle these thin-barked, fire-sensitive trees and 
result in tree mortality that began immediately following the fire and was fairly widespread 
already in 2005. We also documented very high levels of secondary beetle attack by Ips pini in 
many lodgepole pine trees in the Roberts, Center Mountain and Harrison fires that may have 
compounded tree mortality in initial or subsequent years. For the 2003 fires, it appears that 
two pulses of delayed mortality occurred, one immediately following the fire during 2004-2005 
and another during the 2011-2013 period. It is likely that the first pulse of delayed mortatliy 
was at least partially caused by tree girdling effects of the fire directly, although secondary bark 
beetles may also have contributed to this event. However, during the second pulse of delayed 
mortality that occurred 8-10 years post-fire, girdling is an unlikely explanation. It is possible that 
drought conditions in 2007 or 2009 contributed to outbreaks of Ips pini that caused the second 
wave of delayed mortality observed in our remote sensing analysis. Unfortunately, because no 
samples from beetle-infested trees were collected in our field samples, we cannot address the 
timing of secondary bark beetles. 
 
Compared to these patterns in lodgepole pine-dominated forest, delayed mortality was most 
apparent in Douglas-fir and mixed-conifer ponderosa pine/Douglas-fir cover types. The cause of 
much of this mortality was clearly a result of widespread, moderate-severity tree mortality by 
the Douglas-fir bark beetle. This is consistent with field surveys of Douglas-fir beetle mortality 
in the Moose fire of 2001 (Hood & Bentz 2007), which showed ongoing moderate-severity 
beetle attack (~ 60% of stand density) in Douglas-fir trees for up to four years. Whereas the 
attacks by Ips pini in lodgepole pine were spatially biased towards the southern portion of GNP, 
the Douglas-fir bark beetle was observed in stands with susceptible hosts throughout GNP. The 
western pine beetle caused high ponderosa pine mortality in some stands but its distribution 
was very patchy. 
 
Discussion 
The diverse patterns and causes of delayed mortality that we document here highlight the 
cascading processes that can be triggered by fire. Delayed mortality significantly altered 
landscape-scale vegetation conditions in GNP after initial assessments based on dNBR were 
made, although there was significant geographic variability in these patterns. Although we 
could not effectively address the role that climate-induced tree stress may play in driving 
delayed mortality, we have documented the strong influence of tree species composition on 
the potential trends that could be expected following fire. Stands of western larch, and cedar-
hemlock forest, were much less likely to experience delayed mortality than ponderosa pine, 
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Douglas-fir or lodgepole pine. Not only does the susceptibility of delayed mortality depend on 
forest composition, but so does the mechanism. In ponderosa pine/Douglas-fir and pure 
Douglas-fir stands, primary bark beetles were a major source of delayed mortality. However, in 
lodgepole pine stands primary bark beetles were rarely present and caused little of the 
observed delayed mortality. Rather, delayed mortality was likely a result of fire effects that 
either girdled trees at the time of fire or made them susceptible to attack by secondary beetles 
or other external mortality agents.   
 
We show that delayed mortality is an ecologically important process in GNP. If projected 
climate-driven increases in wildfire frequency and area burned are realized(Barbero et al. 
2015), it that can be expected to continue to shape the landscape of GNP. A striking finding of 
this research is that the process of delayed mortality can occur for many years following fire, up 
to almost a decade. This highlights that post-fire environments are highly dynamic and that 
post-fire monitoring of landscape condition is necessary beyond the one-year initial 
assessments that are most common. Since this study began, GNP has experienced multiple 
significant fire years. The high variability in the timing and geographic patterns of delayed 
mortality require a tool that can be used to understand evolving landscape vegetation 
conditions and patterns. We have developed a remote sensing work flow and modeling 
framework that can be built upon to monitor fire-caused tree mortality and residual forest 
structural characteristics using the widely available and recurrent imagery acquisitions through 
NAIP. The tool can be updated to incorporate imagery from new years to continue tracking 
landscape conditions in both old and new fires. Thus, this tool offers a cost-effective monitoring 
tool that is well-suited to produce high quality maps for a suite of applications, including: fuel 
mapping, wildlife habitat maps, post-fire recovery rates, bark beetle outbreaks in unburned 
forests, and detection of climate-induced forest dieback.  
 
Limitations 
There are some limitation to our approach. Key among these are limitations that arise from the 
NAIP imagery products themselves. NAIP imagery is provided as an orthorectified product with 
georegistration errors of several pixels or approximately 5-10 m (NAIP 2017), depending on the 
imagery provider for each year. This degree of geographic error makes it difficult to track 
individual image objects (i.e. trees) across the time series as part of an automated workflow. 
For this reason, we used patches that are many times larger than the NAIP georegistration 
errors as our fundamental study units. The small georegistration errors, relative to the patch 
sizes used, is unlikely to have biased cover type distributions for each time step. However, 
higher quality semi-automated orthorectification is possible for a landscape the size of GNP and 
would allow much improved temporal tracking of specific features in the landscape.  
 
Our model tended to overpredict green canopy vegetation and had the highest error rates for 
distinguishing between mature green and regenerating green trees. The incorporation of image 
texture into the classification procedure was critical to the Random Forest models ability to 
distinguish between these, and other, features that are difficult to separate based only on 
spectral features (Fig. 5). However, textural features are scale-dependent indices (Hall-Beyer 
2017) and can be incorporated into pixel-based (as done here) or object-based classification 
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systems (Moskal & Jakubauskas 2013). Future work to address scale impacts on texture indices 
or incorporate them into object-based classification procedures are warranted and could 
improve our results significantly. 
 
Conclusions 
Fires create abrupt change in landscape conditions and functions that can be measured in initial 
post-fire assessments (Key & Benson 2006). However, it also initiates cascading ecological 
processes and change that may not be linearly related to initial post-fire conditions and 
therefore require consistent monitoring. To address this need, we developed a remote sensing 
monitoring tool based on 1 m2 color imagery from NAIP that produces time series maps of tree- 
to stand-level forest condition and cover type based on spectral and textural pixel features. 
Because NAIP is a federal program that is consistently updated every 3-4 years, our toolset 
could be expanded to include other portions of GNP and used as a regular monitoring and 
inventory tool of landscape condition within GNP.  
 
In this study, we used the remote sensing toolset to document that delayed post-fire tree 
mortality is an important cascading process that shapes burned areas for up to almost a decade 
following fire. We found strong geographic variability in the magnitude and timing of delayed 
mortality—in some cases delayed mortality completely transformed landscape conditions since 
the initial post-fire assessments, while in others it had minimal effects. Lagged detection of 
initial fire effects (e.g. girdling), primary and secondary bark beetles, and potentially climate all 
influenced the spatio-temporal patterns of delayed tree mortality that we documented. Forest 
cover composition was a key determinant of the likelihood of delayed mortality and its likely 
causal mechanisms. Thus, cover type may be a useful guide for prioritization of future post-fire 
monitoring efforts.  
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Figure 1. Figure depicting the study area, remote sensing and field sampling design (upper 

panels) and an example of the patterns of delayed mortality in the Center Mountain-Harrison 

fires of 2003 over the 2003-2013 period. The upper panel shows the perimeters for fires 

examined in this research (red polygons), patches where delayed mortality was mapped using 

the time series of aerial photographs (dark grey polygons), and field plots (black triangles) 

where the causes of tree mortality were assessed. The closeup of a portion of the Center 

Mountain-Harrison fires of 2003 in the lower panels shows the spatial patterns of burn severity 

derived from dNBR analysis, a color aerial image taken immediately after the fire in September 

of 2003, and color images from the NAIP program for 2005, 2009, 2011 and 2013. The scale bar 

is the same for all images in the time series. 

 

  



19 
 

 
Figure 2. Summary of the spectral characteristics of cover types grouped by year of imagery. 
Note that 2005 imagery did not include measurements in the NIR. 
 

a)  
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Figure 3. Summary of the spectral characteristics of all cover types aggregated across years: a) 
red band, b) green band, c) blue band, d) near infrared, e) red-green index, f) blue-red index. 
Cover types are abbreviated as: MT=mature green trees, R=regenerating post-fire green trees, 
GT=grey trees, RT=red trees, S=snags, NF=non forest, SH=shadows, SN=snow, and W=water. 
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Figure 4. Summary of the textural characteristics calculated from the grey level co-occurrence 
matrices (GLCMs) using a 5-pixel kernel for all cover types aggregated across years: a) mean 
GLCM, b) GLCM entropy, c) GLCM variance, d) GLCM homogeneity, e) GLCM angular second 
moment, f) GLCM correlation, g) GLCM dissimilarity, and h) GLCM contrast. Cover types are 
abbreviated as: MT=mature green trees, R=regenerating post-fire green trees, GT=grey trees, 
RT=red trees, S=snags, NF=non forest, SH=shadows, SN=snow, and W=water. 
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Figure 5. Example classification tree showing the relationships between the 14 remotely sensed 
predictors and the classified pixel cover type.  
 

 
 
 
  



23 
 

Figure 6. Images of an example patch from the 2003 Harrison Fire where cover types were 
modeled from 2005-2013, showing the modeled cover types for the entire patch with 
background RGB image for each year (1st  row from the top), a closeup of the RGB image 
showing finer-scale vegetation structure for each year (2nd row from the top), and classified 
cover types for the closeup time series (3rd row).The bottom row shows (from left to right): a 
closeup area from a 2003 aerial image taken at the end of the fire season, dNBR for the closeup 
area, and dNBR for the whole patch. Although the 2003 image quality is poor, note the 
extensive green canopy cover that characterized this patch following fire. To highlight the 
principal metric used to represent the degree of delayed mortality within each patch, the 
percent of non-shadowed pixels comprised by mature green trees for each time step is 
displayed in the 1st row. 
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Figure 7. Notched boxplots showing the distribution of modeled mature green tree canopy 

cover over the 2005-2013 period for burned patches in a) all forest types pooled, b) ponderosa 

pine, c) Douglas-fir, d) western larch, e) lodgepole pine, f) spruce-fir, and g) cedar-hemlock 

forest types. Note that forest types are defined by the dominant cover species, but most 

patches are comprised by a mix of tree species. 
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Figure 8. Notched boxplots showing the distribution of changes in modeled mature green tree 

canopy cover over the 2005-2013 period for unburned patches in a) all forest types pooled, b) 

ponderosa pine, c) Douglas-fir, d) western larch, e) lodgepole pine, f) spruce-fir, and g) cedar-

hemlock forest types. Note that forest types are defined by the dominant cover species, but 

most patches are comprised by a mix of tree species. Dramatic changes in canopy cover as a 

result of delayed post-fire mortality would not be expected in these patches. Thus, they 

represent a type of control for comparison with burned patches.  
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Figure 9. Notched boxplots showing the distribution of changes in modeled mature green tree 

canopy cover over the 2005-2013 period for burned patches within each individual fire, 

including: a) Anaconda Fire of 1999, b) Moose Fire of 2001, c) Roberts Fire of 2003, d) Center 

Mountain Fire of 2003, and e) Harrison Fire of 2003. 
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Table 1. Summary of the characteristics of fires sampled in this study and the field data 
collected in relation to fire characteristics. 
 

 
 
 
 
  

Fire Name Fire year

Fire Size 

(acres) Unburned Low Moderate High Unburned Low Moderate Unburned Low Moderate

Anaconda 1999 11,356 20 39 34 7 0 8 0 0 15 0

Moose 2001 72,666 20 37 31 11 0 5 2 0 18 4

Robert 2003 54,500 20 31 37 12 0 5 3 0 13 6

Harrison 2003 6,653 29 21 39 11 0 6 2 0 9 4

Center Mountain 2003 5,666 44 17 32 6 0 7 0 0 13 0

Unburned NA NA NA NA NA NA 17 0 0 34 0 0

Total 17 31 7 34 68 14

# patches sampled # plots sampledFire severity (% of area)
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Table 2. Table listing the beetle species observed in field surveys of trees in burned and 
unburned plots. For each beetle species, its principal tree host species and its potential lethality 
(primary vs. secondary) are also listed. Primary beetles are those that are generally capable of 
killing live trees, whereas secondary beetles generally only kill declining trees. 

 

Bark beetle species Host tree species Beetle type 
Mountain pine beetle  
(Dendroctonus ponderosae) 

PIPO, PICO, PIMO, PIFL Primary 

Western pine beetle  
(Dendroctonus brevicomis) 

PIPO Primary 

Douglas-fir bark beetle  
(Dendroctonus pseudotsugae) 

PSME Primary 

Spruce beetle  
(Dendroctonus rufipennis) 

PIEN Primary 

Western Balsam Bark Beetle  
(Dryocoetes confusus) 

ABLA Primary 

Cedar bark beetles  
(Phloeosinus spp.) 

THPL Primary 

Pine engraver 
(Ips pini) 
 

PIPO, PICO, PIMO, PIFL Secondary 

Emarginate Ips 
(Ips emarginatus) 
 

PIPO, PICO, PIMO, PIFL Secondary 

Red Turpentine 
(Dendroctonus valens) 
 

PIPO, PICO Secondary 

Douglas-fir pole beetle 
(Pseudohylesinus nebulosus) 
 

PSME Secondary 

Douglas-fir engraver 
(Scolytus unispinosus) 

PSME Secondary 

Fir engraver  
(Scolytus ventralis) 

ABGR, ABLA Secondary 
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Table 3. Criteria used to define tree condition, determine the timing of tree death and assign 
mortality agents to dead trees in the field surveys. 
 

Mortality 
agent code 

Mortality agent description Evidence/criteria 

PFD Pre-fire dead tree, not 
beetle attacked 

 Highly decayed 

 Few branches, little bark 

 No evidence of bark beetle 

 Charred 

PFB Pre-fire dead tree, attacked 
by beetles 

 Fully or partially excavated beetle galleries present 

 Boring dust or pitch tubes likely not present or are 
partially burned/consumed by fire 

 Exit holes evident on tree bole 

 Exit holes may show char on inner surface 

 Galleries may show char or fire damage where 
partially exposed at time of burn 

POB Tree survived fire, killed 
post-fire by beetles 

 Fully or partially excavated beetle galleries present 

 Boring dust or pitch tubes may be present 

 Exit holes evident on tree bole 

 Exit holes show no evidence of being burned 

BBU Tree killed by bark beetles; 
timing unknown 

 Fully or partially excavated beetle galleries present 

 Exit holes evident on tree bole 

 Evidence of beetle attack timing too limited to tell 
with certainty 

FKT Fire-killed tree  Recently dead 

 Char on bark, branches, or roots 

 Many branches and bark still present on tree 

 No evidence of bark beetle 
LIVE Live tree, not attacked by 

beetles 
 Green needles present 

 Live cambium 

UNK Dead tree, mortality agent 
unknown 

 Clearly not pre-fire snag 

 No evidence of bark beetle or fire 
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Table 4. (a) Summary table of the performance statistics and (b) a confusion matrix for the 
Random Forest models used to classify vegetation cover type. Model performance statistics are 
provided for models run using all years combined and for each year individually. Accuracy 
values are provided for the overall model performance and for each vegetation cover type 
individually. In (b) the confusion matrix was derived from the model for all years combined. 
 
(a) 

 
 
(b) 
 

  

Accuracy Kappa Mature trees Regeneration Grey trees Red trees Snags Non forest Shadows Snow Water

all years combined 78.36 0.76 84.46 79.57 86.13 90.93 85.5 84.56 91.64 98.25 89.88

2005 72.93 0.7 81.21 74.12 83.7 98.73 89.15 65.81 90.34 92.02 88.73

2009 90.23 0.89 85.4 92.91 96.24 99.58 92.91 85.82 98.31 1 1

2011 78.95 0.76 77.03 94.97 89.94 86.67 88.3 96.24 96.24 98.84 92.49

2013 82.84 0.81 79.97 67.9 92.91 100 89.58 91.65 99.58 96.25 95.83

Overall Class specific accuracy

Reference

Prediction Mature trees Regeneration Red trees Grey trees Snags Non forest Shadows Snow Water

Mature trees 40 17 0 3 4 3 1 0 2

Regeneration 12 37 0 4 0 14 1 0 1

Red trees 0 2 48 6 2 2 0 0 0

Grey trees 3 1 8 40 1 3 0 2 0

Snags 3 0 3 5 50 4 0 5 0

Non forest 1 1 1 1 2 33 0 0 0

Shadows 1 0 0 1 0 0 51 0 9

Snow 0 0 0 0 1 1 0 50 0

Water 0 2 0 0 0 0 6 0 48
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Table 5. Summary of plot-scale field data and beetle attack observations stratified by forest cover type for both burned and 
unburned plots. Post-fire beetle severity is presented as the percentage of all available trees that survived fire (e.g. live trees of each 
species). Primary beetles are those that are capable of killing live trees, whereas secondary beetles generally only kill declining trees. 
A list of bark beetle species considered as primary and secondary are presented in Table 2. 
 

 
 
 
 
  

Full Structure Total All beetles Primary Beetles Secondary Beetles Density BA Density BA

Burned

PIPO 11 10 21 29 10 24 31 32 19 30

LAOC 16 9 25 44 40 16 7 10 6 2

PSME 6 5 11 36 36 27 22 33 13 11

PICO 11 4 15 60 20 60 3 6 16 19

ABLA-PIEN 2 2 4 100 50 100 8 35 0 0

THPL-TSHE 5 3 8 50 38 50 3 5 7 9

Total 51 33 84

Unburned

PIPO 4 0 4 100 75 100 7 11 0 0

LAOC 4 0 4 100 75 75 2 4 3 3

PSME 5 2 7 86 57 57 2 5 3 2

PICO 8 0 8 63 50 25 3 3 3 5

ABLA-PIEN 4 2 6 100 100 33 3 6 1 0

THPL-TSHE 5 0 5 100 40 60 1 3 1 0

Total 30 4 34

Cover type

Primary Beetles Secondary Beetles

Post-fire beetle attack severity (% killed)

# plots sampled % plots attacked
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Table 6. Summary of the tree-level field data documenting beetle attack observations stratified by tree species. Pre- and post-fire 
beetle severity are presented as the percentage of all available trees that survived fire (e.g. live trees of each species). Primary 
beetles are those that are capable of killing live trees, whereas secondary beetles generally only kill declining trees. A list of bark 
beetle species considered as primary and secondary are presented in Table 2. The mean % bole attack was estimated as the average 
percent of bole circumference between ground level and 1.5m where bark beetle galleries were recorded. The interquartile range 
(IQR) is defined as the 25th-75th percentile of observed values. 
 

 
 
 

 

pre-fire beetle severity (% BA)

Tree species Primary beetles % BA killed by fire Primary beetles Secondary beetles Primary beetles Secondary beetles

PIPO 0 33 0 26 0 85 (100-100)

LAOC 0 53 0 1 0 45 (33-58)

PSME 0 51 29 20 70 (50-100) 58 (23-100)

PICO 1 70 7 41 74 (70-100) 69 (50-100)

ABLA 0 94 0 63 0 20 (5-20)

PIEN 0 81 58 7 67 (35-100) 54 (26-80)

ABGR 0 32 0 79 0 76 (65-100)

THPL 0 43 4 0 75 (63-88) 0

TSHE 0 64 0 19 0 44 (8-70)

BEPA 0 92 0 0 0 0

post-fire beetle severity (% BA) mean % bole attack (IQR)
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Table 7. Climatic data for a) pre-fire, year-of-fire, one year post-fire, and 5 years post-fire 

climatic conditions for each of the major fire years studied and b) growing season for all years 

from 1999-2013, including all major fire years and years where delayed mortality was mapped. 

Negative PDSI values indicate drought. Mean values represent average conditions over the 

May-Sept. growing season, while minimum values represent the most extreme monthly 

conditions within each time period. 

a) 

 

 

b) 

 

 

 

pre-fire year-of post-fire post.fire.5 pre-fire year-of post-fire post.fire.5

1999 0.86 -1.075 -2.05667 -1.141 -1.48 -1.3 -2.77 -3.79

2001 -2.148 -3.128 0.471667 -0.1052 -2.77 -3.79 -0.23 -2.24

2003 0.428 -1.3 0.862 -0.2688 -0.23 -2.24 0.28 -2.65

Mean PDSI Min PDSI

Growing season

Year average PDSI

1999 -1.08

2000 -2.15

2001 -3.13

2002 0.43

2003 -1.30

2004 0.86

2005 0.20

2006 -0.71

2007 -1.99

2008 0.30

2009 -0.69

2010 1.72

2011 1.85

2012 0.32

2013 -0.61
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