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Executive Summary

The Greater Yellowstone Network (GRYN) was established by the National Park Service
Inventory and Monitoring (I&M) Program in 2000 to help enhance the scientific basis for
stewardship and management of natural resources in Bighorn Canyon National Recreation Area,
Grand Teton National Park including the John D. Rockefeller, Jr. Memorial Parkway, and
Yellowstone National Park.

Aquatic resources across the GRYN face numerous and varied threats, including atmospheric
deposition, altered hydrology, mining, agriculture, pollution from boats, introduction of
nonnative species, soil or streambank erosion, leaking underground storage tanks, improper
sewage-plant or drain field operations, and stormwater runoff. In 2006, GRYN parks began
monitoring water chemistry and benthic macroinvertebrates at fixed monitoring sites as part of
the vital signs monitoring program. In 2007, water quality monitoring was further expanded to
include high alpine lakes in Grand Teton due to their significance as receptors sensitive to
atmospheric deposition of sulfur and nitrogen. The GRYN is using a “targeted” sampling design
for monitoring water chemistry and aquatic macroinvertebrates, which reflects the need to
continue collection of historical-trend data from the U.S. Geological Survey (USGS) and to meet
budgetary constraints.

Results of the water quality monitoring program in the GRYN are compared to federal and state
standards to identify potential water quality degradation issues in network parks (appendix A).
Land uses and geology within and upstream of each park present specific concerns with regard to
potential water quality impacts and likely sources of contamination. Specific locations where
water quality did not meet applicable standards are identified for each park.

e Several water quality samples collected at sampling sites in Bighorn Canyon did not meet
state and/or national standards for Escherichia coli in 2007 and 2008. Detected
concentrations greater than applicable standards for E. coli may be related in part to
agricultural activities upstream of the monitoring sites that may have resulted in animal
waste-contaminated runoff.

e Several water quality samples collected at sampling sites in Grand Teton did not meet
state and/or national standards; constituents were dissolved copper (2007), and total iron
and pH (2008). In general, observed metals concentrations are likely related to the site-
specific geology. Field pHs greater than state and/or federal standards were identified in
2008 via multi-parameter probe at Amphitheatre, Surprise, and Delta lakes. While outside
of the range recommended for natural waters of Wyoming, the pH of these water bodies
is within acceptable ranges for the sensitive alpine headwater lakes.

e Samples collected at 5 of 20 sites monitored in Yellowstone in 2007 did not meet state
and/or federal standards. Constituents not in compliance with these standards included
minimum flow, total iron and pH. In 2008, samples collected at 6 of 20 sites monitored
were not in compliance with state and/or federal standards. Constituents of concern
included pH, water temperature and dissolved iron. Concentrations detected in samples
collected in Yellowstone can generally be attributed to the unique geology and
geothermal activity occurring in the park. Minimum flow standards not met at Reese
Creek in 2007 were met in 2008 due to altered irrigation demands.

vii






1 Introduction

Ecosystem “vital signs” are key to the National Park Service’s (NPS) Inventory and Monitoring
(I&M) Program. A vital sign is a physical, chemical, or biological component of the air, water,
or land. It is rarely possible to monitor all indicators of ecosystem health; therefore, vital signs
are chosen because they are most representative of the ecosystem as a whole and/or are most
critical to ecosystem function. A goal of NPS vital signs monitoring is to report ecosystem status
and trends and to document the level of confidence in the results. A summary of vital signs
monitoring is provided in An Overview of Vital Signs Monitoring and its Central Role in Natural
Resource Stewardship and Performance Management (National Park Service):

Knowing the condition of natural resources in national parks is fundamental to the
National Park Service’s ability to manage park resources. ... Vital signs monitoring is a
key component in the Service’s strategy to provide scientific data and information needed
for management decision-making and education. Vital signs [monitoring] also contributes
information needed to understand and to measure performance regarding the condition of
watersheds, landscapes, marine resources, and biological communities.

Through the NPS 1&M Program, 270 national park units were organized into 32 networks that
share similar geographic and natural resource characteristics. The networks improve efficiency
and reduce costs by sharing funding and a core professional staff and conduct long-term
ecological monitoring. The Greater Yellowstone Network (GRYN) comprises Bighorn Canyon
National Recreation Area, Grand Teton National Park, including John D. Rockefeller, Jr.
Memorial Parkway, and Yellowstone National Park.

Freshwater quality monitoring is funded through a NPS Water Resources Division initiative and
is a significant network vital sign. The significance of water resources within the GRYN is
reflected in the network’s ranking of freshwater quality as third among all of the potential vital
signs identified and prioritized by the GRYN. Freshwater quality has direct impact on several
other indicators, including fish assemblages, amphibians, and reptiles considered to be at risk or
considered to be species of concern; riparian habitat; wetlands; and aquatic macroinvertebrates.
Freshwater quality has indirect impacts on all plant and animal life as well as human
consumption, recreation, and enjoyment (i.e., the intrinsic value of water). Terrestrial chemistry,
for better or worse, is frequently transferred to water via surface runoff and subsurface flow or
base flow (groundwater). Therefore, not only is water quality an indicator of the health of aquatic
systems, but it is an important indicator of overall ecosystem health.

1.1 Background

Aquatic resources across the GRYN face numerous and varied threats, including atmospheric
deposition, altered hydrology, mining, agriculture, pollution from boats, nonnative species
introduction, soil and streambank erosion, leaking underground storage tanks, improper sewage-
plant or drainfield operations, and stormwater runoff. Water quality monitoring to assess the
effects of these threats has been underway for more than 50 years, though not as a coordinated,
comprehensive program focused on ecosystem health.

In 2005, the GRYN began monitoring water bodies identified by the states of Montana and
Wyoming as “water-quality impaired” following a draft version of the network’s Regulatory



Water Quality Monitoring Protocol (O’Ney 2006). These streams were Soda Butte and Reese
creeks in Yellowstone, and the Bighorn and Shoshone rivers in Bighorn Canyon. Standard
operating procedures were established for measuring core parameters (water temperature, pH,
dissolved oxygen, conductivity) and discharge, and for collecting samples for analysis of metals
in water and sediment, nutrients (e.g., nitrates, phosphates), Escherichia coli, and benthic
macroinvertebrates.

In 2006, GRYN parks began monitoring water chemistry and benthic macroinvertebrates at fixed
monitoring sites as part of the vital signs monitoring program. The objective for monitoring
water chemistry at fixed sites was to determine the status and long-term trends in water
chemistry (major ions and nutrients), conductivity, dissolved oxygen, pH, water temperature, and
discharge in perennial rivers and streams at fixed stations in all GRYN parks and also in
Yellowstone Lake. Water chemistry is critical for interpreting the biotic condition and ecological
processes of aquatic resources. Chemical stressors can result in impaired functioning or loss of a
sensitive species and a change in community structure. Water chemistry also affects the
bioavailability of contaminants and the metabolism of aquatic species.

In 2007, water quality monitoring was further expanded to include high alpine lakes in Grand
Teton. Headwater lakes in the park are potentially sensitive to the atmospheric deposition of
sulfur and nitrogen compounds. Surprise, Delta, and Amphitheater lakes were identified as being
particularly sensitive because of their dilute chemistry and low acid neutralizing capacity.

1.2 Study areas

1.2.1 Bighorn Canyon National Recreation Area

The diverse water resources of Bighorn Canyon, located in southeastern Montana and north-
central Wyoming, encompass approximately 15% of the surface area of the recreation area.
These resources include Bighorn Lake, the reservoir created by Yellowtail Dam in 1966; 8-16
kilometers of the Bighorn River (variation due to fluctuating lake levels); and 3—5 kilometers of
the Shoshone River above the pool of Bighorn (variation due to fluctuating pool levels). The
recreation area also includes several small ponds constructed in the Yellowtail Wildlife Habitat
Management Area and in other park locations for wildlife and water management, the extreme
lower reaches of several small streams that flow into the east and west sides of Bighorn Lake, a
small number of seeps and springs primarily located at the base of the Pryor Mountains in the
western portion of the park, and wetland and riparian areas associated with these systems.

The Bighorn River and its tributaries are part of the Bighorn and Wind River basins of the
Missouri River Basin. Most of the park is contained within the Bighorn Lake hydrologic unit,
with a small portion in the Lower Bighorn hydrologic unit (fig. 1). The Yellowtail Dam, operated
by the Bureau of Reclamation and located near the northern edge of the recreation area,
dominates Bighorn Canyon’s hydrology and aquatic resources. The Shoshone hydrologic unit
provides additional surface water inputs to Bighorn Lake. Bighorn Lake winds through
approximately 113 kilometers of spectacular, sheer canyons carved by the Bighorn River.
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Figure 1. Water quality monitoring sites in Bighorn Canyon National Recreation Area.

1.2.2 Grand Teton National Park

Grand Teton is located in western Wyoming approximately 15 miles north of Jackson. Roughly
10% (125 square km?) of the park is covered by surface water, most of which is contained in six
piedmont lakes along the eastern front of the Teton Range. Jackson Lake is the largest of the six
piedmont lakes and was created as a result of glacial moraine-damming of the Snake River and
was enlarged by a dam constructed 1911-1916. About 100 alpine lakes (varying from 0.004 to
0.24 km?) are within the Teton Range, mostly above 304.5 meters elevation. Approximately 75



pothole ponds of less than 0.00002 to more than 0.14 square kilometers occur in the glacial drift
area south and east of Jackson Lake.

All surface water and groundwater in the park drains into the Snake River, which originates in
highlands of the Teton Wilderness, flows north and west through part of Yellowstone, south
through the John D. Rockefeller, Jr. Memorial Parkway, and into Jackson Lake in the park. From
Jackson Lake, the Snake River flows east and then south for about 40 kilometers before crossing
the park’s south boundary. Seven streams originating in the Teton Range drain east into Jackson
Lake, six others drain into Cottonwood Creek and the Snake River near Moose, Wyoming and
three drain the southern portion of the Teton Range into Lake and Fish creeks, which flow into
the Snake River south of the park. Eight major streams drain highlands in the Bridger-Teton
National Forest north and east of the park and flow into Jackson Lake or the Snake River within
the park. The entire park is part of the Snake River hydrologic unit (fig. 2).

1.2.3 Yellowstone National Park

Yellowstone encompasses approximately 9,065 square kilometers of watersheds that preserve
one of the most significant, near-pristine aquatic environments in the United States, and
contribute to two of the nation’s farthest-reaching drainages: the Missouri and Columbia rivers.
About 5% of the park is covered by water, including more than 220 lakes and 1,000 streams.
Yellowstone Lake, which lies at an altitude of 2,356 meters, covers 352 square kilometers and is
122 meters deep, is the largest lake at high elevation in North America. As a result of both
natural topography and early preservation actions, the headwaters of five major river systems
(Fall, Gallatin, Madison, Snake, and Yellowstone) are either in or just upstream of the park.
More than 50% of the park’s surface waters are located within the Yellowstone Headwaters
hydrologic unit. Hydrologic units within park boundaries include the Madison, Snake
Headwaters, Upper and Lower Henrys, North Fork Shoshone, and the Gallatin (fig. 2).

1.3 Objectives

The objective of the annual report is to summarize water quality results for the previous calendar
year. The summary report presented here covers 2007-2008 plus any lab data not previously
reported (e.g., 2006 macroinvertebrate results). The purpose of this report is to:

1. Summarize monitoring activities and data. For each park, a description of the number of
samples taken and analyses conducted is provided.

2. Describe the current condition of the resource relative to state and/or Environmental
Protection Agency criteria.

3. Highlight notable events and observations.

4. Discuss recommendations, including modifications to the monitoring program and the
need for special studies.

5. Provide a basis for communication within the parks and network.

The target audiences for this report include park managers, park and network resource managers,
and state water quality managers.
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2 Methods

The GRYN is using a “targeted” sampling design for monitoring water chemistry and aquatic
macroinvertebrates, which reflects the need to continue collection of historical-trend data from
the U.S. Geological Survey (USGS) and to meet budget constraints. Fixed monitoring sites were
selected (table 1) that target specific waters of concern and/or act as integrator sites (i.e., located
at outlets of drainage basins with relatively homogeneous land-use and physiographic conditions,
intended to reflect conditions within that basin). Many of these sites have sufficient access to
enable year-round monitoring and are co-located with USGS gaging stations that have long-term
records useful to the interpretation of water-quality data. As such, these are important data
sources to the parks, which have placed high value on maintaining their continued monitoring.

2.1 Field methods

Water samples were collected at 48 stations in 2007 and 52 stations in 2008 (figs. 1 and 2;

table 1), following the collection procedures described in the GRYN’s Regulatory Water Quality
Monitoring Protocol, Version 2.0, and Standard Operating Procedures #1-11 (O’Ney 2006).
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2.2 Analytical methods

Environmental Testing and Consulting, Inc. (ETC) of Memphis, Tennessee, was contracted to
conduct laboratory analysis of water quality samples from all locations except the alpine lakes in
Grand Teton. In Yellowstone and Grand Teton, samples were chilled and shipped overnight to
ETC at the end of each sampling day. Samples collected in Bighorn Canyon were chilled in a
laboratory refrigerator and sent overnight to ETC on the Monday following collection. Alpine
lake samples were sent to the USDA Forest Service (USDA-FS)/USGS Water Chemistry and
Passive Ozone Laboratory in Fort Collins, Colorado. Table 2 outlines the analytes and the
corresponding analytical method employed.

Table 2. Analytical methods for samples collected in the GRYN

Analyte Method Laboratory
Acid Neutralizing Capacity (Alpine Lake) Gran Titration USFS/USGS
Arsenic, Calcium, Copper, Hardness as CaCO3,

Iron, Magnesium, Potassium, Selenium, Sodium 200.7 ETC

Ammonia 4500NH3D ETC

Ammonium lon Chromatography USDA-FS/USGS
Blcarbonat.e .Alkallnlty, Carbonate Alkalinity, 2320 B ETC

Total Alkalinity

Chloride, Fluoride, Nitrate-N, Nitrite-N, Phosphorus, 300.0 ETC

Orthophospate (as P), Sulfate
Conductivity, Dissolved Oxygen, Temperature, pH, .,

Alkalinity*
Escherichia coli m-TEC MF method Performed on-site (Bighorn Canyon)
Phosphate 4500 PB5 ETC

* alkalinity measured as field alkalinity at spring sites in Bighorn Canyon.

** field parameters collected via method described in Gibs, J., et. al, 2007, Use of multiparameter instruments for
routine field measurements.

ETC = Environmental Testing and Consulting, Inc.
USDA-FS/USGS = USDA Forest Service/lUSGS Water Chemistry and Passive Ozone Laboratory

Identification of macroinvertebrates was performed by Aquatic Biology Associates, Inc. in
Corvallis, Oregon. Field parameters (pH, conductivity, temperature and dissolved oxygen) were
collected at each site using an In-Situ Troll 9500 (or equivalent). Conductivity and pH probes
were calibrated prior to each sampling event; dissolved oxygen was calibrated at the beginning
and end of the season.

2.3 Quality assurance and quality control

All data collected for the GRYN water quality monitoring program are verified and validated for
quality assurance and quality control purposes. Data verification is a systematic process that
evaluates data collection performance for completeness, correctness, and consistency. Data
validation is the process used to qualify the data and reject or accept the information with no
conditions or qualifications. During the validation review, any deviations from standard
operating procedures must be documented and their potential effect on the usability and quality
of the monitoring data must be evaluated and discussed. Data verification and validation reports
are available at the GRYN offices in Bozeman, Montana (Arnold 2008a and 2008b; Arnold
2009a and 2009b; Bromley and Thomas 2008a and 2008b; O’Ney 2008a and 2008b; Rumelhart
2008a and 2008b; Schmitz and Carrithers 2009a and 2009b).
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2.4 Water quality criteria

Results of the water quality monitoring program in the GRYN are compared to national and state
standards to identify potential water quality degradation issues in network parks (see appendix A
for standards). In many cases, the water quality of the network parks meets or exceeds (is better
than) existing standards. The results from 2007 and 2008 discussed in this report are compared to
published aquatic life standards from and prior to 2008 (MTDEQ 2008; EPA 1987; EPA 2006;
WYDEQ 2007; EPA 2000; appendix A). Future reports will compare results to the most recent
and possibly more restrictive standards.
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3 Results and Discussion

Results for GRYN’s water quality monitoring program are entered into park databases
(NPSTORET), which are uploaded annually to the Environmental Protection Agency’s national
water quality database, EPA STORET (EPA STOrage and RETrieval),
http://www.epa.gov/storet/. The results for the stations monitored in 2007 and 2008 have been
added to the EPA STORET database.

3.1 Bighorn Canyon National Recreation Area

3.1.1 River monitoring

The water quality at Bighorn Canyon was monitored at a combination of regulatory and non-
regulatory monitoring sites. During the 2007 and 2008 calendar year, water chemistry samples
were collected quarterly from the two 303(d) regulatory water quality stations: Bighorn River
near St. Xavier, Montana (BHR1), and Shoshone River near Lovell, Wyoming (SHR1).

In addition, four sampling rounds were conducted for E. coli at the Shoshone River near Lovell,
Wyoming. For each E. coli sampling round, a sample was collected and analyzed on five
consecutive days. The geometric mean of the results was compared to state standards.

The sample design also calls for the six non-regulatory sites to be visited quarterly; however, in
September 2007, the Layout Creek at Headgate (BICA LCR1) station was replaced with the
Layout Spring (BICA LAYOUTSPR?2) station. Thus, Layout Creek at Headgate was sampled
only twice in 2007. Basic water quality parameters, including water temperature, dissolved
oxygen, pH, specific conductivity, and turbidity, were collected in sifu at each site. Water
samples were analyzed in the laboratory for additional chemical parameters: dissolved anions
(chloride, sulfate, and total alkalinity), dissolved cations (calcium, magnesium, potassium, and
sodium), and nutrients (nitrate, nitrite, and ortho-phosphate).

Samples collected in Bighorn Canyon were chilled in a laboratory refrigerator and sent overnight
on ice to ETC on the Monday following collection. Analyses for E. coli were conducted by
Bighorn Canyon personnel.

The water quality sampling effort in Bighorn Canyon during 2007 comprised a total of 20 site
visits and 619 results (table 1; Schmidt and Carrithers, 2009a). In 2008, a total of 50 visits
yielded approximately 446 results (table 1; Schmidt and Carrithers, 2009a). Results include field
observations, multi-probe measurements, and laboratory analysis.

A summary of sampling locations (by drainage) not in compliance with applicable water quality
standards follows. Bighorn Canyon resource personnel are concerned about parameters such as
phosphate, sulfate and turbidity; however, these parameters were not measured at concentrations
greater than standards referenced in this report (appendix A).

e Bighorn Lake Drainage: Samples collected within the Bighorn Lake Drainage during
2007 and 2008 met federal and/or state standards.
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e Lower Bighorn Drainage: Samples collected within the Lower Bighorn Drainage during
2007 and 2008 met federal and/or state standards.

e Shoshone River Drainage: The Shoshone, a regulated river system adjacent to multiple
populated areas, was monitored for E. coli in 2007 and 2008. In order to meet state
standards for contact recreation, the geometric mean of five consecutive sampling days
should not exceed 126 colony forming units (cfu) of E. coli per 100 milliliter.

All calculated means at the Shoshone River regulatory monitoring site collected in 2007
and one calculated mean (June) from 2008 did not meet this standard (table 3). Probable
sources of E. coli include sewage, agricultural and domestic waste, wildlife waste, and
septic systems. The presence of E. coli can be dangerous to human health. The Shoshone
River will continue to be monitored in June, July, August, and September of future
sampling years.

Table 3. 2007-2008 water quality sampling locations in the Shoshone River basin of Bighorn Canyon
where constituent concentrations did not meet applicable standards

Site Parameter Year Standard* Units Exceedance/ Range of
# of visits values
Shoshone E. coli 2007 126/100 mL Geometric 4/4 299.6-633.3
River near 2008 mean of five 1/4 4-157
Lovell samples:
cfu/100 mL

* See references, appendix A.
cfu = colony forming unit
mL = milliliter

3.1.2 Spring monitoring

Arid land seeps and springs in Bighorn Canyon were identified as a vital sign for the GRYN.
Seeps and spring ecosystems have an ecological importance disproportionate to their spatial
extent in this desert environment. Protecting seep and spring resources requires in-depth
understanding of their ecological character, controlling factors, and natural variability over space
and time.

A monitoring protocol was developed to track the ecological condition of the 34 confirmed
springs in Bighorn Canyon. To date, only protocols for the physical parameters have been
developed. Four springs were used during protocol development and have been sampled for
water quality seasonally since fall 2004.

Water quality samples from Bighorn Canyon springs were collected at seven sites in 2007 and
eight sites in 2008 (table 1). All springs were sampled in May and December of 2008, while
Layout Spring was sampled additionally in March and September. Samples collected from seeps
and springs in Bighorn Canyon during calendar years 2007 and 2008 met applicable standards.

3.2 Grand Teton National Park

During the 2007 and 2008 calendar years, the quality of Grand Teton’s Outstanding Natural
Resource Waters was monitored. Outstanding Natural Resource Waters receive special
protection against degradation and typically exhibit exceptional recreational function and/or
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ecological significance. Basic water quality parameters were collected in sifu at each site,
including water temperature, dissolved oxygen, pH, specific conductivity, and raw conductivity.

Sampling in Grand Teton occurs June through October. In 2007, water samples were collected
once at two sites (each) on the Gros Ventre River and Sheffield Creek; three times at two sites
(each) on Pilgrim Creek and Spread Creek; and four times at two sites on the Snake River. In
2008, samples were collected once at two sites (each) on Lake Creek, Spread Creek, Pilgrim
Creek and Cottonwood Creek; four times at two sites (each) on Ditch Creek and the Snake River;
five times at two sites on Pacific Creek (table 1).

Water samples from each of these sites were collected and shipped overnight on ice for analysis
by ETC. The following list of analyses was conducted:

e Dissolved anions (chloride, sulfate, and total alkalinity)

e Dissolved cations (calcium, magnesium, potassium, and sodium)

e Nutrients (nitrate, nitrite, and ortho-phosphate)

e Dissolved metals (arsenic, copper, iron and selenium)

e Total metals (arsenic, copper, iron, selenium and carbonate hardness)

In 2007, water samples were collected twice at alpine lakes Amphitheatre and Surprise and once
at Delta Lake. In 2008 water samples were collected twice at all three alpine lakes (Surprise,
Amphitheatre, and Delta). Water chemistry was analyzed by the USDA-FS/USGS Water
Chemistry and Passive Ozone Laboratory in Fort Collins, Colorado for the following parameters:
pH, acid neutralizing capacity, conductivity, sodium, ammonium, potassium, magnesium,
calcium, fluoride, chloride, nitrate, phosphate, and sulfate.

The water quality sampling effort in Grand Teton during 2007 comprised a total of 29 site visits
and 1,156 results. In 2008, 39 visits yielded approximately 1,230 results. Results include field
observations, multi-probe measurements, and laboratory analysis results. A summary of
sampling locations (by drainage) that did not meet applicable water quality standards follows.

3.2.1 Snake River Drainage

The Snake River and its tributaries were sampled in 2007 and 2008. Review of laboratory
analyses results identified six locations that did not meet state and/or federal standards
(appendix A): Sheffield Creek at Forest Service Boundary (dissolved copper), both sites at
Spread Creek (total iron), and Amphitheatre, Surprise and Delta lakes (pH). All waters within
Grand Teton are Outstanding Natural Resource Waters.

The source of high metals concentrations (table 4) at Sheffield Creek at Forest Service boundary,
Upper Ditch Creek, Spread Creek at Forest Service above dam, and Spread Creek at Hwy 89
bridge may be related to the geology of their respective sites. Metals contamination identified in
samples collected at these locations is not commonly associated with recreational or automobile
use, suggesting that the source of the metals is not anthropogenic in nature. The chemical
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composition of these water bodies is likely to be more closely related to geology of the site or
surrounding (upstream) areas.

In addition, a review of 2006 data from Sheffield Creek shows that neither total nor dissolved
copper has been identified above laboratory detection limits in water samples collected at this
site. The lack of a definable trend suggests that elevated copper concentrations are not a chronic
problem at this location and may be related to natural fluctuations in chemical composition of the
water due to the area’s geology.

The source of total iron at Spread Creek at Forest Service above dam and Spread Creek at
Hwy°89 bridge may be related to the geology and geomorphology of the sites (table 4). A review
0f 2007 and 2008 data from both sites shows identification of total iron below standards but
above laboratory detection limits is common at both sites, although in all data reviewed (four
cases: three from 2007 and one from 2008) concentrations tend to decrease from Spread Creek
Forest Service above dam (upstream) to Spread Creek at Hwy 89 bridge (downstream) for
samples collected on the same day. These decreasing concentrations may be a result of additional
water input to Spread Creek prior to sampling at Spread Creek at Hwy 89 bridge, or may be
related a geologic source of iron at Spread Creek at Forest Service above dam that is not
available at Spread Creek at Hwy 89 bridge. Although iron is routinely identified at these
locations, the concentrations identified here (greater than applicable standards) are the first
recorded via sampling in Grand Teton and are likely related to natural fluctuations in chemical
composition of the water due to the area’s geology.

Field pH at Amphitheatre, Delta and Surprise Lakes was identified below the acceptable range
(excessively acidic) for naturally occurring waters in Wyoming. Overall, acid neutralizing
capacity for Grand Teton’s high alpine lakes fall within the range for sensitive lakes and pH
values.

Table 4. 2007—-2008 water quality sampling locations in Grand Teton where constituent concentrations
did not meet applicable standards

Exceedance/# Range of

Site Parameter Year Standard* Units L

of visits values
Sheffield Creek at Forest Dissolved
Service boundary (SHCO01) copper 2007 13 Mg/l K 7
Spread Creek Forest . -
Service above dam (SPCO1) Total iron 2008 300 Mg/l 11 1,770
Spread Creek at Hwy 89 . -
bridge (SPC02) Total iron 2008 300 pg/L 1M 1,620
Surprise Lake (SUR01) pH 2008 6.5-9 — 2/2 6.33-6.38
Amphitheatre Lake (AMPO1)  pH 2008 6.5-9 — 2/2 5.76-6.33
Delta Lake (DELO1) pH 2008 6.5-9 — 1/2 6.20-6.68

* See references, appendix A.
** Human health standard
Mg/L = micrograms per liter

3.2.2 Snake River gaging station at Moose, Wyoming

Data collected at the Snake River gage at Moose, Wyoming (drainage area 1,677 square miles),
was reviewed as part of the water quality analysis of Grand Teton. The Moose gage, operated by
the USGS and funded by the GRYN, Grand Teton, and the Teton Conservation District, is
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located on the Snake River adjacent to park headquarters in Moose, Wyoming. Discharge data
has been collected at this location since 1995, and real-time temperature, pH, dissolved oxygen,
and specific conductivity data have been collected since 2002 (table 5). Average, minimum and
maximum data for temperature, dissolved oxygen, specific conductance, and discharge were
collected for the years specified in table 5; only minimum and maximum pH values were
reported. With the exception of pH (in which case both maximum and minimum trends are
shown), the figures and tables provided in this section are calculated using average data for the
parameter of interest for water years 2002—2008 (October 2002 through September 2009) and
include approximately nine months of provisional data from 2009. Field parameter data are not
presented for December, January, and February due to freezing conditions.

Table 5. Snake River at Moose, Wyoming field parameter and discharge descriptive statistics

Parameter Units Years n Min  Max Mean Median SD
pH standard units 2002—2008 1,580 7.3 9.5 * * *
Temperature °C 2002-2008 1,739 0 19.6 10.5 10.4 4.65
Dissolved oxygen mg/L 2002-2008 1,182 6.1 134 9.1 9 1.34
Specific conductance uS/cm 2002-2008 1,735 84 235 160.9 160.0 31.9
Discharge cfs 1995-2008 5,205 600 24,500 2,977.5 1,460 3,062.4

* Only maximum and minimum values of pH for the period of record were reported. Therefore, calculation of a mean,
median or standard deviation is not appropriate. Statistics for the remaining parameters (temperature, dissolved
oxygen, specific conductance, and discharge) were based on reported mean values.

Min = minimum

Max = maximum

mg/L = milligrams per liter

MS/cm = microsiemens/centimeter

cfs = cubic feet per second

SD = standard deviation

Table 5 indicates similar mean and median values for the temperature, dissolved oxygen, and
specific conductance, suggesting skewing agents such as extreme outliers are not present within
these datasets. In contrast, due to large natural variability over an annual cycle, it is not
unexpected to see a large discrepancy between the mean and median of recorded discharge data.

3.2.2.1. Seasonal Variation: Field ParametersData for each of the field parameters
collected at the Moose gage have been plotted by month using box plots to illustrate parameter
values and variability during the year and occurrence of potential extreme values. All of the
parameters are observed to change seasonally, although the causes of the volatility vary
(figs. 3-7).

Temperature data exhibit a strong seasonal trend, which closely tracks air temperature (fig. 3).
Water temperatures in May and June tended to be lower than air temperatures would suggest due
in part to the influence of snowmelt. Based on the box plots, most of the data (with the exception
of September) appear to be normally distributed or slightly left-skewed. Median water
temperatures are observed to increase steadily from March until July and then stabilize before
decreasing again as winter approaches. The warmest months (July and August) exhibit
remarkably similar temperature profiles, including nearly identical maximum and median values.
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Figure 3. Box plots of monthly average water temperature and air temperature (red line) for the Snake
River at Moose, Wyoming, for the period of record (2002—2008).

Dissolved oxygen content is a measure of the ability of surface waters to support aquatic life.
Oxygen saturation concentration is dependent on three primary parameters: temperature,
atmospheric pressure and dissolved solids (Maidment 1993). Dissolved oxygen values exhibit a
weak seasonal trend, decreasing in summer months due to warmer temperatures (fig. 4). July and
August box plots are similar in terms of median, although August dissolved oxygen values
exhibit the greatest range. Based on water quality standards presented in appendix A, dissolved
oxygen values appear to be consistently high enough to meet aquatic life needs.
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Figure 4. Box plots of monthly dissolved oxygen concentrations for the Snake River at Moose, Wyoming
for the period of record (2002—2008).

18



Conductivity declined markedly during the high flow months of May and June, reflecting the
dilution effect of snowmelt (fig. 5). However, the box plots for May and June also indicate a
wide variation in potential conductivity values, reflecting the additional dissolved solids load
(and therefore potential increase in conductivity) carried by the river during the spring months.
In general the data appear to be normally distributed to slightly left-skewed.
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Figure 5. Box plots of monthly specific conductance for the Snake River at Moose, Wyoming for the
period of record (2002—2008).

Although mean pH values were not reported, assessment of maximum and minimum pH values
suggests fairly constant pH throughout the year, especially in terms of minimum values (fig. 6).
Slight decreases in both maximum and minimum values were observed during June and July,
which may be related to the increase in water temperature (pH and temperature are inversely
correlated). October and November data appear to exhibit the greatest variability, with
significant overlap between maximum and minimum observations. As reported in appendix A, a
pH of 6.5 to 9 is considered “normal” for waters such as the Snake; pH values ranging from 7.3
to 9.5 were observed at the Moose gage (table 5).
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Figure 6. Box plots of monthly maximum (a) and minimum (b) pH values for the Snake River at Moose,
Wyoming, for the period of record (2002—-2008).
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3.2.2.2. Seasonal Variation: Discharge

Discharge passing the gage at Moose is influenced by releases from the impoundment on the
Snake River at Jackson Lake. Flows are managed to maintain aquatic life standards while
retaining sufficient water storage for the high demand periods in mid-summer. The box plots
shown in figure 7 indicate winter flows generally below 1,300 cubic feet per second (cfs)
(October through March), and an order of magnitude increase in flow during the period of spring
runoff (May and especially June). A significant number of high outliers (i.e., outside the range of
the box plots) were observed in the dataset. Many of these outliers were linked to flows in 1997,
the year in which flows were the highest in the period of record. Figure 8 illustrates how flows in
each of the years of the period of record compare to the mean flow for the period of record.
Figure 8 also indicates a long-term, below-average trend in flows at the Moose gage (1999—
2007).
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Figure 7. Boxplots of monthly discharge for the Snake River at Moose, WY for the period of record
(1995-2008).

Figure 9 illustrates the variation in total (cumulative annual) flow at the Moose gage for the
period of record. Total annual discharge varied from almost 60,000 cfs (14.1 trillion gallons per
year) to approximately 20,000 cfs (4.7 trillion gallons per year). A marked change in total flow
was noted to occur between 1998 and 1999, when total discharge was reduced by almost one-
half from peak (58,499 cfs in 1996 compared to 32,229 cfs in 2007). Because major tributaries to
the Snake, including the Buffalo Fork and Pacific Creek enter the system below the dam, the
effects shown in figure 9 are attributable to a combination of natural and anthropogenic causes.
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Figure 8. Variation of mean annual flow around mean flow for the period of record (1995-2008).
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Figure 9. Annual cumulative discharge volume, calculated by water year.

3.3 Yellowstone National Park

The water quality at Yellowstone was monitored at a mix of regulatory (two sites) and
Outstanding Natural Resource Waters (10 sites) monitoring locations. During the 2007 and 2008
calendar years, water samples were collected monthly from the 12 established stream water-
quality sites and seasonally (summer months only) from an additional seven established lake
water-quality sites. Basic water quality parameters were measured in situ at each site visit and
included water temperature, dissolved oxygen, pH, specific conductivity, and turbidity.

21



Water samples were collected for total suspended solids, volatile suspended solids, and fixed
suspended solids and taken to the field laboratory of the Yellowstone Fisheries and Aquatics
Sciences section for analysis. Water samples were collected from the ten Outstanding Natural
Resource Waters water quality sites and shipped overnight to Environmental Testing and
Consulting, Inc., of Memphis, Tennessee. Chemical analysis of these samples included:

e Dissolved anions (chloride, sulfate, and total alkalinity)
e Dissolved cations (calcium, magnesium, potassium, and sodium)
e Nutrients (nitrate, nitrite, ammonia, total phosphorus, and ortho-phosphate)

e Dissolved and total metals (arsenic, copper, iron, selenium) Soda Butte Creek near Silver
Gate, MT only

All water bodies in Yellowstone are classified as Outstanding Natural Resource Waters by the
states of Montana and Wyoming, although two stream segments on the border of Yellowstone
were listed (at the time of this report) as quality impaired by the State of Montana and are
monitored as regulatory streams: Upper Soda Butte Creek near Cooke City, Montana (metals),
and Reese Creek at the park’s northern boundary near Gardiner, Montana (discharge). Sampling
at Soda Butte and discharge measurements at Reese Creek is required to meet monitoring
requirements under the Clean Water Act.

Soda Butte Creek is located in the northeast corner of Yellowstone. A section of this water body,
outside of park boundaries, is listed as impaired by the State of Montana. To assess the health of
this stream, water and sediment samples were analyzed for metals (i.e., arsenic, copper, iron, and
selenium) during both high- and low-flow conditions, which occur in June and September,
respectively, in addition to the standard field and chemical water quality parameters. In-stream
metals contamination in Soda Butte Creek is the result of historic mining in the vicinity of Cooke
City, Montana, which is approximately eight kilometers from the Yellowstone boundary. Mine
tailings still persist within the floodplain of Soda Butte Creek, and contribute to the listing of the
portion of this stream as impaired and only partially supporting of aquatic life and coldwater
fisheries. The upper Soda Butte Creek regulatory water quality site is co-located with the park’s
long-term water quality site, which is sampled monthly.

The lower portion of Reese Creek is included in Montana’s quality impaired 303(d)/305(b)
report due to irrigation practices from adjacent land owners, who often leave too little water in
the stream to sustain healthy resident fish populations during the critical summer months of July
and August.

In addition to water chemistry, aquatic invertebrates were sampled at five stream locations at
long-term water quality monitoring sites to supplement physical and chemical data. Within the
Yellowstone River Drainage, aquatic invertebrate monitoring locations included: Soda Butte
Creek near Silver Gate, Montana, Soda Butte Creek at Buffalo Ranch, Gardner River, and Reese
Creek. Within the Madison River Drainage, aquatic invertebrate monitoring locations included:
Gibbon River at Madison Junction.
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The water quality sampling effort in Yellowstone during 2007 comprised a total of 188 site visits
and 4,805 results. The 2008 sampling effort yielded a total of 168 site visits and 5,309 results.
Results include field observations, multi-probe measurements, and laboratory analysis.

Review of field and laboratory analyses results from 2007 and 2008 identified seven locations
where constituent concentrations did not meet state and/or federal standards: Reese Creek
(discharge); Soda Butte Creek at Silver Gate, MT (total and dissolved iron); Soda Butte Creek at
Buffalo Ranch, Yellowstone River at Canyon, Pelican Creek at Lake, and Gibbon River near
Madison Junction (pH); and Firehole River near Madison Junction (pH and water temperature).
A summary of water quality results by drainage follows.

3.3.1 Yellowstone River Drainage

Discharge measurements on Reese Creek in 2007 were collected during 17 site visits between 22
May and 20 September 2007 and 18 site visits between 28 May and 25 September 2008 by
Yellowstone’s resource management staff (fig. 10). Discharge measurements were collected
from two locations: (1) just above the uppermost flume and (2) stream water flowing through the
upper diversion ditch. The difference between these two readings equals the amount of water
entering the main channel of Reese Creek from the uppermost flume. Adjudicated water rights
stipulate that Reese Creek is to have a minimum flow of 1.306 cubic feet per second between
April 15 and October 15 during any given year to maintain healthy fish and aquatic invertebrate
populations. During 2007, instream flow below the diversion on Reese Creek ranged from 0.53
to 4.94 cfs; during 2008, instream flow below the diversion ranged from 5.57 to 18.88 cfs
(fig.°10). Water use and water rights issues surrounding Reese Creek continue to be a concern to
park resource managers. Continued monitoring of discharge during the summer months is
important to conserve the stream’s native fish populations and biological integrity.

Streamflow Measurements on Reese Creek
during Summer 2007 and 2008
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Figure 10. Streamflow measurements on Reese Creek during summer 2007 and 2008. Adjucated water
rights (1.306 cfs) are shown as “minimum flow.”

All basic physical and chemical parameters at Soda Butte at Silver Gate, MT were within ranges
expected of high-elevation, coldwater streams with the exception of iron (total/dissolved;
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table®6), which is most likely being transported from the mine tailings downstream to the sample
site. Water chemistry and aquatic biota analysis results from the water quality site on Soda Butte
Creek near Silver Gate, MT indicate that Soda Butte Creek, as it enters Yellowstone, fully
supports aquatic life. However, proposed plans for the removal of the McLaren mine tailings
from the floodplain could potentially re-suspend heavy metals in upstream reaches of Soda Butte
Creek. These metals could have a tremendous negative impact to water quality and stream biota
in downstream reaches of Soda Butte Creek inside the park’s boundaries. Continued water
quality monitoring at this site is imperative to ascertain future impacts from activities associated
with the McLaren mine tailings.

The low pH values recorded in 2007 and 2008 at Soda Butte Creek at Buffalo Ranch near the
confluence with Lamar River are most likely due to naturally occurring conditions (seasonal
variation) in this portion of the Yellowstone River Drainage (table 6). As a result, there will
likely be no long-term, negative effect to water-quality, aquatic biota, or recreation use within
this portion of the park. The low pH values observed in 2008 at Yellowstone River at Canyon
and Pelican Creek at Lake (table 6) are most likely attributed to natural seasonal variation within
the watersheds. Additionally, both the Yellowstone River and Pelican Creek receive a large
upstream thermal input, which is likely to contribute greatly to the overall acidity of the streams
and affect the pH, particularly during low flow periods.

Table 6. 2007—2008 water quality sampling locations in the Yellowstone River Drainage of Yellowstone
where constituent concentrations did not meet applicable standards

Site Parameter Year Standard* Units ExcegQance/ Range of
# of visits values
Reese Creek Minimum flow 2007 1.306 cfs 8/16 0.52-4.94
Soda Butte Creek Total iron 2007 300** pg/ll  4/4 393-550
at Silver Gate, MT Dissolved iron 2008 300* pg/ll  1/4 ND-545
Soda Butte Creek at 2007 112 6.2-7.8
H (low 6.5-9 —

Buffalo Ranch PH (low) 2008 1/12 6.4-7.7
\é(;lrlgl\gvﬁtone River at oH (low) 2008 6.5-9 — 4/9 5.5-7.5
Pelcan Creelcat pH (low) 2008 6.5-9 — 1. 5.9-8.0

* See references, appendix A.

** Secondary standard for iron (water supply)
ND = not detected

Cfs = cubic feet per second

Mg/L = micrograms per liter

Aquatic invertebrate sampling was conducted during at one location in 2006 and four locations
in 2007 in the Yellowstone River Drainage. The sites included: Soda Butte Creek near Silver
Gate, MT, Soda Butte Creek at Buffalo Ranch, Gardner River at Rescue Creek trail crossing, and
Reese Creek.

Benthic macroinvertebrates samples were collected to evaluate the overall health of selected
streams. Although results for the 2008 invertebrate samples are still being processed, results for
the 2006 and 2007 samples have been analyzed and compared to the State of Montana
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impairment score. State of Montana impairment scores for streams are expressed as a range from
0 to 1 (O=most impaired, 1=least impaired).

One site, Soda Butte Creek near Silver Gate, MT, was monitored for macroinvertebrates in 2006.
Metric scoring for Soda Butte Creek was determined to be 0.85. When these data are compared
with the suggested State of Montana impairment score, the site rates as a stream that is fully
supportive of aquatic life, with no evidence of impairment.

The metric scoring for 2007 ranged from 0.52 at Reese Creek to 0.95 at Lower Soda Butte. The
score for the regulatory location at Soda Butte Creek near Silver Gate, MT was 0.86. Impairment
scores for the sites on Gardner River and Reese Creek indicate that the current water quality is
only partially supporting of aquatic life with moderate impairment. The invertebrate sampling
site on the Gardner River is located approximately 3 kilometers below the Boiling River, a
thermal area that discharges approximately 25 cfs daily to the Gardner River. Flow within Reese
Creek is often altered during summer months for irrigating adjacent lands outside Yellowstone.
Both the thermal contribution to Gardner River and low stream flows on Reese Creek could
increase water temperatures and affect aquatic communities living within the stream. Closer
monitoring of the invertebrate communities on these two stream sections are needed to establish
a baseline for future evaluation of stream water quality.

3.3.2 Madison River Drainage
Two locations within the Madison River Drainage did not meet state or federal standards:
Firehole River near Madison Junction and Gibbon River near Madison Junction (table 7).

The Madison River Drainage in the western portion of Yellowstone is dominated by geothermal
activity. As a result, water entering this drainage varies considerably in acidity and temperature.
The temperature and pH values that did not meet state/federal standards observed in the Firehole
River and Gibbon River, respectively, are mostly likely a result of local geology and thermal
activity in this region of the park. As a result, aquatic life has evolved with these conditions and
should be minimally impacted by seasonal temperature changes and subtle changes in pH. Since
these conditions are naturally occurring, there will likely be no long-term, negative effect to
water quality, aquatic biota, or recreational use within this portion of the park.

Table 7. 2007—2008 water quality sampling locations in the Madison River Drainage of Yellowstone
where constituent concentrations did not meet applicable standards

Site Parameter Year Standard* Units ExcegQance/ Range of values
# of visits
Firehole River near  Water 2008 227 °C 112 5.2-24.3
Madison Junction Temperature
i i 2007 112 5.7-7.9
Gibbon River near pH (low) 6.5-9 _
Madison Junction 2008 3/12 6.3-7.1

* See references, appendix A.

Aquatic invertebrate sampling was conducted in August of 2007 and 2008 at one location in the
Madison River Drainage: Gibbon River at Madison Junction.

Benthic macroinvertebrates samples were collected to evaluate the overall health of selected
streams. Although results for the 2008 invertebrate samples are still being processed, results for
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the 2006 and 2007 samples have been analyzed and compared to the State of Montana
impairment score (MTDEQ 2004). State of Montana impairment scores for streams are
expressed as a range from 0 to 1 (0=most impaired, 1=least impaired).

Using the metric scoring criteria for Montana streams, the site on the Gibbon River scored very
low in 2007 (0.17). Water quality at this site is heavily influenced by thermal areas along the
lower 21 kilometers of the stream. These thermal features contribute greatly to increased water
temperatures and chemical component of stream water. Additionally, the site selected on the
Gibbon River is not an ideal invertebrate collection site due unstable substrate which is
composed primarily of sand and fine gravel. Because of the stream’s thermal areas, the Montana
scoring criteria is not an appropriate use for this stream and a more appropriate index is needed.
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4 Summary

Overall, waters within the GRYN are of high quality and do not indicate significant degradation,
as would be expected for water bodies in national parks and preserved lands. Water quality
sampling is slated to continue at the current frequency pending budgetary constraints. Members
of the GRYN water quality oversight committee are working with statisticians to develop trend

analyses for parameters of concern within the parks. Trend analysis is slated to be complete
by 2011.
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