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ABSTRACT

GENETIC CONSIDERATIONS FOR THE CONSERVATION AND
MANAGEMENT OF YELLOWSTONE CUTTHROAT TROUT

(ONCORHYNCHUS CLARKII BOUVIERI) IN YELLOWSTONE

NATIONAL PARK

David Joel Janetski
Department of Integrative Biology

Master of Science

A key component to conservation is an accurate understanding of genetic subdivision
within a species. Despite their ecological and economic importance, relatively little is
understood about the genetic structuring of Yellowstone cutthroat trout in Yellowstone National
Park. Here, we use traditional (Fy, Ry, Nm, and AMOVA) and modern (Bayesian assignment
tests, coalescent theory, and nested clade analysis) analytical approaches to describe the
population genetic subdivision of cutthroat trout spawning populations in Yellowstone Lake and
to identify genetically distinct population segments throughout Yellowstone National Park.
Evidence for restricted gene flow between spawning populations within Yellowstone Lake was

detected using nested clade analysis. This is the first molecular evidence for restricted gene flow
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between spawning populations in Yellowstone Lake. In contrast, traditional methods such as Fy
and Ry as well as the Bayesian clustering program STRUCTURE v2.0 failed to detect evidence
for restricted gene flow. Across our sampling range within Yellowstone National Park, eleven
genetically distinct cutthroat trout population segments were detected. These showed a general
pattern of small, isolated populations with low genetic diversity in headwater streams and wide-
spread, genetically diverse populations in higher-order rivers. We recommend populations be
managed to maintain current levels of genetic diversity and gene flow. Based on the recent
decline of and distinct morphological, behavioral, and genetic nature of cutthroat trout in
Yellowstone Lake, we recommend the Yellowstone Lake spawning populations collectively be

recognized as an evolutionarily significant unit.
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INTRODUCTION

The identification of conservation units (i.e. distinct population segments, evolutionarily
significant units, stocks, etc.) within a species is critical to maintaining genetic diversity, making
it an important management objective (Waples 1994; Wang et al. 2002; Reed and Frankham
2003). An important step in this process is the identification of genetically distinct populations.
Preserving these populations helps maintain total genetic diversity, which reinforces the species’
ability to persist over time (O’Brien et al. 1985; Allendorf and Leary 1988; Spielman et al.
2004). The loss of genetic diversity within a species increases extinction risk through an overall
decreased ability to adapt to environmental change and a reduction in fitness due to increased
inbreeding (Newman and Pilson 1997; Amos and Balmford 2001). In addition to contributing to
total genetic diversity, genetically distinct populations are important to the evolutionary legacy
of a species. These populations often occur at the periphery of a species’ range, an area where
the first steps in speciation (i.e. genetic divergence and local adaptation) are thought to take place
(Lesica and Allendorf 1995). Conserving genetically unique populations therefore decreases the
likelihood of extinction and allows for the continued evolution of the species.

The application of genetic data to conservation is evident in the management of Pacific
salmon. Information regarding population genetic structure has repeatedly helped fisheries
managers identify and prioritize genetically distinct populations, or stocks, in order to preserve
genetic diversity (Wilson et al. 1987; Allendorf et al. 1997; Small et al. 1998; Shaklee 1999;
Guthrie and Wilmot 2004; Quinn 2005; Beacham et al. 2006). Experimental evidence has shown
that native salmon stocks exhibit greater survival and fitness than transplanted salmon,
suggesting native stocks are adapted to local environmental conditions (Brannon and

Hershberger 1984; Reisenbichler 1988; Mayama 1989) and justifying management at the



population level. While a tremendous effort has been made to classify stocks of anadromous
salmonids, the use of genetic data to identify conservation units in nonanadromous salmonids
(e.g. inland cutthroat trout) has received less attention (Gresswell et al. 1997) despite the
threatened status of many indigenous trout populations in western North America (Behnke 2002;
Young 2002; Quinn 2005).

The most widely distributed non-anadromous native trout in western North American is
the cutthroat trout. Behnke (2002) recognized fourteen subspecies of cutthroat trout, two of
which are extinct and three of which are listed as threatened under the Endangered Species Act.
Each subspecies has generally been managed as a single conservation unit. In fact, extensive
analysis of population genetic structure (beyond quantifiying levels of introgression) is limited to
studies on just a few subspecies, mainly coastal, westslope, Lahontan, and Yellowstone cutthroat
trout outside of Yellowstone National Park (Leary et al. 1989; Wenburg et al. 1998; Nielsen and
Sage 2002; May et al. 2003; Taylor et al. 2003; Young et al. 2004). The potential for classifying
distinct conservation units within the cutthroat trout subspecies remains largely unexplored.

Historically, one of the most abundant subspecies of cutthroat trout has been the
Yellowstone cutthroat trout (YCT), Oncorhynchus clarkii bouvieri. Yellowstone Lake, located
in Yellowstone National Park (YNP), is home to the largest genetically pure population of
cutthroat trout in the world. That population has been estimated at over one million adult fish
(Behnke 2002). In the last decade, however, the population has plummeted in Yellowstone Lake
due to the introductions of lake trout and whirling disease (Koel et al. 2005). YCT in the
Yellowstone River watershed below Yellowstone Falls, withinYNP, are also threatened by
hybridization with nonnative rainbow trout and by competition with introduced brown and brook

trout (Behnke 2002; Koel et al. 2005). As a direct result of these threats, YCT are considered a



sensitive species by many state and federal natural resource agencies (Young 2002). Although
rejected in 2001 and 2006 (U.S. Fish and Wildlife Service 2001, 2006), the YCT was petitioned
in 1998 (Biodiversity Legal Foundation et al. 1998) and 2004 (U.S. Fish and Wildlife Service
2006) for federal listing as a threatened species under the Endangered Species Act. Rejection for
listing was based primarily on the healthy status of river populations of YCT (U.S. Fish and
Wildlife Service 2006), although it is unknown whether or not genetically distinct populations
exist within the species’ range (i.e. lacustrine vs. fluvial). It is imperative to identify genetically
pure (non-hybridized) and genetically distinct populations as numbers continue to decline and
conservation efforts intensify.
Objectives

The objective of this study was to determine the genetic makeup of native YCT
populations in YNP. This information provide data about the genetic diversification of YCT
following a relatively recent invasion (8,000 to 12,000 years ago, Behnke 1992) into a glaciated
alpine region. The genetic data can also be combined with ecological data to identify
conservation units (Crandall et al. 2000; Pennock and Dimmick 1997). Here, we used the term
‘genetically distinct population segment’ to denote a population with restricted gene flow
between it and surrounding populations. We used the definition of Crandall et al. (2000) for
evolutionarily significant unit (ESU), which is a genetically distinct population segment that also
exhibits ecological differentiation (e.g. life history and morphological characteristics);
individuals from an ESU are not exchangeable with outside individuals from a genetic or
ecological standpoint. Our focus was to gather information in order to identify genetically
distinct populations, however life history and/or morphological information was applied when

available in order to identify potential ESUs.



We tested two hypotheses with regards to YCT population structure in Yellowstone Lake
and throughout YNP: (1) spawning populations of cutthroat trout within Yellowstone Lake are
genetically structured because they return, or home, to their natal stream each year to spawn, and
(2) YCT throughout YNP are genetically structured in association with geographical barriers.
Both of these hypotheses were tested against a null hypothesis of a lack of population genetic
structure throughout YNP.

The homing of YCT in Yellowstone Lake is well documented. Experimental evidence
from mark-recapture studies has suggested approximately 3% of spawning fish stray from their
natal stream to spawn (Ball 1955; Cope 1957; McCleave 1967). An inverse relationship between
straying rate and population genetic structure has been demonstrated in Pacific salmon species
(Hendry et al. 2004; Quinn 2005). Pink salmon have relatively low levels of genetic structuring
and their straying rate has been estimated at 5.1% (Thedinga et al. 2000). Sockeye and chinook
salmon have a higher level of genetic structuring and approximate straying rates of 1.5%
(Foerster 1936) and 1.4% (Quinn and Fresh 1984), respectively. The 3% straying rate of YCT
lies approximately halfway between the extremes within these salmon species, so it is reasonable
to expect YCT spawning populations in Yellowstone Lake exhibit some restricted gene flow and
genetic differentiation.

Additional support for genetic structuring in Yellowstone Lake is provided by studies on
YCT morphological and life history traits. Bulkley (1963) detected variation between spawning
populations in potentially heritable mophological traits such as spotting, number of hyoid teeth,
and coloration. Behavioral differences were reported by Bowler (1975), who examined fry
movement in spawning populations of outlet vs. inlet streams in Yellowstone Lake. Differences

were detected in fry movement between the two populations with a greater proportion of



upstream movement exhibited by fry from the outlet population than by fry from the inlet
population. Most recently, Gresswell et al. (1994, 1997) documented significant differences in
mean spawning time and total body length between Yellowstone Lake spawning populations.
These findings suggest spawning populations in Yellowstone Lake are locally adapted and
reproductively isolated by space and time.

Our second hypothesis is that geographical barriers throughout YNP have led to
fragmentation and genetic structuring of YCT populations. Studies of westslope cutthroat trout
have shown restricted gene flow to be associated with the presence of waterfalls (Taylor et al.
2003). Many potential barriers (i.e. waterfalls, geothermal lakes, the continental divide, etc.)
exist in the park, providing a basis for the hypothesis that populations are fragmented and
genetically structured.

Besides presenting a unique set of management circumstances, the post-glacial invasion
of YNP by YCT provides an opportunity to use a variety of analytical techniques to test
hypotheses about recently developed population genetic structure. Despite advances in software
programs for analyzing genetic data, many researchers continue to rely heavily on traditional
methods (i.e. Fs, Ry, Nm, and AMOVA) whose assumptions are often violated by natural
populations (Pearse and Crandall 2004). Modern analytical techniques (Bayesian assignment
tests, coalescent theory, and nested clade analysis) claim to have increased power to detect
population genetic structure. This study compares the ability of several traditional and modern
analytical techniques to describe population structure and detect restricted gene flow in a

population with low levels of genetic divergence.



MATERIALS AND METHODS

Study Area

The habitat available to Yellowstone cutthroat trout (YCT) in Yellowstone National Park
(YNP) has been shaped by both geologic and climatic events. Yellowstone Lake is a caldera
lake formed from a volcanic explosion approximately 600,000 years ago (Good and Pierce
1996). YNP has also been repeatedly glaciated, most recently by the Pinedale glaciation, which
lasted from 12,000 to 30,000 years ago (Love et al. 2003). Approximately 12,000 years ago the
glaciers receded, gradually making fluvial and lacustrine habitat available for fish. YCT in YNP
therefore represent a newly established population relative to their ancestors in the lower Snake
River.

Between 8,000 and 12,000 years ago YCT invaded the Yellowstone River drainage via
Two Ocean Pass, a marsh located at the continental divide connecting Pacific Creek and Atlantic
Creek (Behnke 2002). This passage still exists today, but populations on either side are believed
to be reproductively isolated from each other based on life history differences (Behnke 2002).
Once across the continental divide, YCT spread throughout the Yellowstone River system and
also became firmly established in Yellowstone Lake. YCT spawning has been documented in 68
of 124 tributaries to the lake (Gresswell et al. 1997). These tributaries provide a variety of
temperature and flow regimes to which spawning populations could potentially adapt. As
mentioned previously, an estimated 97% of YCT in Yellowstone Lake return to their natal
stream each year to spawn (Ball 1955; Cope 1957; McCleave 1967). Downstream from
Yellowstone Lake, genetically pure YCT populations are confined almost exclusively to small

order streams where introgression with introduced rainbow trout and competition with brown



and brook trout is nonexistent. The upstream migration of these non-native species is blocked by
natural barriers such as Yellowstone Falls.

Since the establishment of YNP in 1872, YCT have played an important role in the local
economy. The economic value of the Yellowstone Lake ecosystem has been estimated at $36
million per year based on the number of angler days on the Yellowstone River, Yellowstone
Lake, and tributaries to the lake (Gresswell and Liss 1995; Varley and Schullery 1995). In
addition, the economy is fueled by fish watchers, who come to observe native YCT at fishing
bridge below Yellowstone Lake and at LeHardy Rapids on the Yellowstone River. It has been
estimated that over a third of a million people participate in fish watching each year, which
exceeds the average annual number of angler days for all of YNP (Gresswell and Liss 1995). In
addition, 22 mammal and 20 bird species are known or suspected to utilize YCT as a food source
(Varley and Schullery 1995), including grizzly bears, bald eagles, and pelicans (Stapp and
Hayward 2002; Haroldson et al. 2005). These predators may consume as many as 300,000
cutthroat trout annually (Behnke 2002). The critical role of YCT in the economy and ecosystem
justifies the exploration of their genetic makeup for purposes of conservation.

Cutthroat trout in the lake have been devastated by the recent introductions of lake trout
and whirling disease (Koel et al. 2005). Lake trout were officially reported in the lake on July
30, 1994, although unofficial reports had preceded the announcement by a number of years.
Lake trout do not hybridize with YCT, but are highly piscivorous and will readily eat YCT
(Kaeding et al. 1996). An average lake trout consumes an estimated 41 YCT each year (Ruzycki
et al. 2003). Since 1994 over 100,000 lake trout have been removed by Yellowstone biologists

in an effort to curtail damage to the YCT population (Koel et al. 2005).



The second major cause for the decline in YCT numbers in Yellowstone Lake has been
whirling disease. This protozoan parasite induces considerable mortality in young of the year
cutthroat trout by causing cranial deformities during their early stages of development
(Thompson et al. 1999). Biologists believe the disease may be largely responsible for the decline
of certain spawning populations in Yellowstone Lake. For example, in Pelican Creek (a major
tributary to Yellowstone Lake) YCT spawners numbered near 30,000 in 1981 (Koel et al. 2005)
but in 2004 only 5 fish returned to the stream to spawn (Dan Mahoney, National Park Service,
personal communication). Declines of this nature can be found in a number of streams entering
the lake.

Sampling and genetic data collection

To test the hypothesis of genetic structuring in Yellowstone Lake, 300 YCT representing
10 spawning populations (or tributaries) (Table 1, Figure 1) and 30 YCT from Sedge Creek were
examined. Sedge Creek, a tributary to Yellowstone Lake, has been isolated for approximately
8,000 years by a geothermal lake (Kaplinski 1991). Muscle and liver samples were taken from
whole fish collected with an electroshocker and frozen at -80°C.

In order to understand the population structure of YCT throughout Yellowstone National
Park (YNP), an additional 817 fin clips were obtained from seven locations in the upper Snake
River watershed and 16 locations in the Yellowstone River drainage. Five of these locations
were tributaries to Yellowstone Lake: Clear Creek, Yellowstone River at LeHardy Rapids,
Thorofare Creek, Atlantic Creek, and Yellowstone River above Yellowstone Lake (Table 1,
Figure 2). One location, Pacific Creek, is not actually in YNP but is included because it is

believed to represent the invasion route for YCT from the Snake River to the Yellowstone River



drainage (Behnke 2002). Fin clips were stored in 95% ethanol. All samples were accessioned
into the Monte L. Bean Life Science Museum at Brigham Young University.

Because sampling occurred over a period of 18 years it is possible that a temporal change
in population structure has occurred. This could potentially complicate comparisons between
populations collected at different times because of the difficulty in separating temporal variation
from spatial variation. Conclusions vary from previous studies on temporal change in salmonid
population structure (Laikre et al. 1998; Nielsen et al. 1999; Tessier and Bernatchez 1999; Heath
et al. 2002), suggesting temporal stability is dependent on the system. We failed, however, to
detect significant differences (Fst values were not significantly different from zero) in haplotype
or allele frequencies at locations where replicate samples were taken in 1987 and 2005 (Clear
Creek, Yellowstone River at LeHardy Rapids, and Cache Creek) and therefore assumed temporal
genetic stability.

DNA Extraction and PCR

DNA extraction from frozen muscle tissues was performed according to the protocol for
animal tissues in the Qiagen DNeasy kit (Qiagen Inc., Valencia, CA). DNA was isolated from
fin clips stored in ethanol using the pureGene DNA purification kit (Gentra Systems Inc.,
Minneapolis, MN).

Amplification of the NADH dehydrogenase subunit 1 and 2 genes (ND1, ND2; 2,286
base pairs) from the mitochondrial genome was performed by polymerase chain reaction (PCR)
according to protocol used by Shiozawa and Evans (2001) using four sets of internal primers
developed in our lab (Table 2). PCR was performed in 20 pl reactions consisting of DNA
template (~100 ng), deoxyribonucleotides (0.125 mM each), primers (10 pM each), buffer (10

mM Tris-HCI, 1.5 mM MgCl,, 25 mM KCI), and Taq polymerase (0.25 units). Reactions were



run on an MJ Research PTC-225 Peltier TC tetrad (Bio-Rad Laboratories, Inc., Hercules, CA).
PCR products were cycle sequenced using ABI Big Dye terminator protocol (Applied
Biosystems, Inc., Foster City, CA) for 10 seconds at 96.0°C, 5 seconds at 50.0°C, and 4 minutes
at 60.0°C for 24 cycles. The Big Dye product was cleaned with Sephadex G-50 medium
(Sigma-Aldrich Co., St. Louis, MO) and electrophoresed on an ABI 3730 XL automated
sequencer. Sequences were aligned and cleaned using Sequencher v4.2 (GeneCodes Corp., Ann
Arbor, MI).

Early analysis of cutthroat trout population genetic structure in Yellowstone Lake using
protein electrophoresis and mitochondrial DNA (mtDNA) failed to detect genetic differences
between spawning populations (Shiozawa and Williams 1992). However, newly developed
analytical techniques and molecular markers with higher levels of variability (e.g.
microsatellites) have not yet been tried. Microsatellites have a high amount of variation due to
an inherent high mutation rate (Weber and Wong 1993) and are therefore especially informative
in identifying recent shifts in population structure (Hendry et al. 2000). We used six
microsatellite loci to examine the partitioning of genetic variation in Yellowstone Lake and YNP
(Table 3). PCR was performed in 20 pl reactions consisting of the same components as the
mtDNA reactions described above. The following thermal profile was used for microsatellite
amplification: initial denaturation for 2 min at 93°C, then 40 cycles for 15 sec at 93°C, 1.5 min at
60, 54, or 50°C, 1.5 min at 72°C, followed by a final 10 min extension at 72°C (Rexroad III and
Palti 2003). Two multiplexes were run: (1) Ots107, Omm1036, and Fgt3, and (2) Ocl8, Ssa85,
and Omm1241. In order to reduce stuttering and clarify allele peaks, a pigtail sequence of
GTTTCT was added to the 5° end of Ocl8-R, Ssa85-R, and Omm1241-R. Alleles were scored

and binned using Genotyper v2.5 (Perkin Elmer).
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DATA ANALYSIS
Measuring introgression

Detecting genetically pure populations is a high priority for species in which
hybridization with non-native species is common (Allendorf et al. 2001; May et al. 2003).
Populations containing a high proportion of native genes are typically a higher priority for
conservation than introgressed populations (Utah Division of Wildlife Resources 2000). To
assess levels of YCT hybridization with rainbow trout in the lower Lamar River drainage we
screened ten populations for the presence of rainbow trout alleles and mtDNA haplotypes (Table
4, Figure 3). This was done by amplifying two microsatellite markers (Ocl8 and Ssa85, Table 3),
one nuclear marker (ITS-2, Table 2), and a portion of ND2 from the mitochondrial genome.
These populations were analyzed strictly to assess introgression and were therefore not used in
the analyses described below, with the exception of YCT mtDNA haplotypes from Lamar River,
Lamar River across from Geyser basin, and Slough Creek section 1. Percent introgression per
population was estimated by screening for rainbow trout nuclear alleles and mtDNA, which is
readily distinguished from YCT mtDNA because of a relatively high sequence divergence (~8%,
Allendorf et al. 1988). It should also be noted that the two microsatellite markers and ITS-2 are
only able to differentiate between cutthroat trout and rainbow trout, not between cutthroat trout
subspecies.
Nested clade analysis

Examination of the relationship between haplotype distribution and geographical
proximity can often reveal a great deal about population history (Templeton et al. 1995). Nested
clade analysis (NCA) is a tool for identifying historical processes (i.e. fragmentation,

colonization, or range expansion) that have led to the current distribution of genetic variation
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(Templeton et al. 1995; Templeton 1998). Here, NCA was used to test for isolation,
fragmentation, and/or restricted gene flow between YCT populations against the null hypothesis
of panmixia. A minimum spanning haplotype network for ND1 and 2 was created by statistical
parsimony implemented in TCS v1.21 (Clement et al. 2000). Nesting categories, or clades, were
assigned according to Templeton (1998). Approximate linear river distances (km) were obtained
using a digital chartmeter and a 1:100,000 topographic map (Fetzner and Crandall 2003).
Statistical analysis of the nested haplotype network and geographic distance was performed
using GEODIS v2.5 (Posada et al. 2000) with 10,000 replications. Phylogeographical inferences
were made for clades with significant clade distances (Dc, the spatial spread of the clade) and/or
nested clade distances (Dn, the distance of the clade from other clades in the same nesting
category) according to Templeton’s inference key (2004).
Isolation by distance

The isolation by distance option (Rousset 1997) implemented in GENEPOP v3.4
(Raymond and Rousset 1995) was used to test for a correlation between river distance (km) and
genetic divergence [Fg /(1- Fy)] using 10,000 permutations. P-values were calculated by
regression analysis. Linear river distances were the same as those used above in GEODIS v2.5.
Pairwise Fg and Ry values were calculated using ARLEQUIN v2.0 (Schneider et al. 2000). The
Sedge Creek population was already known to be fragmented and genetically distinct (Dennis
Shiozawa, personal communication) and was therefore not included in this analysis.
Population Structure and Genetic Diversity

Summary statistics about the six microsatellite loci were obtained using FSTAT v2.9.3.2

(Goudet 1995). This included the number of alleles per locus and population, genetic diversity,
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and allelic richness per locus (corrected for sample size) and population as well as over all
populations.

Departure from Hardy-Weinburg equilibrium can bias estimates of Fy by violating the
assumptions of F-statistics (e.g. stable population size and migration-drift equilibrium; Pearse
and Crandall 2004). Therefore, significant deviations from expectations under Hardy-Weinberg
equilibrium were determined using the locus by locus exact test (chain length = 100,000)
implemented in ARLEQUIN v2.0 (Schneider et al. 2000) for each population. Pairwise tests
(chain length = 100,000) for linkage disequilibrium were also performed for each population
using ARLEQUIN v2.0 (Schneider et al. 2000).

Population structure was described using Fg (Weir and Cockerham 1984) for mtDNA and
Ry (Slatkin 1995) for microsatellite loci. Ry is generally considered a more accurate estimate for
microsatellite loci because it uses the stepwise mutation model (SMM) of evolution and takes
into account the mutation rate of microsatellites, which can be as high as 107 per generation
(Weber and Wong 1993). Fy and Ry were calculated separately for 1) Yellowstone Lake
spawning populations and 2) populations located elsewhere in YNP. Migration rates were
estimated using the equation Fg = 1/(4Nm + 1) (Wright 1951) where Nm equals the number of
effective migrants per generation. The partitioning of genetic variation among and within
regions and within populations was calculated by analysis of molecular variance (AMOVA)
(Excoffier et al. 1992) at 10,000 permutations. Regions were initially defined by drainage:
Snake River, Yellowstone River, and Lamar River. Fg, Ry, Nm, and AMOVA calculations were

performed using ARLEQUIN v2.0 (Schneider et al. 2000).
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Defining populations

It is likely the sampled “populations” do not reflect the actual spatial genetic subdivision
of populations. While Fg can provide some information about the similarity of populations, the
assumptions made in making this estimation (i.e. migration-drift equilibrium between
populations) are biologically unrealistic and require defining populations a priori (Pearse and
Crandall 2004). A more reasonable approach is to allow the data to define the populations
before analyzing them. This method is implemented in the Bayesian clustering program
STRUCTURE v2.0 (Pritchard et al. 2000). We used STRUCTURE to define the number of
populations in each of the following three regions based on allelic data from six microsatellite
loci: Yellowstone Lake, Snake River drainage, and Yellowstone River drainage. A burnin
period of 25,000 iterations was followed by 100,000 Markov chain Monte Carlo (MCMC)
repetitions. The best estimate of K (equal to the number of populations) was defined as the least
negative Ln P(D) value (the natural log of the probability of the data given a particular K value)
or the K value at which Ln P(D) began to stabilize.

The use of sequence data in STRUCTURE is not recommended because the program
assumes each nucleotide is a separate, unlinked locus. Therefore we did not include mtDNA
data in this analysis. However, any significant inconsistencies between the STRUCTURE results
and mtDNA Fy; values were taken into account as we defined our populations. These new
populations, or STRUCTURE-defined populations, were considered genetically distinct
population segments and used in the analyses described below for estimating effective

population size and migration rates.
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Migration rates and effective population size

Using Fy to calculate the effective number of migrants per generation (Nm) relies on
assumptions that are often violated by small, isolated populations (Pearse and Crandall 2004).
Coalescent-based methods for estimating effective population size and migration rates are better
able to utilize all the information contained in the data and do not rely on the same assumptions.
For example, traditional approaches such as Nm are unable to estimate asymmetric gene flow
between two populations. We used the coalescent-based program LAMARC v2.0.2 (Kuhner et
al. 2005) to estimate theta (0) and migration rate (M) as part of our objective to determine the
genetic status of YCT populations in YNP. Both of these parameters offer useful information
about extinction risk and gene flow. Theta can be used to obtain an estimate of effective
population size; populations with low effective population sizes may exhibit decreased fitness
(Newman and Pilson 1997) and are therefore at increased risk of extinction. Migration rate
estimates provide information about gene flow that can assist in the identification of distinct
population segments.

The data were divided into two sets—one with the STRUCTURE-defined populations
from the Snake River drainage, Yellowstone Lake, and Sedge Creek, and the second with the
STRUCTURE-defined populations from the Yellowstone River drainage (including Yellowstone
Lake). Thirty individuals were selected at random from each population to be included in the
two data sets. The decision to divide the data into two sets and use only thirty individuals from
each population was based on recommendations by Kuhner et al. (2005), who suggest a
maximum of five or so populations and 20-30 individuals from each population. Any more than
this and the program cannot estimate all the parameters effectively and computation time

increases dramatically.
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Two options for modeling sequence evolution are available in LAMARC, F84 and GTR.
We used MODELTEST v3.7 (Posada and Crandall 1998) executed in PAUP* (Swofford 2000)
to determine which of these two models is most likely to generate the observed patterns of our
data. Base frequencies and relative mutation rates were generated in the same manner. Separate
runs were performed for mtDNA and microsatellites for each of the two data sets. Under the
Bayesian setting, one initial chain (mtDNA: samples = 4,000, interval = 15, burnin = 5,000;
microsatellite DNA: samples = 5,000, interval = 25, burnin = 6,250) and one long chain
(mtDNA: samples = 250,000, interval = 40, burnin = 100,000; microsatellite DNA: samples =
100,000, interval = 50, burnin = 100,000) were run. Ten replicate runs with different random
number seeds were executed for each data set.

Effective population size (N, for microsatellites, N or effective number of females for
mtDNA) for each population was estimated using the equations 6 =4 N, p and 6 =2 N¢ p for
microsatellite and mtDNA, respectively (6 = theta; u = per site mutation rate) (Kuhner et al.
2005).

Migration rate (M) is equal to m/p where m is the per-generation migration rate and p
equals the per site mutation rate. M was converted to the effective number of migrants per
generation (Nm) according to the equation Nm = M/(40ccipient population) (Kuhner et al. 2005).
These values were then compared to Nm estimates produced by ARLEQUIN v2.0 [Fy = 1/(4Nm
+ 1), Wright 1951].

We assumed a mutation rate of 10~ for microsatellites and 8.33x10” for mtDNA. These
approximations were chosen because the six microsatellite markers we used generally had a high
number of unit repeats, which increases mutation rates (Lai and Sun 2003). The mutation rate of

salmonid mtDNA has been estimated at 1/3 to 1/2 that of higher vertebrates (G.R. Smith,
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Museum of Zoology, University of Michigan, Ann Arbor, Michigan, pers. comm., from

Billington and Hebert 1991), which have a rate of 2% per million years, or 2x107 (Brown et al.
1979). While choosing an estimate for mutation rate is debatable, knowing the actual mutation
rate is not essential for comparing of effective population sizes between populations within the

study area.

RESULTS

Introgression

Rainbow trout genes were detected in six out of ten populations: Slough Creek (sec. 1),
Lamar River, Lamar River canyon, Lamar River at Soda Butte Creek, Lamar River across from
Geyser Basin, and Pebble Creek at bridge to Soda Butte Creek (Table 4). Also, one individual
with a rainbow trout haplotype was found in Heart Lake; this fish was removed from all
subsequent analyses. Additionally, three westslope cutthroat trout mitochondrial haplotypes
were found: one in the Yellowstone River below Yellowstone Lake, one in Slough Creek (sec.
1), and one in Lamar River. The individual from Yellowstone River below Yellowstone Lake
was removed from the analysis. The presence of the rainbow trout haplotype in Heart Lake and
the westslope cutthroat trout haplotype in Yellowstone River below Yellowstone Lake creates
the possibility that a small number of undetected, non-native microsatellite alleles are present in
the data set. This is of minimal concern, however, as very low levels of introgression have been
reported to not significantly alter the results of population genetic analyses (Wenburg et al.

1998).
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Nested clade analysis

A total of 943 individuals were sequenced and 86 haplotypes were detected. Sixty-five
of these haplotypes were detected from the 410 individuals sequenced from the Yellowstone
Lake spawning populations. The distribution of haplotypes in the Yellowstone Lake spawning
populations and the YNP populations is shown in figures 4 and 5, respectively. Three dominant
haplotypes were identified, two of which (‘A’ and ‘B’) occurred throughout the study area but
primarily in the Yellowstone River drainage. The third (‘S1°) occurred exclusively in the Snake
River drainage. Maximum sequence divergence between haplotypes was 0.35% (8/2286 base
pairs).

The haplotype network generated with TCS indicated most haplotypes differed from one
of the two dominant haplotypes (‘A’ and ‘B’) by one or two base pairs. Twenty-one one-step
clades and three two-step clades were identified (Figure 6). GEODIS analysis of these clades
revealed significant (p<0.05) within clade (D) and/or nested clade (D,) distances in seven one-
step clades, all three two-step clades, and the total cladogram. Using Templeton’s (2004)
inference key, two of these significant values (clades 1-11 and 1-15) were inconclusive due to
inadequate geographical sampling. Six clades (1-4, 1-5, 1-6, 1-12, 1-20, and 2-1) showed
restricted gene flow with isolation by distance. Clade 2-2 and the total cladogram exhibited
restricted gene flow/dispersal but with some long distance dispersal. It should be noted that two
of the significant one-step clades within clade 2-2 were from Yellowstone Lake. Finally, clade
2-3 showed past fragmentation and/or long distance colonization (Table 5).

Isolation by distance
Regression analysis of geographic river distances (km) and genetic distance [Fg /(1- Fy)]

revealed a small but significant correlation for both mtDNA and microsatellite data (Figures 7
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and 8). The proportion of variation in genetic distance explained by variation in river distance
was r” = 0.18, p = 0.000000 for mtDNA and r* = 0.12, p = 0.000000 for microsatellites.
Population structure and genetic diversity

Five of the six microsatellite loci amplified were highly polymorphic, with the number of
alleles/locus ranging from seven to 38. The least polymorphic locus was Ssa85, for which one
allele was found at very high frequencies (70-100%) in all populations except Forest Creek.
With a few exceptions, genetic diversity for all loci except Ssa85 ranged from 0.6-0.95. Genetic
diversity for Ssa85 was much lower, generally falling from 0.2 to 0.6. Allelic richness was as
low as 1 in Sedge Creek and upper Antelope Creek and as high as 13.48 in the Yellowstone
River at LeHardy Rapids (Table 6).

Significant deviations (p<0.05) from expectations under Hardy-Weinburg equilibrium
were detected in 27 out of 174 (15.5%) possible occurrences (29 populations x 6 loci) (Table 7).
This could be due to genotyping errors or the presence of null alleles, which would result in an
underestimation of heterozygosity. This seems a likely explanation because observed
heterozygosity was less than expected heterozygosity in all 27 detected deviations.

Linkage disequilibrium occurred for 47 out of 405 (11.6%) locus by locus pairwise
comparisons (p<0.01). However, no two loci were linked more often than others, suggesting that
the observed level of linkage disequilibrium is due to population-specific errors in identifying
and scoring alleles.

Population structure as described by Fs (mtDNA) and Ry (microsatellites) was low in the
pairwise population comparisons of the Yellowstone Lake spawning populations. Only 2 out of
78 possible comparisons had significant (p<0.05) Fy values while 11 out of 78 pairwise Ry

values were significant (Tables 8 and 10). Both significant Fy and six of 11 significant Ry values
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occurred in comparisons with Yellowstone River at Fishing Bridge. The effective number of
migrants (Nm) was generally high (after correcting for haploid and maternal inheritance of
mtDNA) for nearly all pairwise population comparisons for Yellowstone Lake, ranging from
3.03 to infinity (Tables 9 and 11) with most being at or near infinity. Nm values were generally
higher for pairwise estimates based on mtDNA. The overall F and Ry determined by AMOVA
for Yellowstone Lake did not differ significantly from zero with values of 0.00576 (p = 0.20) and
-0.00563 (p = 0.75), respectively.

YCT populations located throughout YNP showed a higher level of genetic structuring
than those in Yellowstone Lake. Because very little evidence was detected for significant
structuring in the Yellowstone Lake spawning populations, the Yellowstone Lake populations
were grouped together for comparison with all other YNP populations. Fy and Ry values ranged
from insignificant (Ry; = 0.001 for Heart River vs. Snake River) to highly significant (Fs = 0.901
for Sedge Creek vs. Lamar River at Geyser Basin). Significant values (p<0.01) were found in
170 out of 190 pairwise F and 121 out of 136 pairwise Ry comparisons (Tables 12 and 14). Nm
values calculated from Fg and Ry ranged from 0.07 to infinity and were typically below 2.50,
evidence of restricted gene flow between populations (Tables 13 and 15). AMOVA indicated an
overall Fy of 0.316 for mtDNA and an Ry of 0.200 for microsatellites, both significantly
different from zero (p<0.00000). Variation among and within drainages (Snake River,
Yellowstone River, Lamar River) and within populations for mtDNA was 7.47%, 24.15% and
68.39%, respectively, and 6.26%, 13.72%, and 80.03% for microsatellites. Allele frequencies

for Fgt3, Ocl8, and Omm1241 are displayed respectively in figures 9, 10, and 11.
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Defining populations

The STRUCTURE results indicated that the most likely number of populations (K) in the
data set containing the Yellowstone Lake tributaries is two (Figures 12 and 13). One of these,
Sedge Creek, is an isolated population and has been inaccessible to spawning fish from
Yellowstone Lake for approximately 8,000 years (Kaplinski 1991). All other Yellowstone Lake
spawning populations and upper Pelican Creek were grouped into one cluster. The second
cluster, or population, consisted of the 30 individuals from Sedge Creek.

In the Snake River drainage, values for Ln P(D) began to stabilize at K= 4 (Figure 14),
one cluster of which consisted of the Yellowstone Lake samples, which were included in order to
verify that the Snake River populations are genetically distinct from Yellowstone Lake (past
stocking from Yellowstone Lake to the Snake River drainage in YNP may have occurred in the
past century, however we failed to detect any clear evidence that stocking altered the gene pool
of recipient populations). This suggests an actual population size of three in the upper Snake
River drainage. Clusters were composed of: 1) Heart Lake, Heart River, Sickle Creek, Pacific
Creek, most of Snake River (29/41), and part of Forest Creek (7/34), 2) Crooked Creek and part
of Snake River (12/41), and 3) most of Forest Creek (27/34) (Figure 15).

The Yellowstone River drainage had a least negative Ln P(D) at K = 5 (Figure 16), one of
which was Yellowstone Lake. The remaining four clusters consisted of (1) Trout Creek, (2)
McBride Lake and Slough Creek at confluence with Elk Tongue Creek, (3) Pebble Creek and
Cache Creek, and (4) upper and lower Antelope Creek (Figure 17).

AMOVA (using ARLEQUIN v2.0) of the STRUCTURE-defined populations supports
that the above designations as genetically distinct population segments represent the actual

division of populations. When groups were defined as described above (with the exceptions of
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Pacific Creek and Pebble Creek, which were separated based on significant Fy values as
described below) a much higher percentage of the genetic variation was attributed among groups
rather than among populations within groups as opposed to when groups were defined by
drainage. This suggests populations within the STRUCTURE-defined groups are very similar
from a genetic standpoint and that genetic variation is not partitioned by drainage, but rather by
populations within drainages. The values were as follows for variation among groups, among
populations within groups, and within populations, respectively: 30.70%, 2.24%, and 67.06%
(mtDNA) and 19.85%, -0.42%, and 80.57% (microsatellites).

Migration rates and effective population size

Analysis with LAMARC was performed after the original 29 sampling locations were
divided into 11 genetically distinct population segments based on the STRUCTURE results and
pairwise Fg values for mtDNA. These populations were identical to the clusters identified by
STRUCTURE but with two exceptions: Pacific Creek and Pebble Creek were separated from
their STRUCTURE-assigned clusters because of highly significant Fg values (based on mtDNA)
between those populations and others in their cluster.

Population set 1 consisted of 30 randomly selected individuals from each of the following
six STRUCTURE-defined populations: Crooked Creek, Snake River (Heart Lake, Heart River,
Sickle Creek, most of Snake River, and some of Forest Creek), Forest Creek, Pacific Creek,
Yellowstone Lake, and Sedge Creek. Population set 2 consisted of 30 randomly selected
individuals from each of the following: Trout Creek, Antelope Creek (upper and lower), Slough
Creek (McBride Lake and Slough Creek at confluence with Elk Tongue Creek), Pebble Creek,

Cache Creek, and Yellowstone Lake.
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Effective population sizes (N, computed as the average of the ten replicate runs) ranged
from 5.9 for Sedge Creek to 3179 for Pacific Creek (Table 16). Effective number of females
(Ny) ranged from 3.3 for Sedge Creek to 802 for Yellowstone Lake (Table 16). Estimations of
for N (which are expected to be equal to 2Ny) were generally 4-10 times greater than Ny, likely
because of inaccuracies in assuming a mutation rate. Both estimates (N, and Ny) followed
similar patterns for all populations, with the exception of Crooked Creek, which had a relatively
high N, and a low N¢. Also, Pacific Creek had the highest N, value and only the fifth highest N¢
value.

Migration rates were converted to effective number of migrants (Nm) using the equation
Nm = M/(46ccipient poputation) (KKuhner et al. 2005). Comparison of these values to Nm estimates
provided by ARLEQUIN [Fg = 1/(4Nm + 1)] revealed similar patterns, although the
ARLEQUIN estimates were generally four to ten times greater (Tables 17 and 18). Outliers (up
to two) were identified and omitted from the data set using the curvefiles produced by LAMARC
(see example in Figure 18). Nm values from LAMARC were generally less than one (the two
exceptions being Pacific Creek and Trout Creek), suggesting the STRUCTURE-defined

genetically distinct population segments are reproductively isolated.

DISCUSSION

Introgression

Introgression with rainbow trout appears to be highest in the lower Lamar River system,
including lower Slough Creek. Unexpectedly, very little evidence for introgression was detected
in the populations from upper Slough Creek, Pebble Creek, and upper Lamar River. Based on

our results, it appears that introgression is very low above the confluence of the Lamar River
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Soda Butte Creek. The only rainbow trout genes detected upstream from this location were in
one individual from Lamar River at Soda Butte Creek (heterozygous YCT x RT at Ocl8 and
Ssa85), one individual from Pebble Creek at bridge to Soda Butte Creek (heterozygous YCT x
RT at Ssa85; Table 4), and one individual from Lamar River across from beyser basin (RT
mtDNA; heterozygous YCT x RT at ITS-2, Ocl8, and Ssa85). Downstream from this location
toward the confluence of the Lamar River with Slough Creek, however, hybridization with
rainbow trout is low to moderate. The consistency of introgressed individuals between genetic
markers suggests these individuals are F1 (first generation) hybrids. The non-random
distribution of genes in the population suggests this is not a hybrid swarm. Rather, F1 hybrids
are either failing to reproduce or only one or two generations of hybridization have taken place.

The presence of three westslope cutthroat trout haplotypes is an indication that a small
number of these fish have been transferred into the Yellowstone River drainage by natural or
non-natural means. Transfer by humans seems the most likely explanation. This explanation is
also likely for the unexpected detection of an individual with a rainbow trout haplotype in Heart
Lake, although it is possible rainbow trout have migrated up the Snake River to Heart Lake.
Population structure and gene flow: Yellowstone Lake

Genetic diversity in Yellowstone Lake as a whole was high, but variation described by Fy
and Ry was generally not partitioned by spawning population. Instead, nearly all of the variation
occurred between individuals within populations. The only exception was in the small number
of significant F and Ry values detected in comparisons with Yellowstone River below
Yellowstone Lake. While this may be an indication of reproductive isolation of this population,

this conclusion is suspect because it is possible these results arose due to chance alone; at p<0.05

24



one in twenty comparisons will be significant due to chance alone, which is close to the
proportion we observed (13/156 or 8.33%).

The most likely explanation for the majority of the variation occurring between
individuals within populations is that gene flow between populations is retarding genetic
divergence. This is good evidence that straying fish are successfully reproducing in locations
other than their natal stream. A factor that may be important in increasing straying rates is
drought. During times of drought small spawning streams may either dry up completely or do
not get enough runoff to blow out sand bars built up at the mouth of the stream. Either of these
situations would prevent YCT spawners from entering the stream, likely forcing them to stray to
another stream to spawn. This, along with natural rates of straying, may explain much of the
gene exchange between spawning populations.

Based on the AMOVA (overall Fy) and STRUCTURE results, no evidence was found
that YCT in Yellowstone Lake are, from a genetic standpoint, anything but a panmictic
population. However, these methods often fail to detect population structure under moderate
levels of gene flow (Nm 2 5; Waples and Gaggiotti 2006). Interestingly, evidence for rejecting
the null hypothesis of panmixia in Yellowstone Lake was detected using nested clade analysis
(NCA), suggesting moderate but restricted levels of gene flow between spawning populations
with some reproductive isolation.

NCA provided insight about population genetic structure at a finer scale than Fg, Ry, or
the Bayesian assignment program STRUCTURE v2.0. Specifically, statistically significant
evidence was detected for restricted gene flow between spawning populations within
Yellowstone Lake. Such evidence was not detected with other methods. This is the first case in

which molecular data has indicated spawning populations in Yellowstone Lake are to some
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degree reproductively isolated. Moreover, this case illustrates the ability of NCA to detect
population structure under conditions of restricted but ongoing gene flow, a power not available
in other methods.

Restricted gene flow between Yellowstone Lake spawning populations was evident from
significant GEODIS results for clade 2-2 (Figure 6). Within this clade, evidence for restricted
gene flow/dispersal with some long distance dispersal was detected in Clear Creek and Flat
Mountain Arm Creek & Little Thumb Campground Creek. Clade 1-10 contained seven
individuals from Clear Creek, which represents 10.4% of the Clear Creek population (7/67). Six
of these individuals had haplotype ‘L’ and one had haplotype ‘C3’, which is one step away from
haplotype ‘L’. The remaining three individuals in clade 1-10 were from other populations
throughout Yellowstone Lake. By comparison, these three individuals represent just 1.0%
(3/314) of the populations in Yellowstone Lake other than Clear Creek. The significantly small
within clade and nested clade distances of clade 1-10 suggest some degree of reproductive
isolation of the Clear Creek spawning population. The three fish from this clade found in other
locations likely represent low levels of ongoing gene flow, or straying fish, from Clear Creek to
other populations.

Significantly small distances were also detected in clade 1-8, which contained haplotypes
‘M1’ and ‘U1’ from Flat Mountain Arm Creek and Little Thumb Campground Creek.
Interestingly, although not statistically significant, these two streams shared two other
haplotypes: ‘O’ and ‘N1°. This suggests these two streams are more likely to exchange migrants
with each other than with other streams, which is not unlikely considering the close geographic
proximity of these two streams to each other. Additionally, a significantly small within clade

distance in clade 1-18 (within clade 2-3) indicated restricted gene flow between the Yellowstone
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River below Yellowstone Lake and other spawning populations. The five individuals with
haplotypes ‘T’ and F1’ in this clade were found only in this location.

While individual spawning populations do not qualify as genetically distinct population
segments, information regarding gene flow between spawning populations will allow fisheries
managers to make decisions that will maintain current levels of gene flow. Although evidence
for restricted gene flow was not found in all inlet streams to Yellowstone Lake, evidence in a few
locations opens the door for future exploration of the population dynamics of this system through
genetic analysis. Clear Creek and Yellowstone River below Yellowstone Lake (plus LeHardy
Rapids) are the two locations with large sample sizes (67 and 82, respectively), suggesting the
detection of population structure in other spawning populations may be a matter of increasing
sample size from 30 to 70-100 in order to obtain a statistically significant representation of the
rare haplotypes.

NCA allowed us to obtain more information from the data than would have been possible
if we had relied solely on F-statistics. It is likely that in other studies assessing populations with
low levels of genetic divergence and some degree of reproductive isolation this approach (NCA)
will allow investigators to obtain a more detailed picture of the study system than using F-
statistics alone.

Population structure, gene flow, and genetic diversity: Yellowstone National Park

NCA provided information about population fragmentation and restricted gene flow for a
number of YCT populations located throughout YNP. Past fragmentation and/or long distance
colonization was detected between the upper Snake River (including Pacific Creek) and the
Yellowstone River. This is consistent with what is known about the invasion history of YCT.

YCT invaded the Yellowstone River drainage from Pacific Creek via Two Ocean Pass. It is
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believed, however, that YCT movement across the continental divide via Two Ocean Pass is
presently uncommon and that populations on either side are distinct (Behnke 2002). Our results
support Behnke’s (2002) contention that gene flow is restricted across the continental divide.

Evidence for past fragmentation was also found in Forest Creek within the Snake River
drainage. This location represents a headwater stream with a relatively small population size.
The dominant haplotype found in Forest Creek is separated from the next closest haplotype by
two base pairs. This suggests the Forest Creek population has possibly been isolated from the
Snake River population for as many as several thousand years. By way of comparison, Sedge
Creek (all of one haplotype) of the Yellowstone basin has been isolated for ~8,000 years
(Kaplinski 1991) and is also separated from all other haplotypes by two base pairs.

Within the Yellowstone River drainage, past fragmentation and/or long distance
colonization was evident in Antelope Creek. The clade containing the two Antelope Creek
haplotypes is likely the result of past isolation; it should be noted, however, that the presence of
the ‘A’ haplotype (5 base pairs away from the Antelope Creek clade) in this location suggests
possible recent gene flow with the nearby Lamar River where ‘A’ is the dominant haplotype. If
so, the historical barrier to gene flow appears to no longer be impeding fish migration.

Evidence for restricted gene flow with isolation by distance was detected within the
Slough Creek drainage (clades 1-4 and 1-5). This region, however, exhibited restricted gene
flow with some long distance dispersal when compared to surrounding regions, such as the upper
Lamar River. Unfortunately, our sampling scheme was inadequate to determine the relationship
between Slough Creek and Yellowstone Lake (isolation by distance, fragmentation, or range

expansion).

28



Population structure estimates (Fy and Ry) and STRUCTURE cluster assignment results
were generally consistent with the NCA results, suggesting eleven genetically distinct population
segments over the range of sampling locations (Figure 19). Four of these are isolated headwater
streams (Crooked Creek, Forest Creek, Sedge Creek, and Antelope Creek) although it is possible
that with more extensive sampling the range of the Antelope Creek population would expand
into the Yellowstone River. Four wide-spread populations were identified in the higher-order
river basins: Snake River, Yellowstone Lake basin, Lamar River/Cache Creek, and Slough
Creek. These results indicate a general pattern of isolation by drainage basin (with some
1solation by distance) in the larger rivers and population fragmentation in small, headwater
streams. The remaining three populations, Pacific Creek, Trout Creek, and Pebble Creek, need
more extensive sampling in order to determine the extent of their respective ranges.

A wide range of effective population sizes was detected, indicating some populations are
likely more susceptible than others to perturbations (i.e. disease, environmental change, etc.). Of
the eleven genetically distinct population segments, those isolated to small headwater streams
had the lowest effective population sizes. These were Sedge Creek, Antelope Creek, and Forest
Creek. The exception was Crooked Creek, which had a low N¢but a high N.. This may be the
result of the stochastic effects of genetic drift acting separately on mtDNA and microsatellite
DNA. Another possibility is that male-mediated gene flow is occurring while females are not
migrating. This would help sustain levels of genetic variation in nuclear genes while mtDNA,
which is maternally inherited, would experience a loss of variation due to genetic drift acting on
the isolated female portion of population. In any case, it is likely the Crooked Creek population
has been isolated for a shorter time period than Sedge Creek, Forest Creek, and Antelope Creek

because the mtDNA haplotypes in Crooked Creek (of which 91% were ‘S1”) have not diverged
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from the dominant Snake River haplotype ‘S1°. In contrast, Sedge Creek is dominated by the ‘I’
haplotype, which is separated by two steps from the next nearest haplotype. Estimates of
effective population size were very low for Sedge Creek, indicating this population has likely
been strongly affected by founder effects and/or population bottlenecks (Templeton 2005).
According to Newman and Pilson (1997), these types of populations could have reduced fitness
relative to populations with higher effective population sizes.

N, for Yellowstone Lake, Snake River, and Pacific Creek reflects the relative age of these
populations. Large, old source populations are generally expected to have higher effective
population sizes than subsequently founded populations because of a greater time for the
accumulation of mutations. As the glaciers receded 8,000 to 12,000 years ago Pacific Creek,
which has the largest N, was the first drainage accessible to invasion by YCT. Next to be
exposed was the upper Snake River drainage within YNP followed by Yellowstone Lake. The
effective population sizes support this sequence of invasion by YCT.

Migration rate estimates provided information about which populations are currently
exchanging genes with each other or have exchanged genes in the recent past. Although Nm
values were low, Trout Creek and Yellowstone Lake as well as Snake River and Pacific Creek
had a relatively high effective number of migrants between them, suggesting recent divergence
or low levels of ongoing gene flow between these populations. As expected, the lowest
migration rates were found in comparisons with the isolated, headwater populations. This
further supports the hypothesis that these populations (Forest Creek, Sedge Creek, and Antelope
Creek) have been isolated for a relatively long time period. Additionally, migration rates from
headwater streams to locations downstream were very low, indicating barriers impede migration

in both directions.
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Migration rates generated by LAMARC and ARLEQUIN were generally consistent with
each other although ARLEQUIN estimates were typically much higher (Tables 17 and 18). One
discrepancy should be noted, however, in which the LAMARC estimate more accurately
described the biology of the system. This occurred in the Nm estimates between Snake River
and Yellowstone Lake. Using ARLEQUIN, this value was higher than the comparison between
Yellowstone Lake and Pacific Creek, suggesting these two populations are more closely related
than Yellowstone Lake is to Pacific Creek and that perhaps YCT invaded the Yellowstone
drainage through the Snake River headwaters. There is a remote possibility that this occurred
and the rivers have since changed course. It is also possible that extensive human-facilitated
transferring of fish has occurred. This is very unlikely, however, as no other evidence has been
detected to support either of these explanations. Conversely, LAMARC indicated higher
migration rates between Pacific Creek and Yellowstone Lake than between Snake River and
Yellowstone Lake. These estimations are more consistent with the hypothesized migration route
of YCT, which was from Pacific Creek to the Yellowstone River. This may reflect the increased
ability of coalescent-based programs such as LAMARC to accurately describe migration rates.

Identifying natural barriers to fish migration is a common objective of fisheries
biologists. STRUCTURE analysis provided evidence for barriers to gene flow in the upper
Snake River, Forest Creek, Antelope Creek, and Sedge Creek. The division of samples within
Forest Creek and within Snake River into different clusters is due to the fact that samples were
collected from multiple locations along these two streams. The collecting site farthest
downstream on Forest Creek grouped with cluster 1 (Snake River), indicating a barrier to gene
flow is present somewhere in the narrow canyon between this site and the remaining upstream

sites. Similarly, the sampling site furthest upstream on the Snake River grouped with cluster 2
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(Crooked Creek), indicating a barrier to gene flow exists somewhere between this site and those
downstream. Interestingly, the Snake River barrier is also located in a narrow canyon,
suggesting narrow, steep canyons may be effective barriers to migration in both directions.
These results demonstrate the use of analyzing genetic data with STRUCTURE v2.0 under a
continuous sampling scheme in order to locate barriers to fish migration.

Barriers to migration were also apparent in Antelope Creek and Sedge Creek. Evidence
for a barrier between Antelope Creek and all downstream populations was detected. Also, a
“potential barrier” between the Antelope Creek sampling sites was determined to either be
ineffective in impeding migration or has not existed long enough to allow for population
divergence. The identification of restricted gene flow between Sedge Creek and Yellowstone
Lake is consistent with the known effectiveness of the geothermal lake as a barrier.
Conservation implications

The results of this study have specific consequences for the management and
conservation of YCT in YNP. Hybridized populations are typically managed according to the
level of introgression. Fish and wildlife agencies of the intermountain western states (Utah
Division of Wildlife Resources 2000) proposed three categories of populations for conservation
priority: (1) core conservation populations, which are >99% native cutthroat trout genes, (2)
conservation populations, generally >90% native cutthroat trout genes, and (3) cutthroat trout
sport fish populations, which “meet the species phenotypic expression defined by morphological
and meristic characters of cutthroat trout.” Under these criteria, three of the populations we
assessed for hybridization fell under category 3, one population under category 2, and the

remaining six populations were assigned to category 1 (Table 4).
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The detection of restricted gene flow between spawning populations within Yellowstone
Lake suggests populations have the potential to be locally adapted. While it has been claimed
populations will not diverge due to genetic drift when Nm 2 1 (Slatkin 1987), the relationship
between population divergence and strength of selection is still being explored (Hendry et al.
2002; Hendry 2005). Because neutral markers were used in this study, we were only able to
detect changes resulting from genetic drift. It is possible genes under selective pressure (which
now have two forces acting on them, selection and genetic drift) have diverged to a greater
degree. Nevertheless, it appears that spawning populations within Yellowstone Lake are closely
related and are either currently exchanging genes at a low level or have done so in the recent
past. The potential impact of managing the Yellowstone Lake system as a single population
from a genetic standpoint therefore appears to be minimal, although efforts should be made to
preserve current levels of gene flow between spawning populations and maintain the natural
dynamics of the system, such as selective forces that may be acting on individual spawning
populations.

We identified eleven genetically distinct population segments in the area over which the
study was conducted (Figure 19). Four of these were isolated populations in small, headwater
streams, four were wide-spread populations located in large river basins, and the full range of the
final three populations could not be defined. Management of these YCT populations should
reflect the partitioning of genetic variation in order to conserve total genetic diversity. This will
maximize the probability of preserving local adaptations that may be present in the population.
The detection of morphological and life history differences between these populations, especially
the isolated headwater populations, would meet our definition of an ESU; this work is yet to be

done and provides a number of potential research opportunities.
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Support for the conservation of these small, isolated populations in order preserve local
adaptation is offered in the documentation of population-specific adaptations in Sedge Creek.
Individuals taken from Sedge Creek to another location typically do not move up or downstream
from the transplant location (Robert E. Gresswell, personal communication). It is likely this trait
of staying stationary has developed due to selection against individuals who tend to move up and
downstream frequently—these fish would experience increased mortality because they are more
likely to stray into the uninhabitable geothermal lake located downstream. It is possible other
isolated populations throughout YNP (i.e. Forest Creek, Crooked Creek, and Antelope Creek)
have also become locally adapted. The conservation of these populations will allow for the
continued evolution of the species.

In addition to the need for preserving local adaptation, small, isolated populations require
special attention because of their increased susceptibility to environmental change. Theory
predicts that small, isolated populations with lower genetic diversity and smaller effective
population sizes (i.e. Forest Creek and Sedge Creek) are at greater risk than genetically diverse
populations with large effective population sizes (i.e. Snake River and Trout Creek) due to
decreased fitness (O’Brian et al. 1985; Newman and Pilson 1997). Fisheries managers should be
aware of the potential increased risk these populations are under.

Yellowstone Lake was found to be genetically distinct from other YCT populations in
YNP. This is not surprising considering that morphological differences between the
Yellowstone Lake population and fluvial YCT populations have already been documented, such
as a relatively high number of basibranchial teeth and gill rakers in the lake fish (Behnke 2002).
Additionally, life history adaptations for an allacustrine life style, such as spawning migrations

up inlet streams, are unique to YCT in Yellowstone Lake. Based on these three lines of evidence
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YCT in Yellowstone Lake meet our definition for an ESU; these fish do not appear to be

genetically or ecologically exchangeable with surrounding fluvial YCT populations.

CONCLUSIONS

Moderate to low levels of hybridization with rainbow trout were detected in YCT
populations in the lower Lamar River system and lower Slough Creek. Very low hybridization
was detected above the confluence of the Lamar River and Soda Butte Creek. Additionally,
three westslope cutthroat trout haplotypes indicate the transfer of a small number of these fish
into the Yellowstone River drainage.

Nested clade analysis (NCA) of YCT in Yellowstone Lake detected restricted gene flow
between spawning populations. Until now this has never been documented using genetic data.
Other methods, such as F-statistics and the Bayesian clustering program STRUCTURE v2.0,
failed to detect population genetic subdivision, highlighting the ability of NCA to detect fine-
scale levels of genetic structuring. This suggests low to moderate levels of ongoing gene flow
between spawning populations but with some degree of reproductive isolation, consistent with
the estimated straying rate of 3% for YCT in Yellowstone Lake.

Analysis of YCT populations located throughout YNP revealed eleven genetically
distinct population segments over the study area. A general pattern of isolation by drainage
basin in the larger rivers and population fragmentation in small, headwater streams was detected.
Barriers to gene flow were detected and/or confirmed in several cases. The program
STRUCTURE v2.0 was especially useful in this respect. We recommend the conservation of
each of these populations in order to preserve the current genetic diversity of YCT in YNP and to

ensure the continued evolution of the species.
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Of special concern is the YCT population in Yellowstone Lake, which is genetically,
morphologically, and behaviorally distinct from fluvial YCT populations and thus meet our
criteria for an evolutionarily significant unit. Additionally, this population is in considerable
danger due to lake trout predation and infection by whirling disease. In order to preserve this

unique population, it should be treated as a separate entity with regards to conservation.
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Table 2.

Gene Primer name Sequence (5’ to 3°)

NDI1 F1 ACCAAGATTGCCTGAAAGAACGGC
NDI1 R1 ACGGTTTGTTTCAGCGAGGGTAGA
ND1 F2 GGCAGTGGCACAAACCATTTCCTA
NDI1 R2 AGTGGTGTAGTGGAAGCACCAAGA
ND2 F3 TGCCTGAATGCTTAAGGACCACCT
ND2 R3 ACTATAAGTGCGAAGGGTGCGAGT
ND2 F4 TTGGACTAGCACCCGTTCACTTC
ND2 R4 TGGGTTGCATTCAGAAGATGTGGG
ITS-2 5.85 CTACGCCTGTCTGAGTGTC

ITS-2 28S ATATGCTTAAATTCAGCGGG
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Table 8.

1 2 3 4 5 6 7 8 9 10 11 12
21 0.02 -
31-0.00 000 -
41-0.03 003 0.02 -
50 001 000 00l 000 -
61(-0.03 002 001 -0.04 0.00 -
71-0.02 -0.01 -0.01 -0.01 -0.01 -0.02 -
8| 000 -0.00 -0.01 004 002 002 -001 -
9-0.01 -0.01 -0.01 0.01 -0.01 -0.00 -0.02 -0.02 -
10| -0.01 0.04 004 -003 000 -002 001 0.07 003 -
11]-0.01 0.02 0.02 -0.02 -0.00 -0.02 -0.01 0.04 0.01 -0.02 -
12| 001 006 007 -0.03 00l -0.00 002 011 006 -0.04 -0.03 -
131-0.03 0.02 0.01 -0.03 -0.01 -0.03 -0.02 0.02 0.00 -0.02 -0.02 -0.02
1. Little Thumb Creek
2. Yellowstone River at LeHardy Rapids
3. Clear Creek
4. Pelican Creek
5. Flat Mountain Arm Creek
6. Grouse Creek
7. Hatchery Creek
8. Day Bed Creek
9. Little Thumb Campground Creek
10. Yellowstone River near Fishing Bridge
11. Yellowstone River inlet
12. Atlantic Creek
13. Thorofare Creek
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Table 9.

1 2 3 4 5 6 7 8 9 10 11 12
2 57.7 -
3 inf 345.6 -
4 inf 30.1 62.2 -
51 1433 317.8 92.2 381.9 -
6 inf 46.7 162.6 inf 689.8 -
7 inf inf inf inf inf inf -
8 46.9 inf inf 26.7 40.7 56.0 inf -
9 inf inf inf 76.1 inf inf inf inf -
10 inf 24.0 23.7 inf 2423 inf 150.0 14.1 29.7 -
11 inf 40.3 46.6 inf inf inf inf 23.8 79.0 inf -
12 82.8 15.1 14.5 inf 116.2 inf 444 8.5 16.5 inf  inf -
13 inf 52.6 110.7 inf inf inf inf 45.8 inf inf inf  inf
1. Little Thumb Creek
2. Yellowstone River at LeHardy Rapids
3. Clear Creek
4. Pelican Creek
5. Flat Mountain Arm Creek
6. Grouse Creek
7. Hatchery Creek
8. Day Bed Creek
9. Little Thumb Campground Creek
10. Yellowstone River near Fishing Bridge
11. Yellowstone River inlet
12. Atlantic Creek
13. Thorofare Creek
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Table 10.

1 2 3 4 5 6 7 8 9 10 11 12
2] 004 -
31003 003 -
41 006 -0.16 -0.09 -
51-0.04 -0.00 0.04 -0.27 -
6| 001 -001 -000 -0.16 -0.01 -
71-0.04 -0.02 001 -032 -0.01 -0.03 -
8| 002 001 -004 003 -004 -003 -007 -
9| 005 -001 002 -033 0.04 -0.00 0.01 -0.03 -
10| 005 0.03 008 -0.11 -0.03 003 -002 007 004 -
11| 0.07 0.01 -0.02 -0.05 0.01 -0.02 -0.03 -0.00 -0.03 0.11 -
12| 001 000 000 -0.18 000 -0.02 -0.02 -0.03 -0.00 0.04 -002 -
131 -0.01 0.02 -0.00 -0.16 0.04 -0.02 0.01 -0.07 0.03 0.07 -0.04 -0.02
1. Little Thumb Creek
2. Yellowstone River at LeHardy Rapids
3. Clear Creek
4. Pelican Creek
5. Flat Mountain Arm Creek
6. Grouse Creek
7. Hatchery Creek
8. Day Bed Creek
9. Little Thumb Campground Creek
10. Yellowstone River near Fishing Bridge
11. Yellowstone River inlet
12. Atlantic Creek
13. Thorofare Creek
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Table 11.

9.2 8.1 -

39 inf inf -

inf inf 6.0 inf -

22.0 inf inf  inf inf -

inf inf 25,6 inf inf inf -

12.5 54.6 inf 80 inf inf inf -

4.6 inf 106 inf 62 inf 21.8 inf -

10| 5.1 8.2 3.0 inf inf 79 inf 35 64 -

111 3.6 20.2 inf inf 19.8 inf inf inf inf 2.1 -

12 1334 187.8 5933 inf inf inf inf inf inf 54 inf -
13| inf 11.0 inf inf 6.6 inf 240 inf 7.6 3.3 inf inf

O 03N LN b W

Little Thumb Creek
Yellowstone River at LeHardy Rapids
Clear Creek
Pelican Creek
Flat Mountain Arm Creek
Grouse Creek
Hatchery Creek
Day Bed Creek
Little Thumb Campground Creek
. Yellowstone River near Fishing Bridge
. Yellowstone River inlet
. Atlantic Creek
. Thorofare Creek
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Table 15.

1 2 3 4 5 6 7 8 9 100 11 12 13 14 15 16
2| 04 -
3|1 66 0.2 -
41 19 0.1 2.1 -
51 09 0.2 09 0.6 -
6| 2.8 0.4 inf - 14 1.0 -
71 2.5 04 193 16 1.0 inf -
8|1 19 02 43 14 04 1.6 1.4 -
91 13.0 02 1.6 09 06 14 1.3 1.4 -
10| 3.7 0.3 inf - 42 12 inf 627 1.8 1.6 -
11| 0.9 0.2 1.1 06 12 1.0 1.2 0.5 0.6 1.1 -
12| 7.2 0.2 1.7 08 07 1.7 1.8 1.2 1038 2.0 0.8 -
13| 1.1 02 25 40 13 1.0 1.0 0.6 0.7 1.5 12 038 -
14| 1.6 0.1 1.1 1.0 26 1.0 1.1 0.6 0.7 20 19 0.8 inf -
15| 1.3 04 09 03 1.0 18 1.8 05 0.8 1.4 10 12 05 04 -
16 | 0.7 0.3 1.3 06 13 1.1 1.1 04 04 1.0 39 06 11 29 13 -
17| 1.6 0.5 09 03 08 19 1.5 0.6 1.2 1.3 06 20 05 04 inf 0.8
1. Yellowstone Lake
2. Sedge Creek
3. Heart Lake
4. Pacific Creek
5. Forest Creek
6. Heart River
7. Sickle Creek
8. Crooked Creek
9. Trout Creek
10. Snake River
11. Cache Creek
12. Pelican Creek (upper)
13. McBride Lake
14. Slough Creek at confluence with Elk Tongue Cr.
15. Antelope Creek (lower)
16. Pebble Creek
17. Antelope Creek (upper)
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Table 16.

mtDNA Microsatellites
Population Ne= Std. dev. Ne = Std. dev.
0 [0/2w)] (Np 0 [0/(4w)] (Ne)
Crooked Cr. 0.000136 81.8 402 635 1586.90 171.20
Forest Cr. 0.000199 119.2 263 | 1.61 403.02 62.86
Pop | Pacific Cr. 0.000558 335.0 54.1 1272 3179.21 625.59
Set |  Sedge Cr. | 0.00000547 3.3 6.1 0.024 5.94 4.40
#1 Snake R. 0.000918 551.0 792 1173 | 2932.02 903.72
Yellowstone 0.000109 653.1 902 | 883 | 220636 436.15
Lake

Antelope Cr. 0.000166 99.5 344 1.01 252.14 25.10
Cache Cr. 0.00045 270.2 75.0 | 1.85 461.54 131.24
Pop | Pebble Cr. 0.000417 250.1 27.1] 1.90 47478 120.55
Set | Slough Cr. 0.000559 335.4 68.1| 2.80 700.53 139.11
#2 Trout Cr. 0.000826 495.5 7571 528 |  1319.18 81.27
Ye“ﬁ’:f’etone 0.000134 801.5 99.0 | 11.27 | 2818.10 471.22
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Table 17.

Nm Nm
Population comparison M Std.dev. (LAMARC) (ARLEQUIN)

Snake River to Crooked Creek 0.27 0.076 0.41 157
Crooked Creek to Snake River 0.20 0.036 0.59 '
Snake River to Forest Creek 0.15 0.037 0.06 1.08
Forest Creek to Snake River 0.04 0.009 0.12 '
Snake River to Pacific Creek 0.93 0.324 2.81 708
Pacific Creek to Snake River 0.56 0.211 1.64 '
Snake River to Yellowstone Lake 0.19 0.062 0.42 312
Yellowstone Lake to Snake River 0.16 0.048 0.46 '
Sedge Creek to Yellowstone Lake 0.06 0.021 0.13 0.42
Yellowstone Lake to Sedge Creek 3.40 1.866 0.02 '
Yellowstone Lake to Pacific Creek 0.25 0.121 0.77 0.94
Pacific Creek to Yellowstone Lake 0.15 0.074 0.34 '
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Table 18.

Nm Nm
Population comparison M Std.dev. (LAMARC) (ARLEQUIN)

Antelope Creek to Slough Creek 0.09 | 0.035 0.06 0.44
Slough Creek to Antelope Creek 0.18 | 0.039 0.05 '
Antelope Creek to Trout Creek 0.10 | 0.033 0.13 0.87
Trout Creek to Antelope Creek 0.33 0.074 0.09 ’
Antelope Creek to Yellowstone Lake | 0.17 | 0.045 0.48 135
Yellowstone Lake to Antelope Creek | 0.77 0.230 0.20 ’
Cache Creek to Pebble Creek 1.60 | 0.527 0.74 3.94
Pebble Creek to Cache Creek 1.05 0.159 0.61 '
Cache Creek to Slough Creek 0.28 | 0.044 0.20 191
Slough Creek to Cache Creek 0.34 | 0.157 0.20 '
Cache Creek to Yellowstone Lake 0.07 | 0.019 0.19 0.95
Yellowstone Lake to Cache Creek 0.20 0.199 0.12 '
Pebble Creek to Slough Creek 0.37 0.176 0.26 117
Slough Creek to Pebble Creek 0.50 | 0.167 0.23 '
Pebble Creek to Yellowstone Lake 0.07 | 0.018 0.20 0.67
Yellowstone Lake to Pebble Creek 0.25 0.069 0.12 '
Slough Creek to Trout Creek 0.11 0.036 0.15 0.64
Trout Creek to Slough Creek 0.24 | 0.099 0.17 '
Slough Creek to Yellowstone Lake 0.15 0.024 0.43 113
Yellowstone Lake to Slough Creek 0.28 | 0.123 0.20 '
Trout Creek to Yellowstone Lake 0.70 | 0.104 1.99 12.95
Yellowstone Lake to Trout Creek 0.67 | 0.251 0.89 ]
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Figure 1.

<
S

.

L

. Little Thumb Creek

. Yellowstone River at LeHardy Rapids
. Clear Creek

. Pelican Creek

. Flat Mountain Arm Creek

. Grouse Creek

. Hatchery Creek

. Day Bed Creek

. Little Thumb Campground Creek

10. Yellowstone River near Fishing Bridge
11. Thorofare Creek

12. Yellowstone River inlet
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Heart River

Heart Lake

Sickle Creek

Crooked Creek

Snake River

Forest Creek

Pacific Creek

Atlantic Creek

. Sedge Creek

10. Pelican Creek (upper)
11. Trout Creek

12. Antelope Creek (lower)

e e Rl
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13.
14.
15.
16.

17.
18.
19.
20.
21.
22.
23.

Antelope Creek (upper)

McBride Lake

Slough Creek (sec. 1)

Slough Creek at confluence with Elk
Tongue Creek

Lamar River

Lamar River at Geyser Basin

Pebble Creek

Cache Creek

Yellowstone Lake

Yellowstone River at LeHardy Rapids
Thorofare Creek



Figure 3.

. Slough Creek (sec. 2)
. Slough Creek (sec. 1)
. Lamar River
. Lamar River canyon
. Lamar River across from geyser basin
. Lamar River — 2 reaches
. Lamar River at Soda Butte Creek
. Lamar River above Soda Butte Creek
. Lamar River upstream from Soda Butte Creek
0. Pebble Creek at bridge to Soda Butte Creek

= N0 001NN kW
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Figure 4.
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Figure 5.
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Figure 7.

R2=0.1824
P = 0.000000

Isolation by distance regression analysis (mtDNA)

Fst/(1-Fst)

Distance (km)
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Figure 8.

Fst/(1-Fst)

Isolation by distance regression analysis (microsatellites)

Distance (km)

R2=0.1159
P =0.000000
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Figure 9.

80



Figure 10.
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Figure 11.
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Figure 12.

-Ln P(D) x 103

12.2

12
11.8
11.6
11.4
11.2

11
10.8
10.6
10.4

Yellowstone Lake and Sedge Creek -Ln P(D) vs. K
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Figure 14.

-Ln P(D) x 10*3

10.6
10.4
10.2
10
9.8
9.6
9.4
9.2

8.8

Snake River drainage -Ln P(D) vs. K
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Figure 16.

-Ln P(D) x 1073

Yellowstone River drainage -Ln P(D) vs. K
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Figure 18.

Likelihood

Migration rate (M} into Snake River from Crooked Creek

1.4
1.2
—HRun 1
1 Fun
——Run3
08 —HRun 4
06 —PRunb
—PRunk
04 —Run 7 (3 reps)
—Run 8 (3 reps)
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Figure 19.
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