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EXECUTIVE SUMMARY 
 

Yellowstone National Park (YNP) contains the world’s largest concentration of 
geothermal features, and is legally mandated to protect and monitor these natural 
features.  Remote sensing is a component of the current geothermal monitoring plan.  
Landsat satellite data have a substantial historical archive and will be collected into the 
future, making it the only available thermal infrared imagery for historical analysis and 
long-term monitoring of geothermal areas in the entirety of YNP.  Landsat imagery from 
Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+) sensors was 
explored as a tool for mapping geothermal heat flux and geothermally active areas within 
YNP and to develop a change analysis technique for scientists to utilize with additional 
Landsat data available from 1978 through the foreseeable future.   

Terrestrial emittance and estimates of geothermal heat flux were calculated for the 
entirety of YNP with fourteen Landsat summer images from 1986 to 2007.   Difference 
images of terrestrial emittance for four of the summer images (2007 minus 2006, and 
2002 minus 2001) were created.  Finally, TM data from 2007, 2006, 2005, 1989, and 
1986 were used to classify geothermally active areas inside the defined geothermal areas 
as well as throughout YNP and a 30-km buffer around YNP.  Four change maps were 
produced from the five classified maps.  

Estimations of geothermal heat flux were inaccurate due to inherent limitations of 
Landsat data combined with complexities arising from the effects of solar radiation and 
spatial and temporal variation of vegetation, microbes, steam outflows, and other features 
at each geothermal area.  Terrestrial emittance, however, was estimated with acceptable 
results.  The change analysis showed a relationship between absolute difference in 
terrestrial emittance and earthquake swarms, with 34% of the variation explained.  
Accuracies for the classifications of geothermally active areas were poor, but the method 
used for classification, RandomForest, could be a suitable method given higher resolution 
thermal imagery and better reference data.   
 
 
 
 
Disclaimer: The views expressed are the authors and do not necessarily represent the 
views of Yellowstone National Park, the Department of Interior or the United States 
Government.  
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INTRODUCTION 
 
 

Yellowstone National Park (YNP), located in Wyoming, Montana, and Idaho, 
became the world’s first national park primarily because of its geothermal features.  The 
land was set aside for the “benefit and enjoyment of the people” and to “provide for the 
preservation from injury or spoliation of all timber, mineral deposits, natural curiosities, 
or wonders within said park, and their retention in their natural condition” (Yellowstone 
Park Act, 1872) (emphasis mine).  Currently there are recognized external threats on the 
geothermal features of YNP, including possible geothermal development in Idaho and 
Montana, and oil, gas, and groundwater development in Wyoming, Montana, and Idaho 
(Sorey, 1991; Custer et al., 1993; Heasler et al., 2004).   Geothermal features are also 
found in two park units neighboring YNP, John D. Rockefeller, Jr. Memorial Parkway 
and Grand Teton National Park in Wyoming and might be affected by these external 
threats as well.  Other potential drivers that likely influence changes in geothermal 
features include drought, mean annual temperature increases or decreases, changes in 
barometric pressure, earthquakes in the vicinity or on the other side of the planet, and 
caldera resurgence and deflation (Rojstaczer et al., 2003).  

The National Park Service (NPS) is legally mandated to monitor and protect 
geothermal features within its units, and YNP is listed as a significant feature on its own 
(Geothermal Steam Act, 1970 as amended in 1988).  More importantly, details of change 
within geothermal systems are poorly known.  Knowledge about change might provide 
scientific insight into patterns that would help advance the understanding of processes in 
important geothermal systems.  A better understanding of these systems would help with 
placement of visitor information and would be an important planning tool for placing 
infrastructure in YNP.  Finally, there is a growing demand for alternative energy in the 
United States and the development of geothermal energy is imminent.  The impact of this 
sort of development outside YNP on the geothermal features inside YNP will become an 
important issue.  A geothermal monitoring plan that includes groundwater inventory, 
monitoring, and assessment, chloride flux inventory, monitoring, and assessment, and 
remote sensing of geothermal features, has been proposed for YNP to address these 
issues (Heasler et al., 2004).  Remote sensing is an important element of the plan since it 
is an excellent way to assess historic change and has great potential for providing 
methods for future monitoring of geothermal areas, even where the spatial resolution 
might be too coarse for monitoring individual features. 

 
 

GOALS 
 
 
 The general purpose of this project was to evaluate the use of Landsat data for 
mapping and monitoring geothermal heat flow in YNP.   There were three specific goals 
for this project.  The first goal was to assess the utility of Landsat TM and ETM+ thermal 
infrared imagery for monitoring GHF within the boundaries of YNP by calculating 
estimates of terrestrial emittance and GHF with 14 Landsat images.  The second goal was 
to conduct a change analysis of the spatial distribution of terrestrial emittance within 
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YNP for two pairs of years.  Both Landsat TM (2007 and 2006) and Landsat ETM+ 
(2002 and 2001) images were to be inspected.  The final goal was to assess the ability of 
Landsat TM imagery combined with RandomForest and target detection classification 
methods to classify active areas accurately within YNP’s defined geothermal areas as 
well as throughout YNP and 30-km beyond its boundary.  Five years of Landsat imagery 
were to be classified (2007, 2006, 2005, 1989, and 1985).  
 
 

AVAILABLE LANDSAT IMAGES 
 
 

The first Landsat satellite, carrying the Multi Spectral Scanner (MSS), was 
launched in 1972.  Subsequent satellites including those launched in 1984 (Landsat 5, 
carrying Thematic Mapper (TM)) and 1999 (Landsat 7, carrying Enhanced Thematic 
Mapper Plus (ETM+)) are still in orbit.  Thermal data became available in 1978 with the 
MSS sensor on Landsat 3.  This provides over 30 years of data that can be utilized for 
change detection and landscape studies of geothermal heat at YNP.  Landsat scenes cover 
a swath of 185 km (YNP is in the center of one of these scenes: Path 38, Row 29) and 
currently collect data every 8 days (TM and ETM+ are in relatively opposite orbits and 
each have a repeat coverage of 16 days, thus the same location is imaged every 8 days).   

Landsat sensors collect data from the visible portion of the electromagnetic 
spectrum along with several wavelengths from the infrared portion of the spectrum (near 
infrared, middle infrared, and thermal infrared).  A panchromatic band is also collected 
by the ETM+ sensor.  Landsat TM and ETM+ reflective spectral data have a spatial 
resolution of 28.5-m (typically resampled to 30-m on a side or 900 m2), while all MSS 
data have a spatial resolution of 57-m x 79-m (resampled by the EROS Data Center to 
60-m on a side or 3,600 m2).  thermal infrared data have a spatial resolution of 120-m on 
a side from the TM sensor and 60-m on a side from the ETM+ sensor.   
 Landsat data are now available for free download from the USGS EROS Data 
Center.  Landsat TM data are available from July 1982 to present, while ETM+ data are 
available in complete form from April 1999 until May 2003 (prior to the failure of the 
scan line corrector) and with scan line gaps from the end of May 2003 to present.  The 
TM images, despite 25 years of sensor degradation, are commonly used as replacements 
for ETM+ data after May 2003. 
 Geometric registration of all images is vital when comparing different images in a 
change analysis.  A “master” TM image (7 September 2005) was chosen that aligned well 
with the National Agriculture Imagery Program (NAIP) imagery (root mean square error 
(RMSE) = 0.4128 pixels, or less than 15 m) and roads and trails data recorded with sub-
meter GPS units by YNP staff.  All images acquired for this project were geometrically 
registered to the master image with an RMSE for each registration of less than 0.5 pixels 
(15 m) (Table 1). 
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Table 1: Original data collected for CESU project included in the final data archive.  Data 
marked with ** were purchased with project funding. 
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p38r29_mss_19810630 MSS2 19810630 NLAPS Systematic NN Eros Data Center** 
p38r29_tm_19860717 TM5 19860717 NLAPS Precision CC YNP Spatial Analysis Center 
p38r29_tm_19890802 TM4 19890802 NLAPS Precision CC YNP Spatial Analysis Center 
p38r29_tm_19910715 TM5 19910715 GeoTiff Geometric NN YNP Spatial Analysis Center 
p38r29_tm_19950912 TM5 19950912 NLAPS Systematic NN Eros Data Center** 
p38r29_tm_19960712 TM5 19960712 GeoTiff Terrain CC GloVis 
p38r29_tm_19970715 TM5 19970715 NLAPS Precision CC WyomingView 
p38r29_tm_19980718 TM5 19980718 NLAPS Precision CC WyomingView 
p38r29_etm_19990713 ETM+ 19990713 NLAPS Precision NN YNP Spatial Analysis Center 
p38r29_etm_20000715 ETM+ 20000715 GeoTiff Systematic CC MontanaView 
p38r29_etm_20010702 ETM+ 20010702 GeoTiff Systematic CC MontanaView 
p38r29_etm_20020705 ETM+ 20020705 GeoTiff Precision CC MontanaView 
p38r29_tm_20030801 TM5 20030801 NLAPS Precision CC WyomingView 
p38r29_tm_20050721 TM5 20050721 GeoTiff Precision CC MontanaView 
p38r29_tm_20050907 TM5 20050907 GeoTiff Precision CC MontanaView 
p38r29_etm_20050915 ETM+ SLC-off 20050915 NLAPS Precision NN Eros Data Center** 
p38r29_tm_20060505 TM5 20060505 NLAPS Precision NN Eros Data Center** 
p38r29_etm_20060513 ETM+ SLC-off 20060513 NLAPS Precision NN Eros Data Center** 
p38r29_tm_20060606 TM5 20060606 NLAPS Precision NN Eros Data Center** 
p38r29_tm_20060708 TM5 20060708 GeoTiff Precision NN MontanaView 
p38r29_etm_20060716 ETM+ SLC-off 20060716 NLAPS Precision NN Eros Data Center** 
p38r29_etm_20060902 ETM+ SLC-off 20060902 NLAPS Precision NN Eros Data Center** 
p38r29_tm_20061012 TM5 20061012 NLAPS Precision NN Eros Data Center** 
p38r29_tm_20061028 TM5 20061028 NLAPS Precision NN Eros Data Center** 
p38r29_tm_20070625 TM5 20070625 NLAPS Precision NN Eros Data Center** 

 
 

STUDY AREA 
 
 

Three different study area boundaries were utilized for this study (Figure 1).  The 
first study area was simply the boundary of YNP, covering approximately 890,000 ha in 
Wyoming, Montana, and Idaho, USA.  The second, and smallest, study area was the 
boundaries of the currently defined geothermal areas, covering 6,343 ha, and comprising 
less than 1% of the entire area of YNP. Rick Hutchinson, geologist for YNP from 1976 to 
1996, spent many years studying the geothermal areas in YNP and during that time 
produced maps of the geothermal boundaries.  Those maps have subsequently been 
updated and checked for accuracy by staff at YNP’s Spatial Analysis Center to produce 
the most up-to-date digital map of the defined geothermal areas (Spatial Analysis Center, 
2005).  The third study area included all of YNP plus a 30-km buffer around the YNP 
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boundary, covering approximately 2,400,000 ha.  A 30-km buffer was delineated around 
YNP so that the Corwin Springs, Montana, and Island Park, Idaho, Known Geothermal 
Resource Areas (KGRAs) (Long et al., 1976; Sorey, 1991) would be included in the 
classification process.    
 
  
 

 
Figure 1: Location of study area boundaries displayed on a shaded relief map.  Three 
different study area boundaries were utilized in this project: (1) the currently defined 
geothermal areas, (2) the boundary of Yellowstone National Park (YNP), and (3) a 30-km 
buffer around YNP. 
 
 

ESTIMATING TERRESTRIAL EMITTANCE AND HEAT FLUX 
 
 

Geothermal heat flux (GHF) is the variation of heat in geothermal systems and is 
radiated, or emitted, from the surface of the Earth.  It represents only heat coming from 
below the surface and it does not include any accumulated indirect or direct solar heating 
effects such as convection from air currents, and conduction of solar effects on soil 
(indirect), or solar heating due to variations in topography such as south-facing slopes 
(direct).  GHF can be measured from bore holes (Sorey, 1991), by estimation from other 
indirect measurements such as chloride flux (Fournier et al., 1975; Norton and Friedman, 
1985; Friedman and Norton, 2007), or by utilizing thermal sensors (Boomer et al., 2002).  
Terrestrial emittance represents the heat emitted from the ground and is composed of 
GHF and includes direct and indirect solar radiation effects.     
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Multispectral Landsat satellite imagery has been used to map geothermal heat and 
activity in a variety of situations.  Landsat Thematic Mapper (TM) and Enhanced 
Thematic Mapper Plus (ETM+) imagery have been used successfully to map and analyze 
volcanic features (Andres and Rose, 1995; Kaneko and Wooster, 1999; Flynn et al., 
2001; Urai, 2002; Patrick et al., 2004).  Many studies have used TM and ETM+ data to 
map lineaments (e.g., fault lines) as part of the process of finding geothermal areas 
(Bourgeois et al., 2000; Song et al., 2005) and to map minerals such as iron oxide and 
hydrothermally altered soil (Carranza and Hale, 2002; Daneshfar et al., 2006; Dogan, 
2008). 

Landsat thermal infrared imagery, however, has rarely been used to assess the 
spatial distribution of GHF in YNP, and in one instance, only one image was used for a 
snapshot of GHF (Watson et al., 2008).  The method developed by Watson et al., 2008 to 
quantify the intensity of surficial geothermal activity at YNP, was developed with 2000 
Landsat ETM+ winter imagery, and the results suggested good potential for geothermal 
monitoring.  Thermal radiance data from ETM+ imagery were utilized to estimate 
terrestrial emittance.  Estimates of non-geothermal-related heat were incorporated with 
terrestrial emittance to subsequently measure and create a map of continuous variations in 
residual terrestrial emittance (i.e., no solar effects) that was hypothesized to estimate a 
lower bound for GHF. 

The Watson et al., 2008 method utilized a spectral library of “light yellowish 
brown loamy sand” from the NASA Jet Propulsion Laboratory (JPL) to estimate a single 
emissivity value for the entire image.  This method might be improved upon by assigning 
emissivity on a pixel-by-pixel basis rather than using a single value.  Emissivity can be 
estimated from a Normalized Difference Vegetation Index (NDVI) that uses the red and 
NIR Landsat bands to represent amounts of healthy green vegetation (Brunsell and 
Gillies, 2002).   The estimated emissivity can be applied to the calculation of terrestrial 
emittance, and thus to estimations of GHF. 

Landsat data can be valuable for calculation of GHF in YNP.  The method 
suggested in this paper is not highly parameterized – it requires only three Landsat bands 
and some atmospheric correction coefficients.  Emissivity is incorporated per pixel rather 
than as one value across the entire image, potentially increasing the precision of the GHF 
calculations.  Finally, one Landsat image covers the entire area of YNP.  Landsat data 
provide the means to calculate GHF for all of YNP and has the potential to enable 
scientists to identify locations that might need to be studied in more depth. 

Using Landsat data to estimate GHF presents many challenges.  Solar radiation 
and related topographic effects have substantial impacts on total emittance calculations 
since, for example, south-facing slopes that have no GHF will often have high terrestrial 
emittance values (Watson, 1975; Kohl, 1999; Gruber et al., 2004).  The effect of surface 
albedo is also an important component and problematic in the calculation of GHF, 
because dark areas such as large parking lots (e.g., in the Old Faithful area) or recently 
burned areas absorb and re-emit large amounts of solar radiation than bright surfaces, 
resulting in high terrestrial emittance readings that might not include a GHF component 
(Watson, 1975; Coolbaugh et al., 2007).   

The Landsat ETM+ sensor is superior to the Landsat TM sensor because its 
thermal infrared sensor is kept calibrated by a more stable radiative cooler and it has finer 
spatial resolution (NASA, 2009).  There are only four years of complete data available 
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from Landsat ETM+, while Landsat TM is 25 years old and its thermal infrared sensor 
has deteriorated over the years.  This deterioration also might make changes in GHF 
more difficult to detect.  The pixel resolution for both ETM+ (60 m) and TM (120 m) 
thermal infrared data is much coarser than for the reflective data from both sensors (30 
m).  When one pixel is 60 m on a side (3,600 m2) or 120 m on a side (14,400 m2), effects 
from small geothermal features or areas are averaged over the pixel.   

The main purpose of this portion of the project was to evaluate the utility of 
Landsat TM and ETM+ thermal infrared data for monitoring GHF.  An effective method 
would enable the calculation of terrestrial emittance and GHF covering the entirety of 
YNP that could be applied to additional Landsat images for use in monitoring and change 
analyses.  Previous studies in YNP have been for a single date and/or over limited 
geographic areas.  
 
 

Methods 
 
 
Image Preprocessing 
 
 YNP is centered within one Landsat scene at Path 38 Row 29.  Fourteen Landsat 
TM and ETM+ summer images from 1986 to 2007 were acquired from various sources 
(Table 2).  These images were chosen based on snow-free summer anniversary dates and 
lack of clouds.  Summer dates were selected because although winter images were 
preferred for comparison to other work, the majority of the available winter Landsat 
images were cloud-covered and therefore not practical for use in this project.   Image 
dates range from 25 June to 2 August resulting in anniversary dates within 5-½ weeks of 
one another.  Two of the images are cloud free, while the remaining 12 have less than 5% 
cloud cover. 
 
 
Table 2: Landsat images used in this study.  Images marked with * are cloud free. 
Acquisition Date 

(1980s) 
Sensor 

 
Acquisition Date 

(1990s) 
Sensor 

 
Acquisition Date 

(2000s) 
Sensor 

 
17 July 1986 TM5 15 July 1991 TM5 15 July 2000 ETM+ 

2 August 1989 TM4 12 July 1996 TM5 2 July 2001 ETM+ 
  15 July 1997 TM5 5 July 2002 ETM+ 
  18 July 1998 TM5 1 August 2003 TM5 
  13 July 1999* ETM+ 21 July 2005* TM5 
    8 July 2006 TM5 
    25 June 2007 TM5 

 
 
 Each image was clipped to the YNP boundary.  Clouds and cloud shadows were 
masked by on-screen digitizing.  Elevations greater than 2,700 m were masked to remove 
snow from the input data.  The thermal infrared band for each of the 14 images was 
degraded to 120-m pixel size as requested by the NPS.  Resampling was necessary 
because of differing resolutions among the source images; 120-m was the coarsest 
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resolution of the source images and resampling to a finer resolution would create false 
precision, therefore the coarsest resolution was selected.  The COSine Transformation 
(COST) (Chavez, 1996) method of dark object subtraction atmospheric and radiometric 
correction was applied to the original raw data values of the six reflective bands of each 
image.  The original Landsat raw data values are represented by digital numbers (or DNs) 
with values from 0 to 255 (8-bit radiometric resolution).  The dark object DN values were 
chosen by examining the image histogram for each of the six reflective bands.  The DN 
value where the histogram increased to more than 100 pixels was assigned the dark object 
value.  These values along with information from the Landsat header files were used to 
convert the images to surface reflectance values for Landsat bands 1, 2, 3, 4, 5, and 7 at a 
30-m pixel size (Utah State University, 2008). 
 The Normalized Difference Vegetation Index (NDVI) was used to estimate 
fractional vegetation (Fr, unitless) based on the method by Brunsell and Gillies (2002).  
Fractional vegetation represents the percentage of vegetation within a pixel and is derived 
from NDVI as follows: 
 
Fr = [(NDVI – NDVI0)/(NDVImax – NDVI0)]2    (Equation 1) 
 
where NDVI0 represents bare soil and NDVImax represents scene specific maximum 
vegetation.  Assuming average broad-band emissivity for bare soil of 0.97 (from the 
“light yellowish brown loamy sand” and “white gypsum dune sand” JPL spectral libraries 
(NASA, 2008)) and emissivity for vegetation of 0.98 (from the “coniferous vegetation” 
JPL spectral library (NASA, 2008)), emissivity (ε, unitless) per pixel (excepting water 
pixels) was estimated from the Fr: 
 
ε = Fr*εv + (1 – Fr)*εs        (Equation 2) 
 
where εv represents vegetation emissivity and εs represents soil emissivity.  Water pixels 
were assigned an average broad-band emissivity value of 0.99 (Shaw and Marston, 
2000).  To match the lower-resolution TIR imagery, the resulting emissivity image was 
subsequently degraded to 120-m pixels by averaging the 30-m pixel values. 
 
 
Terrestrial Emittance and Heat Flux Calculation Procedures 
 

The raw TIR data (band 6) for each image was converted to at-satellite radiance  
(Lλ, Wm-2sr-1μm-1) using published calibration factors (Chander et al., 2009).  Radiance 
was converted to top-of-atmosphere emittance (Mtoa, Wm-2) by integrating over the 
bandwidth (from 10.4 μm to 12.5 μm = 2.1 μm) and the hemisphere (π sr): 
 
Mtoa, 6H = 2.1πLλ        (Equation 3) 
             

MODerate resolution atmospheric TRANsmission (ModTran) was utilized to 
estimate atmospheric transmittance (τ) and upwelling atmospheric emittance (Mup, Wm-2) 
for a “Mid Latitude Summer” model atmosphere.  Following the Watson method 
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(Watson et al., 2008), surface emittance integrated over band 6 (Msurf, 6H, Wm-2) was 
estimated: 

 
Msurf,6H = (Mtoa,6H – Mup)/τ       (Equation 4) 
            
where Mup = 4.64 Wm-2 and τ = 89.39%.  The fitted coefficients from Watson’s 
regression model were utilized to estimate broad-band surface emittance (Msurf, Wm-2): 
 
Msurf = (0.004812Msurf,6H)2 + 2.653Msurf,6H

 + 181.8  
         

Terrestrial emittance (Mterr, Wm-2) was estimated using the NDVI-derived 
emissivity values and downwelling atmospheric emittance (Mdown, Wm-2) calculated with 
ModTran for a “Mid Latitude Summer” model atmosphere: 

 
Mterr = Msurf – (1 – ε)Mdown       (Equation 5) 
            
where ε ranges from 0.97 to 0.99, and Mdown = 240 Wm-2.   

Potential annual direct incident solar radiation (SR) was calculated from a 30-m 
digital elevation model (DEM) of the study area (McCune and Keon, 2002) to take solar 
effects into account.  This equation incorporated the slope, aspect, and latitude of the 
terrain and returns SR in units of MJ cm-2 yr-1: 
 
SR = 0.339 + 0.808(cos(L)*cos(S)) – 0.196(sin(L)*sin(S)) – 0.482(cos(A)*sin(S))  
          (Equation 6) 
 
where L = latitude in radians, S = slope in radians, and A = folded aspect in radians east 
of north (this rescales 0-360° to 0-180°, so NE = NW, E = W, and so on, to emphasize 
north/south contrast).  The output values were multiplied by 316.89 Js-1m-2 to arrive at SR 
in Wm-2.  This image was degraded to 60-m and 120-m pixel images. 

Albedo was calculated from five of the six reflective Landsat bands.  The green 
band (band 2) was excluded because it does not improve the R2 of the regression.  The 
DNs were first converted to surface reflectance then applied to the following shortwave 
albedo calculation (unitless): 

 
αshort = 0.356α1 + 0.130 α3+ 0.373 α4+ 0.085 α5+ 0.072 α7 – 0.0018  (Equation 7) 
     
where α# refers to the Landsat band (Liang, 2000). 
 
The estimate of GHF was calculated by incorporating albedo and SR so that locations 
with low albedo and high absorption of solar radiation, for instance a recent fire scar, 
would not result in falsely high GHF: 
 
GHFα = Mterr – (SR * (1 – αshort))      (Equation 8) 
         
where 1 - αshort is absorption based on Kirchoff’s law (Elachi, 1987). 
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Temperature in °C was calculated from Mterr based on the Stefan-Boltzman Law 
(M = εσT4, where M is emittance, ε is emissivity, σ = 5.67 X 10-8 Wm-2K-4, and T is 
temperature in units Kelvin): 
 
TempC = (Mterr/0.0000000567)0.25 – 273.15     (Equation 9) 
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Comparison to Airborne Data 
 

The Mterr values for the July 2002 image in the Norris Geyser Basin area were 
compared to the summary statistics and heat flow values from a nighttime airborne 
thermal infrared image of the same area from October 2002 (Hardy, 2005; Seielstad and 
Queen, 2009).  The Hardy (2005) data originally had a pixel resolution of 0.76 m on a 
side.  These pixels were degraded to 60 m on a side to match the Landsat data.  Two 
extents were examined: (1) the entire extent of the Hardy data, and (2) the boundary of 
Norris Geyser Basin according to the defined geothermal areas (Spatial Analysis Center, 
2005).  Summary statistics and total heat flow were calculated for the four images and 
compared.  The moderate-resolution, daytime, summer, 10.4 to 12.5 µm Landsat data 
were compared to the high-resolution, nighttime, winter, 3 to 5 µm airborne data, despite 
their differences, in order to assess the quality of the Landsat-derived Mterr.  The Hardy 
(2005) data were the only area-wide data available for such a comparison.  Since both 
methods seek to estimate total flux based on the portions of the spectrum sampled, the 
comparison is relevant to an evaluation of whether they are of the same order of 
magnitude. 
 
 

Results and Discussion 
 
 
Terrestrial Emittance and GHF in Yellowstone National Park 
 
 Estimated Mterr values ranged from 216.98 Wm-2 to 495.98 Wm-2 for the 120-m 
resolution images (highest and lowest values from the 1991 image) (Table 3).  The range 
of estimated Mterr values for the 60-m resolution images was from 308.59 Wm-2 to 448.16 
Wm-2.  Mean values of Mterr ranged from 319.93 Wm-2 to 378.66 Wm-2 for the 14 120-m 
resolution images and from 368.90 Wm-2 to 382.02 Wm-2 for the 4 60-m resolution 
images.   
 
 



CESU TASK AGREEMENT NUMBER: J1580050584 Final Report 2009 

 [16] 

Table 3: Summary statistics for terrestrial emittance (Mterr) for 4 60-m resolution and 14 
120-m resolution summer Landsat images of Yellowstone National Park (Wm-2) 
60-m ETM+ Images     
Year Min Max Mean Median Mode Std. Dev. 
2002 308.59 446.74 368.90 367.95 364.71 18.88 
2001 310.29 445.97 375.14 374.42 376.54 20.01 
2000 323.98 448.16 382.02 381.71 374.91 20.10 
1999 314.56 447.01 378.51 377.68 373.02 20.17 
       
120-m TM and ETM+ Images 
Year Min Max Mean Median Mode Std. Dev. 
2007 303.84 413.64 353.90 354.45 353.16 15.19 
2006 302.21 410.62 351.47 350.49 351.76 11.93 
2005 313.71 449.77 370.10 368.98 367.39 18.66 
2003 287.95 427.6 362.51 361.05 363.78 17.68 
2002 311.05 441.27 368.90 368.53 363.95 18.55 
2001 311.14 445.85 375.12 374.81 370.6 19.68 
2000 232.29 446.41 378.66 381.17 373.64 26.65 
1999 316.02 445.99 378.60 377.96 373.89 19.81 
1998 314.23 420.71 362.53 361.65 359.98 16.10 
1997 265.95 448.95 349.23 347.44 345.3 14.40 
1996 289.56 408.4 350.45 348.98 342.94 16.25 
1991 216.98 495.98 355.34 353.21 342.31 16.99 
1989 279.2 475.56 335.97 332.13 325.99 17.11 
1986 298.25 379.36 319.93 317.53 315.99 7.86 

 
 
 Estimated GHFα values ranged from -86.94 Wm-2 to 377.36 Wm-2 for the 14   
120-m resolution images (highest and lowest values from the 2000 image) (Table 4).  The 
estimated values of GHFα for the 4 60-m resolution images ranged from 16.68 Wm-2 to 
382.59 Wm-2.  Mean GHFα values ranged from 63.35 Wm-2 to 128.06 Wm-2 for the 14 
120-m resolution images and from 118.02 Wm-2 to 132.11 Wm-2 for the 4 60-m 
resolution images.   
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Table 4: Summary statistics for albedo and potential annual direct incident solar radation 
corrected geothermal heat flux (GHFα) for 4 60-m resolution and 14 120-m resolution 
summer Landsat images of Yellowstone National Park (Wm-2) 
60-m ETM+ Images 
Date Min Max Mean Median Mode Std. Dev. 

2002 16.68 377.96 118.02 116.88 111.23 32.32 
2001 26.44 360.22 125.60 125.53 122.93 32.09 
2000 35.82 372.63 132.11 131.86 129.23 32.73 
1999 26.03 382.59 126.58 126.31 122.13 33.42 

       
120-m TM and ETM+ Images 
Date Min Max Mean Median Mode Std. Dev. 

2007 18.88 336.29 101.97 100.71 101.95 29.68 
2006 24.06 344.83 100.00 97.99 96.73 26.99 
2005 26.42 352.91 119.87 119.52 115.69 31.51 
2003 0.79 333.60 110.30 109.99 109.99 30.46 
2002 24.21 336.10 118.06 118.02 116.80 31.19 
2001 27.31 326.88 125.63 125.61 122.10 31.12 
2000 -86.94 377.36 128.30 130.70 125.26 38.13 
1999 27.48 365.07 126.53 126.39 119.79 33.31 
1998 28.06 350.75 111.39 111.25 108.73 29.45 
1997 -3.32 341.20 95.87 93.57 92.23 28.97 
1996 9.07 348.41 91.16 87.28 79.32 28.61 
1991 -36.82 337.91 105.71 103.71 97.85 30.45 
1989 0.01 340.24 78.34 73.11 61.14 29.30 
1986 4.08 306.08 63.35 58.34 50.09 24.72 

 
 
 Estimated temperature values ranged from -24.43 °C to 32.67 °C for the 14   120-
m resolution images (highest and lowest values from the 1991 image) (Table 5).  The 
estimated values of temperature for the 4 60-m resolution images ranged from -1.54 °C to 
25.02 °C.  Mean temperature values ranged from 0.91 °C to 12.63 °C for the 14 120-m 
resolution images and from 10.79 °C to 13.28 °C for the 4 60-m resolution images.   
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Table 5: Summary statistics for temperature calculated from terrestrial emittance (Mterr) 
for 4 60-m resolution and 14 120-m resolution summer Landsat images of Yellowstone 
National Park (°C) 
60-m ETM+ Images 
Date Min Max Mean Median Mode Std. Dev. 

2002 -1.54 24.78 10.79 10.70 10.90 3.65 
2001 -1.16 24.65 11.97 11.95 11.64 3.83 
2000 1.79 25.02 13.28 13.31 12.68 3.80 
1999 -0.23 24.83 12.61 12.49 12.00 3.83 

       
120-m TM and ETM+ Images 
Date Min Max Mean Median Mode Std. Dev. 

2007 -2.59 19.10 7.88 8.00 7.83 3.04 
2006 -2.95 18.57 7.41 7.22 6.72 2.37 
2005 -0.42 25.29 11.02 10.83 9.82 3.60 
2003 -6.20 21.54 9.56 9.40 9.08 3.45 
2002 -1.00 23.87 10.79 10.76 10.27 3.59 
2001 -0.98 24.64 11.98 11.93 11.63 3.83 
2000 -20.15 24.73 12.57 13.16 12.10 5.39 
1999 0.08 24.66 12.63 12.56 11.31 3.76 
1998 -0.03 20.34 9.57 9.37 9.13 3.15 
1997 -11.45 25.15 6.95 6.71 5.42 2.88 
1996 -5.83 18.17 7.18 7.02 4.96 3.24 
1991 -24.43 32.67 8.15 7.69 6.35 3.35 
1989 -8.25 29.48 4.23 3.39 2.21 3.46 
1986 -3.84 12.85 0.91 0.59 0.07 1.67 

 
 

Estimating terrestrial emittance requires only three Landsat bands and 
atmospheric and radiometric corrections.  Terrestrial emittance includes all the types of 
heat emitted from the ground: GHF, direct incident solar radiation, and indirect solar 
effects such as convection from air currents, and soil conduction of solar energy.   

Mean annual air temperature is a good representation of ground water 
temperature.  Mean temperature and Mterr values were similar to, but slightly higher than, 
the average annual air temperature of YNP (4.64 °C, or 337.6 Wm-2) (Western Regional 
Climate Center, 2005), demonstrating that the model includes geothermal as well as non-
geothermal heat.  Many of the hottest Mterr pixels were located on low-elevation flat and 
south-facing slopes (in the Northern Range), and within 1988 fire scars that have been 
revegetated with thick stands of young lodgepole pine (Pinus contorta) intermixed with 
down and standing grey and white snags (Figure 2).   
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Figure 2: Range of values for (a) terrestrial emmitance (with many of the 1988 fire scars 
circled in yellow and a portion of the Northern Range circled in green (Mterr) and (b) 
albedo and potential annual direct incident solar radiation corrected geothermal heat flux 
(GHFα) in Yellowstone National Park on 5 July 2002 (Wm-2).  White areas were snow or 
cloud-covered. 
 
 
Comparison to Airborne Data in the Norris Geyser Basin Area 
 

The summary statistics of Mterr values were similar to the Hardy heat flow 
summary statistics (Table 6).  The Hardy (2005) data had higher values overall than the 
Mterr data, with the maximum values much higher and the minimum values only slightly 
higher.  The range of the Hardy data was more than double the range of the Mterr data.  
The total heat flow values for Mterr were within an order of magnitude of the Hardy heat 
flow data for both the full Hardy data extent and a subset that covers just Norris Geyser 
Basin (Table 7). 
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Table 6: Comparison of October 2002 Hardy (2005) heat data summary statistics to July 
2002 estimated terrestrial emittance (Mterr) summary statistics (values in Wm-2).  
Information from the full 2002 Hardy data and Norris Geyser Basin extents are displayed. 
Hardy full data extent Min Max Mean Median Mode Std. Dev. 

Hardy data 60 m 342.2 664.3 407.7 401.3 387.5 35.7 
Mterr 60 m 338.2 418.5 378.2 377.1 376.4 13.7 

       
Norris Geyser Basin Min Max Mean Median Mode Std. Dev. 

Hardy data 60 m 361.8 664.3 432.0 426.7 418.5 37.0 
Mterr 60 m 353.4 418.5 387.5 387.7 393.3 11.9 

 
 
Table 7: Comparison of October 2002 Hardy (2005) total heat flow and power values to 
July 2002 estimated terrestrial emittance (Mterr) heat flow and power values.  All Mterr 
values are within an order of magnitude of the Hardy data.     
 Hardy Heat Flow Mterr Heat Flow  
Hardy data extent 407.7 Wm-2 378.2 Wm-2  
Norris Geyser Basin 432.0 Wm-2 387.5 Wm-2  
    
 Hardy Power Mterr Power Area of Analysis 
Hardy data extent 7.0 GW 6.5 GW 17,125,200 m2 
Norris Geyser Basin 1.5 GW 1.4 GW 3,502,800 m2 

 
 

The Mterr values calculated for the July 2002 Landsat image were within the same 
order of magnitude of the heat flow values calculated by Hardy (2005) for the nighttime 
airborne October 2002 image of Norris Geyser Basin and surrounding area, providing 
some confirmation that the calculations used in this project were consistent with previous 
analysis.  Solar radiation was not taken into account for either image.  While there are 
fewer solar radiation effects during a nighttime image, there are still accumulated effects 
from the sun heating the ground the previous day, week, month, and year.  The 
similarities between the daytime and nighttime readings are, therefore, expected, and 
show that Landsat can be used to calculate terrestrial emittance with comparable results 
to higher spatial resolution sensors. 

The Mterr and Hardy heat flow values were larger for Norris Geyser Basin than for 
the larger extent, as expected.  Reducing the study area to the smaller Norris Geyser 
Basin included less non-geothermal-ground, thus more heat would be emitted per area 
than in a larger, mostly non-geothermal-ground study area. 

The Mterr and Hardy values were similar, but the differences are also noteworthy.  
Since the Landsat image was from July and solar radiation was not taken into account, 
Mterr values were expected to be greater than the Hardy heat flow values, but they were 
not.  This is most likely due to the different data collection and processing methods.  The 
Hardy data were derived directly from raw DNs and temperature calibration data.  No 
atmospheric corrections were needed since the data were collected with a low-elevation 
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airborne flight.  The Mterr data, on the other hand, were not calibrated to ground 
temperature, and needed atmospheric corrections since they were collected from space.  

 
 

CHANGE ANALYSIS OF TERRESTRIAL EMITTANCE AND HEAT FLUX 
 

 
Methods 

 
 
 GHF is an important aspect in the dynamics of geothermal features.  While GHF 
represents only heat coming from below the Earth’s surface, Mterr represents all heat 
emitted from the ground and is composed of GHF as well as direct and indirect solar 
radiation effects.  GHFα attempts to account for solar effects and appears to do so, with 
caveats, relative to Mterr at a YNP-wide scale. Mterr has several advantages over GHFα for 
analyzing change in YNP’s geothermal areas.  First, a version of Mterr has been field 
verified (Watson et al., 2008), while GHFα has had no field verification.  Second, the 
spatial patterns of GHFα are substantially different from those of the less variable Mterr, 
including data striping artifacts, and overly high values on north-facing slopes.  Lastly, all 
things being equal, the level of uncertainty in the data increases with each additional 
processing step, and Mterr requires less processing than GHFα. 
 YNP scientists can study changes in Mterr values to examine changes in behavior 
of geothermal features or to monitor for changes in heat flux that might be occurring in 
response to land management practices within and outside of YNP.  New features 
regularly emerge and active features become inactive.  The geothermal areas of YNP 
must be monitored on a regular basis to be able to assess changes that might occur over 
days or decades.   Two sets of YNP-wide Mterr images were processed and are 
reported here to give one example of how change can be analyzed with data derived from 
Landsat images.  In addition, two sets of YNP-wide GHFα images were processed and 
provided to Yellowstone National Park’s Geology Program.  Lastly, further change 
analyses were performed during Shannon Savage’s Ph.D. project.  Please see her 
dissertation for details on those change analyses (Savage, 2009). 
 
 
Image Differencing 
 
 The 25 June 2007 and 8 July 2006 TM Mterr images (120-m pixel resolution) and 
the 5 July 2002 and 2 July 2001 ETM+ Mterr images (60-m pixel resolution) were 
differenced by subtracting the earlier date from the later date (e.g., 2007 minus 2006) for 
every pixel.  Large positive output values indicated an increase in Mterr from the earlier 
year to the later year.  Large negative output values indicated a decrease in Mterr from the 
earlier year to the later year.  Output values near zero indicated little to no change in Mterr 
from the earlier year to the later year. 
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Results and Discussion 
 
 
Image Difference 
 
 Approximately 1% of the estimated Mterr values increased 10 Wm-2 or more from 
2001 to 2002, and approximately 1% of the estimated Mterr values increased 10 Wm-2 or 
more from 2006 to 2007.  The largest increase from 2001 to 2002 was 72.98 Wm-2.  The 
largest increase from 2006 to 2007 was 52.98 Wm-2.  Nearly 82% of the estimated Mterr 
values were within +/- 10 Wm-2 from 2001 to 2002, and nearly 95% were within +/- 10 
Wm-2 from 2006 to 2007.  Approximately 16% of the estimated Mterr values decreased 10 
Wm-2 or more from 2001 to 2002, and approximately 4% of the estimated Mterr values 
decreased 10 Wm-2 or more from 2006 to 2007.  The largest decrease from 2001 to 2002 
was -61.79 Wm-2.  The largest decrease from 2006 to 2007 was -45.65 Wm-2. 
 The majority of the study area did not change dramatically from year to year in 
the two test cases comparing 2007 to 2006 and 2002 to 2001.  This was expected since 
changes in pixels geothermal activity in most cases are too small to detect with 60-m or 
120-m pixel resolution.  The areas that did change, however, are explained by fire and 
snow.  The small portion of dramatic increase in Mterr from 2001 to 2002 is shown within 
fire scars from the 2001 fire season (Figure 3).  Much of the portion of dramatic decrease 
in Mterr from 2001 to 2002 is near the Pitchstone Plateau area (circled in Figure 3) where 
there was little to no snow in 2001, but was mostly covered by snow in 2002.  Although 
snow emits heat as it melts, it is likely that the snow in the 2002 image is relatively fresh. 
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Figure 3: Changes in terrestrial emittance (Mterr) from 2 July 2001 to 5 July 2002 in 
Yellowstone National Park (values displayed are in Wm-2).  The Pitchstone Plateau is 
circled in grey, demonstrating where there was no snow in 2001 but fresh snow in 2002. 
 
 

CLASSIFYING GEOTHERMALLY ACTIVE AREAS 
 
 

YNP is home to thousands of geothermal features and contains the highest 
concentration of geysers, hot springs, fumaroles, and mud pots in the world (Waring et 
al., 1983).  Greater than 12,000 individual geothermal features have been identified 
within the defined geothermal areas in YNP via the Thermal Inventory Project, a multi-
year National Park Service-sponsored project with the goal of collecting precise GPS 
measurements of every geothermal feature in YNP (Spatial Analysis Center, 2008).  The 
defined geothermal areas were delineated from historical data, field observations, data 
from the Thermal Inventory Project, and heads-up digitizing using one-meter resolution 
digital orthophoto quarter quadrangles (DOQQs) (Spatial Analysis Center, 2005).  The 
defined geothermal areas include locations that are geothermally inactive, such as 
Brimstone Basin, near the southeastern arm of Yellowstone Lake.  Geothermal activity 
has never been observed at Brimstone Basin, but the area appears geothermally 
influenced (Langford, 1972; Nordstrom et al., 2009).   

Monitoring geothermal features requires an accepted base map of the area, and 
while the defined geothermal areas are reasonably accurate, they need to be refined so 
that inactive geothermal barrens (e.g., Brimstone Basin; ground that is not geothermally 
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active but appears geothermally influenced) are not included as active geothermal barrens 
(e.g., white ground with little to no live vegetation and emitted geothermal heat), and 
active areas that do not appear geothermally influenced are included as geothermally 
active areas (GAA).  For the purposes of this project, a GAA is defined as an area that 
has hot springs, geysers, fumaroles, and/or mudpots, and/or is emitting geothermal heat.   

YNP covers a large area (approximately 890,000 ha), and the current defined 
geothermal areas cover less than 1% of that area.  The size of YNP prevents personnel 
from being able to visit and monitor all of the geothermal areas each year as part of a 
monitoring program.  Many geothermal areas are in remote backcountry areas not easily 
accessible on a day-hike, thus requiring multi-day excursions in order to monitor changes 
at these areas.  Not only is this time-consuming, it is expensive, and not practical. 

Remote sensing offers a possible alternative to endless field work for monitoring 
YNP’s geothermal areas.  Landsat Thematic Mapper (TM) multispectral satellite imagery 
covers the entirety of YNP and collects information from the visible (0.452–0.518 μm, 
0.528–0.609 μm, and 0.626–0.693 μm), near infrared (NIR; 0.776–0.904 μm), middle 
infrared (MIR; 1.57–1.78 μm, and 2.1–2.35 μm), and thermal infrared (TIR; 10.45–12.42 
μm) portions of the electromagnetic spectrum (EMS) (Chander et al., 2009).  All but the 
TIR band have 30-m spatial resolution (30 m on a pixel side, or 900 m2), while the TIR 
band has 120-m spatial resolution (14,400 m2).  The current TM sensor on Landsat 5 has 
been in orbit since 1984 and a new TM sensor with a similar spectral range, including 
TIR, is expected to be sent into orbit on Landsat 8 in 2012 (NASA, 2009).  Landsat TM 
images are collected over YNP every 16 days, allowing annual or seasonal classification 
of the GAAs. 

One of the primary applications of remote sensing, and Landsat data in particular, 
is classifications of features on the landscape, often land cover/vegetation, but also 
minerals, water, human impacts, and geothermally influenced ground.  Classifications of 
landscape features produce maps that can be compared over time to assess change.  
Thermal and terrestrial emittance anomalies, for example, have been identified 
successfully with Landsat data.  Three Landsat TM scenes recorded high-temperature 
thermal anomalies, such as vertical ash eruptions and an active basaltic lava flow, from 
1986 to 1988 over Santiaguito Dome and Pacaya Volcano in Guatemala (Andres and 
Rose, 1995).  A method of quantifying the intensity of surficial geothermal activity in 
YNP was developed with 2000 Landsat ETM+ imagery (Watson et al., 2008).  This 
method utilized thermal radiance data to create a map of terrestrial emittance anomalies, 
proxies for geothermal heat flux (GHF).  

Decision tree classification methods are recent additions to the image 
classification arsenal that allow analysts to utilize original imagery along with ancillary 
data without requiring expert knowledge to conduct highly accurate image classifications 
(Lawrence and Wright, 2001; Lawrence et al., 2004).  Random Forest (RF) is a decision 
tree classification method that grows hundreds of decision trees, where each tree is grown 
using a different bootstrapped (resampled with replacement) random subset of training 
data, and each split within each tree is based on a different random subset of predictor 
variables (Breiman, 2001; Lawrence et al., 2006).  The “forest” of trees then votes to 
assign a class to each input data point (Breiman, 2001; Prasad et al., 2006).  RF 
classifications have been shown to have accuracy rates as good as or better than any other 
classification method used for remote sensing, while being less sensitive to noise and 
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uneven classes in training sets (Pal, 2005; Gislason et al., 2006; Lawrence et al., 2006).  
Internal accuracies of RF datasets are calculated with out-of-bag (OOB) samples, that is, 
those training data excluded from the bootstrapped random subsets, potentially reducing 
the need for independent accuracy assessments (Liaw and Wiener, 2002; Gislason et al., 
2006; Lawrence et al., 2006; Prasad et al., 2006).  When the reference data are biased, 
however, the OOB estimation might not be reliable (Lawrence et al., 2006).  RF has been 
applied to Landsat ETM+ data to classify agricultural land cover in Littleport, 
Cambridgeshire, UK (Pal, 2005) and to Landsat Multispectral Scanner (MSS) data to 
classify forest types in a mountainous area in Colorado (Gislason et al., 2006) with 88% 
and 83% accuracy respectively.  RF can handle high dimensional data, easily 
accommodates ancillary data, avoids overfitting, does not make assumptions about the 
distribution of data, and is particularly well suited to predictive mapping.  It is, however, 
somewhat of a “black box” method since the resulting statistical model consisting of a 
forest of decision trees is not subject to easy interpretation of the relationship of predictor 
and response variables other than the relative importance of predictors (Friedl and 
Brodley, 1997; Liaw and Wiener, 2002; Gislason et al., 2006; Prasad et al., 2006).  RF 
should be a reasonable classification technique for determining whether Landsat imagery 
is able to map the distribution of GAA in the defined geothermal areas of YNP since 
GAA have not yet been classified in YNP and there is no reported study of any other 
statistical method substantially outperforming RF for classification purposes. 

The constrained energy minimization (CEM) method is a target detection 
classification technique, developed primarily for hyperspectral data and often used to 
identify minerals or very rare targets.  The method only requires prior knowledge of the 
distinct target of interest and eliminates unidentified spectral signature sources and 
suppresses noise in the data (Du et al., 2003).  The distribution of mine tailings in Coeur 
d’Alene River Valley, Idaho in 1993 was mapped using CEM (Farrand and Harsanyi, 
1997).  Twelve false-alarm pixels were found out of 484 pixels determined to be rich in 
ferruginous sediments.  Although designed for hyperspectral imagery, an empirical study 
showed that CEM can be used with SPOT imagery (multispectral imagery with spectral 
similarities to Landsat imagery) and correlated derivatives of these data for classification 
of individual targets (Chang et al., 2000).  Since GAA are rare targets of interest outside 
defined geothermal areas at YNP, and non-GAA information is highly variable and 
difficult to collect due to the size of and diversity of landcover types within YNP, the 
CEM target detection algorithm is an appropriate tool for classifications of GAA outside 
the defined geothermal areas.  

The main purpose of this portion of the project was to assess the ability of 
Landsat TM data combined with RandomForest and target detection classifiers to classify 
GAA accurately.  An effective method would enable the classification of GAA in and 
outside YNP that could be applied to additional Landsat images for use in monitoring and 
change analysis.  A successful classification method would provide scientists with 
information on where to check for new geothermal areas in YNP and where to focus on 
ground-work or aerial flights to best assess change.  This strategy would reduce the 
amount of time-consuming and expensive field monitoring or aerial image acquisition, 
especially in the backcountry. 



CESU TASK AGREEMENT NUMBER: J1580050584 Final Report 2009 

 [26] 

 
Methods 

 
Image preprocessing 
 

Five summer TM scenes were utilized for classification: 2007, 2006, 2005, 1989, 
and 1986.  The first three scenes were chosen because they were the most recent, 
complete, and mostly cloud-free (less than 5%) consecutive years of imagery.  The scene 
for 1989 was chosen because it should indicate major changes after the 1988 fire season.  
The 1985 scene was chosen because it was the only summer scene available prior to the 
1988 fire season that had thermal infrared information. 

Several ancillary data sets were required for analysis.  A 30-m digital elevation 
model (DEM), digital spatial polygon data of the defined geothermal areas, and digital 
spatial point data of the Thermal Inventory Project data were provided by YNP.  The 
defined geothermal area polygons include nearly all known geothermally active areas in 
YNP as well as some inactive areas.  These data were provided as the starting point for 
classification with the aim of refining the boundaries so inactive areas would not be 
included.  The Thermal Inventory Project includes greater than 12,000 precise (sub-meter 
accuracy) GPS locations of individual geothermal features.  If a GPS point was collected 
at the edge of a feature, the distance and azimuth to the center was estimated and the 
point was moved to that center location.  The Thermal Inventory Project points represent 
the most complete collection of all geothermal features within YNP, but do not include 
areas of hot ground with no geothermal features.  These ancillary data were utilized as 
reference data for the classification process. 

Slope and aspect were derived from the DEM, with slope in degrees and aspect as 
categorical data with 9 categories (N, S, E, W, NE, SE, SW, NW, and flat).  These 
topographic data were utilized in subsequent calculations (see below) as well as in the 
classification process as additional predictor variables.  Slope and aspect by themselves 
would not be able to classify GAA, but their interactions with other predictor variables 
might help the classification process. 
 The TM images and all ancillary data were clipped to the full study area.  Clouds 
and cloud shadows were masked by on-screen digitizing, and elevations greater than 
2,700 m were masked to remove snow from the study area as no records of geothermal 
features have been found for these areas and deep snow conceals thermal infrared 
signatures (if they exist).  The methods described above (equations 1 through 5) to 
calculate Mterr from the red, NIR, and TIR Landsat bands were followed.  SR and albedo 
were calculated as described above (equations 6 and 7) and GHFα was calculated from 
Mterr, SR, and albedo following the methods above (equation 8).  NDVI, albedo, SR, and 
GHFα were included in the classification process along with the original reflective 
spectral bands and Mterr in order to provide the classification algorithm with many 
possible predictors and predictor interactions that might improve the final outcome. 

Transformed datasets were derived from the original Landsat bands to potentially 
improve the classification process by adding additional predictors that can detect diverse 
landscape features.  Principal components analysis (PCA) reduces the amount of data to 
be analyzed and accounts for the most variance in the original image (Singh, 1989).  
Correlations between the components and the input bands can be calculated and each PC 
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can be interpreted as representing certain combinations of Landsat bands and/or features 
on the ground (Jensen, 2005).  A standardized PCA was performed on the original 
reflective bands and Mterr resulting in 7 new components where the majority of the 
original variance can be found in the first 3 components.   

A tasseled cap (TC) transformation was performed on the six reflective bands, 
resulting in 3 additional transformed components for the classification process.  This is a 
physically based identification process similar to PCA in that it reduces the amount of 
information to be analyzed into the first three components.  These components represent 
brightness (TCB) (soil brightness or total reflectance), greenness (TCG) (relative 
amounts of leafy green vegetation), and wetness (TCW) (soil moisture) (Crist and 
Cicone, 1984).   

The six original reflective Landsat bands and 17 derived and ancillary data 
components were stacked to create one 23-component image for the study area (Table 8).  
This 23-component image was clipped to the defined geothermal area boundaries for use 
in an initial classification.  The final images used in the classification processes had 30-m 
spatial resolution.     
 
 
Table 8: Components used in the RandomForest and constrained energy minimization 
classification processes.  Components 1 through 5 and 7 were original Landsat bands.  
Components 6, 8 through 18, 20, and 23 were derived from the original Landsat bands.  
Components 19, 21, and 22 were derived from topographic information. 

# Component Name # Component Name 
1 Band 1 – Blue 13 Principal Component 6 (PCA6) 
2 Band 2 – Green 14 Principal Component 7 (PCA7) 
3 Band 3 – Red 15 Tasseled Cap Brightness (TCB) 
4 Band 4 – Near Infrared (NIR) 16 Tasseled Cap Greenness (TCG) 
5 Band 5 – Middle Infrared (MIR1) 17 Tasseled Cap Wetness (TCW) 
6 Terrestrial Emmitance (Mterr) 18 Normalized Difference Vegetation Index (NDVI) 
7 Band 7 – Middle Infrared (MIR2) 19 Potential Annual Direct Incident Solar Radiation (SR) 
8 Principal Component 1 (PCA1) 20 Albedo 
9 Principal Component 2 (PCA2) 21 Aspect 
10 Principal Component 3 (PCA3) 22 Slope in degrees 
11 Principal Component 4 (PCA4) 23 Estimated Geothermal Heat Flux (GHFα) 
12 Principal Component 5 (PCA5)   

 
 
RandomForest Classification Procedures 
 

The classifications developed for this study had two classes: (1) GAA – anywhere 
that was geothermally active, and (2) non-GAA – anywhere that was not geothermally 
active.  The RF classification was designed to refine the currently defined geothermal 
areas by distinguishing the non-GAA contained within the defined geothermal areas. 

The GAA reference data for the RF classification processes were collected as a 
random selection of Thermal Inventory Project data points (Table 9) (Spatial Analysis 
Center, 2008).  The Thermal Inventory Project began in 1998 and was completed in 
2008.  Over 12,000 GPS-located points were collected along with pH, conductivity, 
temperature, and a description of each geothermal feature.  The data from the Thermal 
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Inventory Project were the most accurate available data for representing GAA, since the 
points are locations of active geothermal features and were collected with a sub-meter 
precision GPS unit.  An inherent bias to these data is that the Thermal Inventory Project 
focused on features, not areas, so active geothermal barrens were not identified in this 
dataset, and therefore are absent from the reference data. 

Non-GAA reference data were impossible to collect in the field due to the lack of 
time, money, and permission to place 10,000 temperature loggers throughout the defined 
geothermal areas that would be necessary to identify a large number of 900 m2 locations 
known to not be emitting geothermal energy.  Thus, the non-GAA training and validation 
data were collected with digital spatial data.  The Thermal Inventory Project points were 
buffered with a 60-m radius (in order to exclude the 30-m pixel in which the points reside 
and the 8 surrounding 30-m pixels) and random points were generated in the areas 
outside those buffer zones but within the defined geothermal areas.  Over 3,500 reference 
points were collected for this study (Table 9).   
 
 
Table 9: Geothermally active area (GAA) and non-geothermally active area (non-GAA) 
reference data used in the RandomForest classification of the defined geothermal areas. 

GAA Training Non-GAA Training GAA Validation Non-GAA Validation 
1,366 1,914 300 300 

 
 

The five classifications were performed with the ModelMap package within R 
statistical software (Freeman and Frescino, 2009).  ModelMap contains the randomForest 
function and in addition to producing an out-of-bag (OOB) error estimate and a graph of 
predictor importance, creates a text file that can be converted to a raster image.  The 
training data set was used to create five different RF classifications.  All 23 image 
components (listed in Table 8) were utilized as predictor variables for all five 
classifications.  Each output text file was converted to a classified raster image based on 
the probability threshold of 0.5.  In other words, any value greater than 0.5 was classified 
as GAA, while the rest were classified as non-GAA.   The classified raster image was 
subsequently converted to polygon data for use as training data for classifications of 
study area locations outside the defined geothermal areas. 

Five error matrices based on data withheld from the reference data were 
constructed to calculate the overall and class accuracies of each classification.  Class 
accuracies are shown with user’s accuracy (errors of commission) and producer’s 
accuracy (errors of omission) (Congalton, 2001).  Kappa statistics were calculated for 
each classification method.  The Kappa statistic measures how much better (or worse) the 
classification is from a randomly generated classification and is more conservative than 
overall accuracy (Congalton and Green, 1999; Congalton, 2001).  Kappa values range 
from -1 to 1 and the closer the value to 1, the more accurate the classification.   
 
 
Target Detection Classification Procedures 
 
The target detection classification was designed to classify GAA outside of the defined 
geothermal areas, perhaps identifying previously unknown areas of geothermal activity.  
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The training data for this classification were taken from the final 2007 RF classified 
shapefile of the defined geothermal areas because, despite its limitations, it was the only 
dataset available for this purpose.  All GAA polygons greater than 900 m2 were selected 
for use as training for the target detection classification of the full study area.  The CEM 
algorithm was utilized for target detection.  CEM outputs an image containing continuous 
values on an arbitrary scale with higher values indicating pixels more similar to the 
training data.  The resulting continuous data were converted to a binary classified image 
based on a threshold set by the CEM process (a value of 2), then merged with the defined 
geothermal area classifications to create a final classified image of the entire study area. 

A complete error matrix could not be constructed since there were no non-GAA 
validation data available outside of the defined geothermal areas.  174 Thermal Inventory 
points were identified outside of the defined geothermal areas, however, and were used to 
evaluate the ability of CEM to identify GAA for the 2007 classification. 
 
 
Creation of Change Maps 
 
 Four change images were created by comparing one classified image to the 
previous date classified image (2007 vs. 2006, 2006 vs.2005, 2005 vs.1989, 1989 vs. 
1986).  The resulting change images had four classes: (1) GAA in both years, (2) non-
GAA in both years, (3) non-GAA in year 1 (e.g., 2006) changed to GAA in year 2 (e.g., 
2007), and (4) GAA in year 1 changed to non-GAA in year 2.  The results of these 
processes are not discussed further but have been made available to the Yellowstone 
National Park Geology Program. 
 
 

Results and Discussion 
 
 
RandomForest Classification of the Defined Geothermal Areas 
 

Overall accuracies of the five classifications are listed in Table 10.  The semi-
independent overall accuracies were consistently higher than the RandomForest OOB 
accuracies, however, none of the accuracies reached 70%.  This substantial difference 
was likely because of the variability within the reference data as the randomly generated 
points covered a diverse and highly variable landscape. All of the Kappa statistics were 
greater than 0.3 which indicates that although the overall accuracies were not high, all of 
the classifications were better than random.  Only the 2007 classification will be 
discussed further as all of the classifications were poor, none of the classifications were 
significantly better than the others, and the 2007 classification represents the most recent 
data in these analyses. 
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Table 10: Random forest out-of-bag (OOB) accuracies, semi-independent overall 
accuracies, and Kappa statistics for the five random forest classifications of the defined 
geothermal areas. 

Method Random Forest 
OOB Accuracy 

Semi-independent 
Overall Accuracy 

Semi-independent 
Kappa Statistic 

25 June 2007 57.56% 66.17% 0.32 
8 July 2006 56.12% 67.83% 0.36 
21 July 2005 56.22% 68.17% 0.36 
2 August 1989 55.46% 65.50% 0.31 
17 July 1986 57.16% 68.50% 0.37 

 
 

Only 16.67% of the defined geothermal areas were classified as GAA in 2007.  
Class accuracies ranged from 60.00% to 72.33% (Table 11).  Variable importance plots 
illustrate each predictor variable’s contribution to the mean decrease in the OOB error 
rate (Sesnie et al., 2008), where those variables closer to the top of the plot are the most 
influential to the accuracy of  the classification and those closer to the bottom are the 
least important to the accuracy.   The RF variable importance plot for 2007 indicated that 
11 of the top 12 variables were dominated by reflective spectral information (Figure 4).  
All of the original Landsat reflective bands were in the top 12.  PCA3 was interpreted 
from the eigenvector weightings as representing primarily the NIR band with additional 
influence from the MIR2 band (Table 12), PCA1 was interpreted as representing all of 
the reflective spectral bands almost equally (in other words, the pixel brightness), and 
TCW, TCB, and albedo were derived from the reflective bands.  These 5 components 
were in the top 12.  The only non-reflective spectral information in the top 12 was 
topographic information (slope).   Three of the 4 geothermal components, PCA4 
(interpreted as representing primarily Mterr), Mterr, and GHFα, on the other hand, were 
among the bottom 6 variables and were of lesser importance than the majority of the 
included predictor variables (Figure 4).  Aspect, a topographic variable, was one of the 
least influential predictor variables along with PCA5 and PCA6 (interpreted as 
representing primarily the visible bands). 
 
 
Table 11: Semi-independent error matrix for the 25 June 2007 classification of the 
defined geothermal areas.  Class accuracies are represented by user’s accuracy (errors of 
commission) and producer’s accuracy (errors of omission).  The Kappa statistic is a 
measure of classification accuracy that is more conservative than overall accuracy. 

 Reference Data 

Classified 
 Data 

Class GAA Non-GAA User’s Accuracy 

GAA 180 83 68.44% 

Non-GAA 120 217 64.39% 

Producer’s 
Accuracy 60.00% 72.33%  

Overall Accuracy = 66.17% 
Kappa = 0.3233 
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Figure 4: Predictor variable importance plot for the 25 June 2007 classification of the 
defined geothermal areas.  Variables at the top of the plot were more influential to the 
accuracy of the classification than variables at the bottom. 



CESU TASK AGREEMENT NUMBER: J1580050584 Final Report 2009 

 [32] 

Table 12: Principal component eigenvectors that show the weightings of each input band 
on each principal component (PCA) for 25 June 2007.  PCA1 is highly weighted in the 
visible bands and the NIR and MIR bands.  PCA2 and PCA4 are weighted high in Mterr 
and MIR.  PCA3 is weighted mostly in the NIR.  PCA5 is highly weighted in blue and 
green, and PCA6 is highly weighted in green and red.  PCA7 is mostly weighted in MIR, 
with some influence from red. 
 PCA1 PCA2 PCA3 PCA4 PCA5 PCA6 PCA7 
Blue 0.443 -0.307 0.191 -0.093 -0.791 0.190 0.052 
Green 0.450 -0.302 0.116 -0.125 0.560 0.542 0.263 
Red 0.463 -0.260 0.205 -0.108 0.242 -0.621 -0.470 
NIR 0.372 -0.011 -0.900 0.037 -0.036 -0.161 0.170 
MIR 0.326 0.496 -0.035 0.391 -0.007 0.394 -0.582 
Mterr 0.148 0.550 0.021 -0.821 -0.026 0.013 0.008 
MIR 0.345 0.445 0.320 0.369 0.016 -0.321 0.583 

 
 

The 2007 classification identified only a small portion of the largest geothermal 
feature in YNP, Grand Prismatic in Midway Geyser Basin, as GAA, but classified all of 
Excelsior Geyser, a large feature adjacent to Grand Prismatic, as GAA (Figure 5).  Much 
of the geothermal barrens were classified as GAA.  The Firehole River was generally 
classified as non-GAA, with a few exceptions that might be related to pixel geometric 
registration.  For example, a feature with high Mterr might be located at the edge of a 
pixel, but with geometric registration errors might fall in a different pixel and be 
classified incorrectly.    
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Figure 5: 25 June 2007 classified map of Grand Prismatic Spring and Excelsior Geyser in 
Midway Geyser Basin.  Thermal Inventory Project points are displayed over the 
classification, with National Agriculture Imagery Program (NAIP) imagery in the 
background.  Excelsior Geyser was successfully classified as a geothermally active area 
(GAA), but much of Grand Prismatic Spring was misclassified as a non-geothermally 
active area (non-GAA).  Geothermal barrens were classified as both GAA and non-GAA 
throughout the area.  The majority of the Firehole River was classified as non-GAA. 
 
 
Target Detection Classification of the 30-km-Buffered Study Area 
 

Continuous output values for the target detection classification ranged from -1 to 
2.  Pixels with a value of 2 were classified as GAA.  All other pixels were classified as 
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non-GAA.  The percentage of known GAA locations outside the defined geothermal 
areas (located during the Thermal Inventory Project, but not found within the boundaries 
of the defined geothermal areas) that the 2007 classification was able to detect was 6.3% 
(11 of 174 reference points were classified correctly).      

Only 0.07% of the study area was classified as GAA in 2007.  The map of the 
2007 classification of the area near La Duke Hot Springs in Montana (just outside of 
YNP) showed very little area classified as GAA (Figure 6), however, two of the three 
geothermal features at La Duke Hot Springs fall on one pixel that was successfully 
classified as GAA.   
 
 

 
Figure 6: 2007 classification map of a portion of Corwin Springs, Montana Known 
Geothermal Resource Area.  Thermal Inventory Project points are displayed over the 
classification, with National Agriculture Imagery Program (NAIP) imagery in the 
background. 
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 There are recognized potential threats to geothermal features in YNP, including 
possible geothermal development in the Corwin Springs, Montana, and Island Park, 
Idaho KGRAs (Sorey, 1991; Heasler et al., 2004), that make accurate maps of GAA 
outside of YNP increasingly important.  The classifications created for this project were 
better than random, but accuracies were low. The area where the reference data were 
randomly generated was a highly variable landscape, and it is likely that many of the non-
GAA training and validation points were in areas of high Mterr that had no geothermal 
activity, such as inactive geothermal barrens, and were thus confused with areas of high 
Mterr that were geothermally active, such as active geothermal barrens. This 
classification method was not robust enough, or more likely the geothermal landscape 
was too variable, to produce an acceptably accurate GAA classification. 
 Inherent geothermal characteristics such as biological and steam spectral 
signatures might affect classification of GAA in different ways. Grand Prismatic Spring, 
as seen in Figure 7, is brilliantly colorful and very different from the surrounding 
landscape. The colors are produced by different microbes within the hot water that 
survive (and thrive) in various chemical and temperature gradients (Brock, 1967; Brock, 
1978), each of which are expressed as distinctive bands of color: Archaea in the 
blue/green center of the pool at the hottest temperature (75° C), the cyanobacterium, 
Synechococcus, at the pool’s yellow edge (59° C to 70° C), a rusty-brown microbial mat 
produced by the cyanobacterium, Phormidium, outside the pool between 30° C and 59° 
C, and furthest away from the heat source in the center of the pool, the cyanobacterium, 
Calthrix, produces a dull-brown microbial mat (Kaplan and Bartley, 2000). Various 
photopigments are found in the different microbes in the geothermal features of YNP, 
including carotenoids (absoption peaks at 0.45 – 0.55 μm), chlorophyll a (absorption 
peaks at 0.43 μm and 0.67 μm), phycocyanin (absorption peak at 0.62 μm), and 
bacterioclorophylls a and c (absorption peaks at 0.80 – 0.90 μm and 0.73 μm, 
respectively) (Jorgensen and DeMarais, 1988; Ward et al., 1989). The absorption peaks 
for these photopigments might be related to the highly important predictor variables that 
are dominated by reflective spectral information and thus detectable with the reflective 
Landsat bands, however, the Landsat bandwidths are most likely too wide to distinguish 
different microbial communities from one another and from vegetation. Grand Prismatic 
is also often covered by a thick layer of steam as the average temperature in the middle of 
the pool is approximately 75° C (Kaplan and Bartley, 2000). Excelsior Geyser, whose 
average temperature is approximately 93° C (Thompson and Yadav, 1979; Brody and 
Tomkiewicz, 2002) is rarely seen without steam (behind Grand Prismatic in Figure 7). 
Steam has a distinctive spectral signature and is lower in temperature than the water that 
is producing it, likely obscuring geothermal signatures and causing confusion in the GAA 
classification with Landsat data. 
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Figure 7: Grand Prismatic Spring in Midway Geyser Basin, with Excelsior Geyser 
steaming in the background, demonstrating the extraordinary variability of geothermal 
areas in Yellowstone National Park. Photograph by Shannon Savage, taken on 22 June 
2006. 
 
 
 Good training and validation data are fundamental to the success of remotely 
sensed classifications. The reference data used for this study were not ideal due to both 
the lack of resources and the lack of ability to collect proper information at a 30-m spatial 
resolution. Given much additional time and money (and permission from YNP), 
appropriate sample data could possibly be collected by placing thousands of temperature 
probes (based on common sampling approaches) across the defined geothermal areas at 
the same time the Landsat satellite collects data over YNP and interpolating the 
temperatures to fit 30-m pixels. By using ground probes, the influences of solar radiation 
and albedo can be better modeled and minimized, allowing the Landsat TIR band to be 
properly calibrated to ground temperature, and GAA could then be distinguished from 
non-GAA. Unfortunately, placing that many probes to get adequate training data is 
simply not practical, especially for an ongoing monitoring program. 
 
 



CESU TASK AGREEMENT NUMBER: J1580050584 Final Report 2009 

 [37] 

LESSONS LEARNED 
 
 
 Landsat data include information from the thermal infrared portion of the 
electromagnetic spectrum and were assessed for their ability to successfully map 
geothermally active areas and geothermal heat flux in geothermally influenced 
Yellowstone National Park (YNP). Landsat thermal infrared data from 1978 to present 
and into the foreseeable future are freely available from the United States Geological 
Survey, effectively providing an opportunity to study geothermal ground over the entirety 
of YNP for 30 years and beyond. An accurate, inexpensive, and reproducible method for 
mapping geothermal ground at YNP might be possible with Landsat data, but the results 
of this study indicate there are inherent limitations to Landsat data and issues with the 
nature of geothermal features that, combined, make accurately mapping geothermally 
active areas and geothermal heat flux difficult with the methods tested herein.  

Terrestrial emittance represents all heat being emitted from the ground, including 
effects from direct and indirect solar radiation, as opposed to geothermal heat flux, which 
represents only geothermal heat emitted from below ground. The Landsat thermal 
infrared band, with assistance from the red and near infrared bands, was able to detect 
terrestrial emittance, but without rigorous solar radiation field data, was unable to 
accurately estimate geothermal heat flux.  Incorporating estimated emissivity on a pixel-
by-pixel basis rather than as an average over the entire image (as in the Watson et al., 
2008 method) produced locally precise terrestrial emittance estimates by accounting for 
differences in emissivity due to varying amount of vegetation in each pixel.  By deriving 
emissivity values from the finer spatial resolution reflective Landsat bands, more detail 
was incorporated into the Mterr values than if the thermal band had been used alone.  
Additionally, incorporating estimates of potential direct incident solar radiation and 
surface albedo into the terrestrial emittance calculation produced a moderately acceptable 
estimation of geothermal heat flux covering all of YNP that, although unable to account 
for all inherent variability such as conductance of non-geothermal heat through the soil or 
diurnal, seasonal, or annual temperature oscillations, might help YNP scientists identify 
areas of interest for further study. 

The random forest classification method was unable to produce an acceptably 
accurate classification of geothermally active areas in the currently defined geothermal 
areas at YNP, however, the classifications developed were better than random. The 
inherent limitations of Landsat data, the inherent nature of geothermal features and areas, 
and acknowledged biases within the reference data used were probable reasons for the 
unacceptable classifications. Appropriate reference data, however, are impractical to 
collect, and even with excellent reference data, the technological limitations of Landsat 
imagery might preclude producing highly accurate geothermally active area 
classifications. The target detection training data were based on the poor random forest 
classifications and did not perform well. Given a highly accurate classification of the 
defined geothermal areas, however, the constrained energy minimization target detection 
classification method might prove to be the appropriate tool to classify geothermally 
active areas in and around YNP.  
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OBSERVATIONS AND RECOMMENDATIONS 
 
 

While Landsat data are excellent resources for mapping many landscape features, 
the inherent technological limitations of Landsat data, in particular the thermal infrared 
band, impede accurate mapping of geothermal heat flux and geothermally active areas. 
The Landsat thermal infrared band has relatively low spatial resolution and is not 
sensitive enough to variations in terrestrial emittance that might be caused by individual 
geothermal features or areas of geothermally active ground, thus geothermal heat flux 
and geothermally active areas are difficult to detect accurately even when Landsat 
thermal infrared data are combined with the reflective data. Geothermal barrens, for 
example, include both geothermally active and inactive areas that have very similar 
reflective properties, resulting in confusion when attempting to classify geothermally 
active areas or improve estimations of geothermal heat flux with a combination of 
thermal infrared and reflective bands. Until a high spatial resolution thermal infrared 
scanner is developed that images the entirety of YNP on a regular basis, Landsat data will 
remain the only available thermal infrared data for historical and continuous monitoring 
of geothermal areas in YNP. The results of this study suggest that future studies of 
geothermal areas at YNP with Landsat data will be unsuccessful until Landsat data can be 
more accurately calibrated to geothermal heat flux and solar effects. 
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