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Introduction 
 
 
 Sport fishing for both native and nonnative fishes, managed naturally or through 

aquaculture practices, contributes over $69 billion to the economy of the United States 

(Bjergo et al. 1995). Although the economic benefits are substantial, a conservative 

economic estimate of losses caused by nonnative fish introductions yields a negative 

effect on native fishes and other aquatic biota of more than $5 billion annually (Pimentel 

et al. 2005). In fact, it has been estimated that the environmental damages and losses due 

to all invasive and nuisance species in the United States exceed $120 billion annually 

(Pimentel et al. 2005). Additionally, nonnative fish are implicated in the classification of 

44 native species of fish as either threatened or endangered in the United States (Wilcove 

et al. 1998; Courtenay 1993), and 27 other native fish species are negatively affected by 

nonnative fishes (Wilcove et al. 1998).  

Nonnative predators, such as lake trout (Salvelinus namaycush) and northern pike 

(Esox lucius), are associated with substantial declines in native fish populations 

throughout the western USA, and both aquatic and terrestrial ecosystems (Tronstad 2007) 

have bee altered. Millions of dollars have been spent on nonnative-fish suppression (e.g., 

Yellowstone National Park, Wyoming; Lake Pend Oreille, Idaho; Lake Coeur d'Alene, 

Idaho; and Davis Lake, California) and native-fish supplementation and restoration 

programs using cultured fish. To date, there is no evidence that these strategies have been 

successful at eliminating nonnative predators from large lakes (e.g., Gresswell 2009).  

Primary suppression methods used for nonnative-fish suppression in lakes include 

netting, chemicals, migration barriers, and electricity. Methodologies such as gill netting, 

piscicide application, or movement barriers are costly and have significant negative 

environmental effects (Martinez et al. 2009).  Unintended consequences include bycatch 



of non-target organisms with gillnetting, mortality of non-target organisms from the use 

of piscicides, food-web alterations, and the obstruction of native fish spawning 

migrations and nutrient distribution in a watershed. Although using electricity to remove 

adult fish is practical for management in shallow water, this technique is not suitable for 

fish in deep water and in waters with low conductivity.  Furthermore, electroshocking has 

been used successfully for removing lake trout from spawning areas in the littoral zone, 

but despite high catch rates, some lake trout successfully spawn each year.  At present, 

however, eradication strategies that target developing embryos and larvae have not been 

investigated extensively.   

A technique for destroying lake trout embryos on spawning grounds would 

provide an important tool for suppressing lake trout numbers.  Such a tool could be used 

synergistically with methods that target free-swimming individuals (e.g., gill nets or 

electrofishing), or potentially, it could be effective alone.  Furthermore, a successful 

outcome would have broad applicability to areas across the northern Rocky Mountains 

where introduced lake trout threaten the persistence of native trout (e.g., Yellowstone 

Lake, Lake McDonald, Priest Lake, and Lake Pend Oreille).  For example, lake trout 

embryo and larvae destruction would enhance efforts to protect bull trout (Salvelinus 

confluentus) by suppressing the nonnative predator in lacustrine habitats, and it may be 

critical in attempts to preclude listing of Yellowstone cutthroat trout (Oncorhynchus 

clarkii bouvieri) and westslope cutthroat trout Oncorhynchus clarkii lewisi) under the 

Endangered Species Act. 

The purpose of this report is to review possible strategies for suppression and 

eradication of fish during early life-history stages in natural settings and briefly discuss 

some promising alternatives.  The report is divided into three sections evaluating 

physical, chemical, and biological techniques currently in use, and those with substantial 



potential to eradicate invasive salmonids.  To date, we have reviewed over 330 published 

articles on life-history traits, aquaculture, and mortality of salmonid fishes in order to 

determine candidate strategies for integrated suppression management.  The majority of 

candidate strategies recommended are considered cost effective by the authors. Some 

alternatives, such as research on pheromones, could cost millions of dollars and require 

over a decade of focused study.  We have attempted to focus on strategies that have 

limited negative effects on the environment, and therefore, chemicals that have not been 

tested in natural settings will not be addressed in this document but may be referenced in 

the literature cited.  Although some techniques may be applicable for lotic systems, the 

intent of this document is to review applicable methods for species suppression from 

lacustrine systems. 

 
 
 

Physical Techniques 
 

Perhaps the most common techniques used for suppressing free-swimming fish 

are associated with physical processes.  Netting, migration barriers, and electricity have 

been used for this purpose, but few of these physical techniques have been applied to 

larvae or developing embryos.  Of these, electricity may provide the greatest opportunity 

to eliminate large numbers of larval fish.  Previous studies have demonstrated that 

developing embryos (<1-week post fertilization at 12º C) are susceptible to electroshock 

(Dwyer et al. 1993), but techniques for using electricity necessary to suppress populations 

have not been explored.  



Other physical strategies may be effective larval control strategies (Table 1), but 

only techniques that exhibit minimal negative consequences to the physical environment 

and non-target biota were explored further. A promising technique could be implemented 

for long-term, chronic application, or for repeated short-term, acute applications.  It is 

probable that the use of electricity, sound waves, ultraviolet radiation (UVB), smothering 

(covering with inert substance), and containment tarps (using a “tarp” to cover the target 

area concurrently with chemical application) are techniques that could be effective for 

eradication of fish larva and embryos. 

 

Electricity 

The application of electrical fields in water to influence movement, facilitate capture, and 

kill fish has been implemented for decades (e.g., Barton and Grosh 1996).  Electrical 

fields have also been used to limit the spread of nonnative fishes in some locations 

(Dawson et al. 2006); however, the use of electrical fields to specifically target and kill 

nonnative species on a large scale has not been documented.  There are a number of 

challenges associated with use of electrical fields for this purpose, including determining 

effective electrical current types, minimizing harm to non-target native fish populations, 

and achieving population-level reductions in nonnative fish populations. 

Electrical fields have lethal and sublethal effects on fish, and substantial research 

has focused on immobilizing fish without causing injury (Miranda 2005).  Evidence 

suggests that water conductivity, current type, fish species, and fish life-history 



Table 1.- Potential physical strategies for eradication of salmonid embryos and larvae. 

 
Method Environmental uses Life history stage Spatial/Temporal effects 

 
Electricity 

 
Eradicate embryos 
with direct current. 

 
All stages, but early 
embryos less susceptible. 

 
Acute/non-persistent: 
electrical field between ground and top of substrate. 

 
Light (visual and 
ultraviolet spectrum) 

 
Embryos subjected to 
high end spectrum 
radiation. 

 
Early embryo. 

 
Acute/non-persistent: 
light will be emitted between bulb and top of spawning bed. 
 

 
Sound  
(seismic technology) 

 
Rupture embryos by 
physical pressure. 

 
Variable effects on adults, 
inconclusive effectiveness 
against larval stages. 

 
Generalized/non-persistent, but little is known about the lethal 
range of seismic field. 
 

 
Containment tarps 

 
Eliminate ability of 
hatched embryos to 
inflate air bladders. 
 

 
Early larval stages. 

 
Acute/non-persistent. 

 
Silting 

 
Reduce ability of 
embryos to access 
oxygen. 

 
Early larval stages. 

 
Acute/persistent: can disturb the environment by covering 
substrate with fine particulate matter. 
 

 
Nets and traps 

 
Capture species for 
removal purposes. 

 
All stages. 

 
Acute/Non-persistent: effects are localized to trap and non-
target species are released. 
 



stage are the primary variables affecting the likelihood of injury from electrical exposure 

(Dolan and Miranda 2004).  Although water conductivity is difficult to manipulate, 

electrical current types can be adjusted, and specific electrodes can be designed to 

generate electrical fields that are lethal (Henry and Grizzle 2006).  Furthermore, variation 

in sensitivity to electric shock suggests that specific life-history stages can be targeted by 

manipulating characteristics of the electrical field (Snyder 2003).    

 Targeting early life stages of nonnative fishes is advantageous because large 

numbers of young fish that congregate together enabling potential population-level 

effects to be achieved.  Research on the lethal effects of electrical fields in embryos of 

numerous fishes indicate that (1) embryos are most vulnerable to DC electrical fields, (2) 

vulnerability varies with stage of embryonic development; and (3) even brief exposure is 

sufficient to induce high mortality in embryos during critical developmental stages 

(Henry and Grizzle 2003).  The ability of DC electrical fields to kill fish embryos is 

related to the intensity (V/cm) of the electrical field, and the intensities generated by 

normal electrofishing equipment (1-20 V/cm) are sufficient to induce high mortality in 

fish embryos during sensitive stages (Dolan et al. 2002).  Vulnerability is also positively 

related to embryo diameter, and the similarity of response among species suggests that 

the phenomenon is related to the interaction of physical properties of the embryos with 

the electrical field rather than species differences (T. Henry, University of Plymouth 

United Kingdom, personal communication). 

 In general, current evidence suggests that using electrical fields that are targeted 

on embryonic stages of development could substantially enhance nonnative fish 

suppression programs.  At the same time, further information is needed concerning the 
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effects of water conductivity on vulnerability of embryos to electroshock.  Furthermore, it 

will be necessary to identify the specific electrode configurations necessary to apply 

electrical current directly to substrates or sediments where developing embryos of 

targeted species are located.   

 

Light 

Numerous studies have evaluated the effects of the light spectrum on the physiology of 

aquatic organisms.  For example, experiments have demonstrated that reproduction, 

survival, and fitness of fishes are tied to light duration and intensity (Meseguer et al.2008; 

Rodriguez et al. 2009).  Other studies suggest that the light itself, and not the indirect 

temperature change, elicits additional oxygen consumption and increased metabolism in 

turbot Psetta maxima 9-12 d following fertilization (Finn and Ronnestad 2003).  

Furthermore, with increasing duration of visible light, mortality rates in developing 

embryos increase in hatchery settings (MacCrimmon and Kwain 1969).   

 The deleterious and sublethal effects of ultraviolet (UV) radiation to the gametes 

and larvae of aquatic organism are well documented.  In fact, a reduction in sperm 

motility, due to sperm inactivation, has been observed (Arias-Rodriguez et al. 2004).  A 

meta-analysis of UVB effects on freshwater and marine ecosystems suggested that UVB 

radiation has greater negative effects on embryos than on other life history stages.  

Although there was much variation among species, overall it appears that UVB radiation 

has negative effects on the aquatic ecosystem (Bancroft et al. 2007).  For example, water 

transparency influences the susceptibility of Galaxias maculatus to UV radiation, and in 

turn, habitat suitability of the species is directly related to the UV radiation levels (Battini 
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et al. 2000).  It appears, however, that the sum of UV radiation is more important than the 

exposure rate, but shorter wavelengths of UV radiation have more pronounced effects on 

fish survival regardless of dosage (Browman et al. 2003).  Although fish embryos are 

more susceptible to UV radiation at early stages of embryogenesis, it appears that fishes 

reared in an open environment, as opposed to a hatchery, exhibit a higher tolerance to 

UVB radiation (Dong et al. 2007).   

 Adult fishes may also be affected by UV radiation.  In controlled experiments, 

UVB radiation caused sunburn and sloughing of the mucous membrane in trout (Blazer et 

al. 1997).  Adult trout have also exhibited greater vulnerability to disease after multiple 

days of exposure to UV radiation (Jokinen et al.2008).  Exposure to UVA radiation elicits 

restless behavior and increased metabolism in adult trout (Alemanni et al. 2003).   

 

Sound 

Public awareness and scrutiny of underwater explosives have become more common with 

increased exploration of energy resources and concern about the effects on adult fishes, 

turtles, and marine mammals. In fact, aquatic organisms are highly sensitivity of to rapid 

pressure changes generated by underwater explosions (Wright 1982).  It has been 

suggested that vertebrates with gas-filled internal organs (i.e., lungs or swim bladders) 

may be vulnerable at greater distances from explosions (Hubbs and Rechnitzer 1952), but 

there is substantial uncertainty in predicting the ecological risk of injury and mortality.  

Information about the effects of underwater explosions on fish embryos and small 

juveniles is scarce, and although more research has been conducted on adult and large 

juvenile fishes, data on the effects of underwater detonations is limited and highly 
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variable (Popper and Hastings 2009).  Environmental factors, such as turbidity, wave 

action, currents, and water depth, may have substantial influence on the effects of sound 

waves.  Concomitantly, experimental factors (e.g., handling stress, sudden pressure 

changes while lowering fish to study depth, and failure to acclimatize experimental fish 

to water chemistry and temperature) have confounded results of some studies (Popper 

and Hastings 2009). 

 Effects of mechanical stimulation on developing larvae may vary with stage of 

development (Pearson et al. 1994).  Although some studies have suggested that larval fish 

are less sensitive to injury than are juvenile and adult fish (Wright 1982), other studies 

have reported increasing sensitivity to blasting with decreasing fish size (Goertner and 

Blatstein 1978; Munday et al.1986).  Moreover, most studies have focused on the direct 

effects (i.e., mortality), but there are many sublethal indirect effects of blasting activities.  

These effects (e.g., impairment of predator avoidance behavior or substrate alteration in 

spawning areas) can result in additional mortality and diminished reproductive potential 

(Rosenthal and Alderdice 1976).  

Recent reviews suggest that effects of sound waves may be a viable tool for 

suppression of nonnative fishes (Bennett et al.1994; Popper and Hastings 2009).  Seismic 

technology offers many advantages over traditional methods of fish removal (e.g., 

gillnetting, poisons, or habitat alterations) because developing embryos and larval fish 

can be killed by emitting sounds directly over spawning beds, and therefore, recruitment 

is reduced without altering the spawning habitat.  Several studies have examined the 

effects of sounds on fish embryos and larvae (Kostyuchenko 1973), and significant 

mortality of several marine species (Atlantic cod Gadus morhua, saithe Pollachius 
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virens, and herring Clupea harengus) at a variety of ages occurred within 5 m of the 

source (Booman et al. 1996).  The most substantial effects were to fish that were within 

1.4 m of the source, and the authors noted that an exceedingly large particle velocity may 

be the cause of mortality as the embryos and larvae were very close to the airgun array 

(Booman et al.1996).  

 
Silting/Containment Tarping 
 

Salmonid juveniles appear to be very sensitive to suspended sediment and silt, 

and both sublethal and lethal effects have been evaluated in the laboratory and the field 

(Korstrom and Birtwell 2006).  Salmonid redds must have sufficient interstitial water 

flow (Sowden and Power 1985), and the proportion of fine sediment in spawning 

substrate is the primary predictor of spawning habitat quality (Levasseur et al. 2006).  In 

fact, even small increases in sand content can negatively affect survival to hatch.  For 

example, LaPointe et al. (2004) found that when sand content of substrate exceeded 10%, 

survival to hatch was reduced three times for every 1% increase in sand content.  

Furthermore, studies focused on the effects of clay particulate on embryo oxygen 

consumption suggest that developing salmonids embryos oxygen consumption can be 

reduced by 98% following small additions of clay particulate (Greig et al. 2005).  

Because high interstitial water flow is important for the maintaining oxygen availability 

to developing embryos (Dillon et al. 2003), silting may be another viable technique for 

destroying lake trout during this vulnerable life stage.   

Moreover, containment tarps may also be able to create a smothering effect on 

embryos and larvae.  The use of tarps has primarily been implemented to control invasive 

plants, and when integrated with the application of chemical agents, results have been 
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promising.  For example, the deployment of containment tarps, along with chlorine 

injection, resulted in the complete eradication of the invasive marine alga Caulerpa 

taxifolia from an intertidal estuary along the Southern California coast (Anderson et al. 

2005).  

 
Nets and Traps  
 
Nets and traps are commonly used to capture fish embryos, fry, juveniles, and adult fish, 

and in addition to capturing fish for commercial and subsistence consumption, and 

fisheries research and monitoring, nets may be used for nonnative fish suppression 

(Doyle et al. 2008).  Information concerning netting strategies for adult and juvenile fish 

is abundant (Hubert 1996), but the utility of using nets and traps for suppressing 

developing embryos and larvae is not well documented (Chotkowski et al. 2002).  

 

Chemical 
 

Chemicals have been used to capture and kill fish for hundreds of years.  It is of 

no surprise that chemicals still pose a viable strategy for the eradication of nonnative 

fishes (Lennon 1971; Dawson and Kolar 2003).  The most common current use piscicide 

is Rotenone.  Unfortunately, most piscicides are not selective and may affect native fish 

and invertebrate populations (Dawson and Kolar 2003).  Furthermore, information 

focused specifically on the destruction of embryos or larva is inadequate.    

Dawson and Kolar (2003) evaluated 45 chemical compounds for potential use as 

piscicides.  Evaluation criteria included selectivity, ease of application, non-target 

organism toxicity, human safety, environmental persistence, bioaccumulation, and cost.  
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Based on those criteria, only Squoxin (an unregistered selective piscicide for northern 

pikeminnow Ptychocheilus oregonensis) scored as high as chemical toxins that were 

registered at the time of publication.  

Some chemical compounds that were considered “relatively benign” and not 

particularly effective piscicides by Dawson and Kolar (2003) included lime, potassium 

permanganate, calcium hypochlorite, sodium sulfite, and sodium hydroxide.  These 

chemicals are particularly interesting for use in destroying lake trout embryos because 

they are approved for environmental discharge and are commonly used in aquaculture 

and water treatment facilities.  Potassium permanganate and sodium hydroxide are 

fungicidal and bactericidal agents used protect fish embryos during development.  

Peracetic acid and iodine are fungicidal chemicals that were not evaluated by Dawson 

and Kolar (2003) but meet the proposed criteria.  Iodine has been used historically as a 

fungicide in hatcheries, but very little research, if any, has been conducted concerning the 

effects of peracetic acid on fish. 

We have selected six chemical candidates for further consideration for eradication of lake 

trout embryos and larvae (Table 2).  These chemicals exhibit limited potential to 

bioaccumulate and biomagnify in the food chain, are not persistent, and tend to degrade 

rapidly.  All chemicals have either historically been used in aquaculture, in water 

treatment, approved for discharge into surface waters, or for potable water use.  When 

applied in concert with physical strategies such as a containment tarp, these chemicals 

may provide an effective and low-risk strategy for use in localized spawning areas.  Of 

the six chemicals selected, we have limited further discussion to CO2 because the toxic  



Table 2.- Potential chemical strategies for eradication of salmonid embryos and larvae 

Method Environmental uses Life-history stage Spatial/temporal effects 

 
Potassium 
permanganate 

 
Inactivator of 
rotenone  
(piscicide) and 
water disinfection  

 
Embryo and larval stage 

 
Acute/semi-persistent:  
It can bioaccumulate in lower organisms (e.g., phytoplankton, 
algae, mollusks, and some fish), but not in higher organisms, and 
in surface waters, manganese occurs in both dissolved and 
suspended forms, depending on such factors as pH, anions 
present, and oxidation-reduction potential. 
 

 
Sodium and  
calcium hypochlorite 

 
Water disinfection  

 
Embryo and larval stage  

 
Acute/non-persistent: 
Broken down into salts in water and hypochlorite ions react 
immediately with substances in the water and are broken down 
by sunlight. 
 

 
Iodine 

 
Antimicrobial 

 
Embryo and larval stage 

 
Acute/non-persistent: 
In surface water will vaporize and off gas. 
 

 
Peracetic acid 

 
Antimicrobial and  
bleaching agent 

 
Embryo and larval stage 

 
Acute/non-persistent: 
Oxidizes quickly with substances in water. 
 

 
Ammonia 

 
Fertilizer and  
cleaning agent 

 
Embryo and larval stage 

 
Acute/non-persistent: 
Rapidly broken down by microorganisms in water. 
 

 
Carbon dioxide 

 
Fish anesthetic 

 
Embryo and larval stage 

 
Acute/non-persistent: 
Rapidly off gases and diffuses readily. 



effects of the other five chemicals on fish embryos have been reviewed extensively 

(except for peracetic acid).  

 

Carbon dioxide 

Carbon dioxide gas may be a viable eradication agent because it does not accumulate in 

the environment, and although it diffuses readily in water, it does not persist.  The 

efficacy of CO2 for eradicating nonnative fishes has not been evaluated extensively, and 

lethal concentrations have been determined for only a few fish species.  Although it is 

apparent that tolerance to CO2 is species-specific (Ishimatsu et al.2005), variation in 

susceptibility to CO2 among life stages within fish species has not been explored 

comprehensively (Ishimatsu et al. 2004).  Regardless, CO2 is currently used as an 

approved method of euthanasia for laboratory fishes and in the aquaculture industry 

(Pirhonen and Schreck 2003).  In the field, CO2 could be deposited directly on the 

spawning beds as a solid (dry ice) because it is denser than water and will sink rapidly.  

Alternatively, it could be applied by inserting gas bubblers (in gas phase) throughout the 

spawning beds. 

 

Biological 

Of all integrated pest management practices, biological strategies (e.g., release of 

genetically manipulated fishes into a water body in order to alter sex ratios and 

population numbers) have been explored least.  Biological methods may require many 

years to suppress invasive species populations under natural conditions (Vrijenhoek 

1994), and in aquatic environments, they have primarily been tested using mathematical 
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models (Vrijenhoek 1994).  For example, introducing triploid fish or fish that produce 

only male offspring is controversial because manipulative treatments may not be 

completely effective (i.e., unanticipated consequence of actually increasing the target 

species; Pandian and Koteeswaran 1998).  Furthermore, the altered fish may not function 

behaviorally as wild fish and may not compete successfully with established males for 

spawning areas and or mates (Benfey 1999).   

A biological strategy that alters fish physiology, ultimately impacting behavior or 

reproduction may offer promise.  For example, chemo-attractants (pheromones) utilized 

by fish for various behaviors such as predator avoidance, reproductive timing, and 

migration are capable of luring fish into a particular area to be captured by nets.  Sexually 

mature adults express pheromones for spawning behavior, and larvae can also be 

attracted to adult pheromones (Burnard et al. 2008).  In the Great Lakes region, 

pheromones specific to sea lamprey Petromyzon marinus have been successfully used to 

suppress this nonnative invader (Sorensen and Vrieze 2003). 

Another strategy that has shown mixed results is the culture and release of fish 

predators that target embryos and juveniles as a major component in their diet 

(Fitzsimons et al. 2006).  This strategy has been especially effective when nonnative 

predators reduce native species recruitment (Jones et al. 1995).  A cultured native species 

that already exists in a natural equilibrium with resource availability, may suppress larvae 

and embryos of the invasive species if the cultivars can be increased quickly during the 

spawning season.  Although biological strategies may require extended time to be 

effective and may require considerable effort in development and testing, they may have 

great promise for eradication and suppression efforts (Table 3).  For this report we have



Table 3.- Potential biological strategies for eradication of salmonid embryos and larvae 

Method Environmental uses Life-history stage Spatial/temporal effects 
 
Pheromones 

 
Attracting only target 
species to traps 
spawning areas. 

 
All Stages 

 
Generalized/non-persistent: 
Release of pheromones maybe widespread, however, they will rapidly 
dissipate.  

 
Genetic 
manipulations 

 
Reduce ability to 
produce fertile offspring. 

 
Adult 

 
Acute/persistent: 
Genetic manipulation will not take place in the system and will affect 
only reproduction potential of target species. 

 
Aquaculture of 
predator 

 
Eliminate embryos 
through predation. 

 
Embryo and larval stages 

 
Generalized/persistent: 
Predator would be widespread and would have potential to survive 
and reproduce in the system once introduced. 

 



focused on possible applications of pheromone use for trout embryo and larvae 

suppression and eradication. 

  

Pheromones 
 
Pheromones are externally secreted hormones that have strong communicative capacities 

among individuals of the same species.  In general, fish pheromones can be organized 

into three main categories: reproductive cues, anti-predator cues, and social cues 

(Sorensen and Stacey 2004).  Fish species are able to discern between chemical signals 

within (Olsen et al. 2002; Appelt and Sorensen 2007), and among species (Laberge and 

Hara 2003).  Therefore, pheromones offer a unique opportunity to elicit specific 

responses from a target species. 

The effects of fish pheromones on behavior have been evaluated for at least 30 

years.  Earliest studies suggest that the behavioral response to the same chemical cue 

differs by life-history stages (Yambe and Yamazaki 2000).  For instance, pheromones are 

used by fish to signal spawning readiness and location of viable mates.  In some case, 

however, similar pheromone compositions occur in different species of fish.  For 

example, brook trout Salvelinus fontinalis and brown trout Salmo trutta are able to 

hybridize, and individuals from both species respond to the same pheromone derivatives.  

It appears that from a reproductive aspect, these fish rely more heavily on pheromone 

cues than visual cues (Essington and Sorensen 1996).  Studies have showed that three 

different sex pheromones are excreted in different ratios by females depending on the 

reproductive status, and males displayed different behavior and varied the period of 

behavior as the ratio of pheromones changed (Poling et al. 2001).   
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Releasing spawning pheromones is one possible technique that could be used to 

attract or drive target fish species to trap nets.  Using species-specific pheromone 

compounds to trap nonnative species would reduce bycatch of native species and 

potentially accelerate the suppression process.  To date, however, only one pheromone 

for the control of sea lamprey in the Great Lakes has been successfully developed for 

suppression and trapping of adult fish. 

Because pheromones are also used by fishes as an alarm signal that may allow 

individuals to escape predation (Chivers et al. 1996), this type of hormone might be 

applied to spawning grounds in order to reduce the probability of successful spawning.  

Although the use of pheromones has many potential applications, many millions of 

dollars were spent over a decade for research and development for this single application. 

On the other hand, this level of funding may be warranted given amount of money 

already spent on lake trout suppression programs throughout the western USA. 
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