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Project Summary,  
Overview: GPS data has become the standard method of data collection for large mammal 
telemetry studies. This approach has provided substantial increases in data collected for wildlife 
habitat studies, yet proportional gains in ecological insights from such studies continues to lag 
behind the technology. The increased volumes of data collected by GPS collars come with 
substantial analytical challenges that result from the added complexity of storing, filtering, and 
analyzing the data (e.g., millions of records, unknown behavioral conditions at animal locations, 
and non-independence of observation; Cagnacci et al., 2010). In response to these challenges 
there has been a growing trend of increasingly sophisticated statistical models (e.g., hierarchical 
mixed effects models, generalized estimating equations) to handle the complex data structure. At 
the same time, without the need to manually track animals in the field, less information about 
animals’ behaviors associated with locational data is being collected. Without this behavioral 
information of what animals are “doing,” the default approach has been to treat all GPS locations 
as equal, and assess wildlife habitat relationships (e.g. habitat selection) from a behaviorally 
homogenous dataset.  When different behaviors have opposing patterns, complete pooling of 
data without regard for animal behavior can results in the incorrect assessment of the importance, 
strength and form of habitat selection studies (Roever et a., 2013).   



 
 This project developed a novel approach using grizzly bear GPS data and records of behavioral 
observations to recent field visits to randomly selected GPS  locations and  to demonstrated that 
relatively simple analytical techniques (e.g., basic trigonometry, cluster analysis, and 
multinomial regression) can be used to accurately quantify GPS data into different behavioral 
categories meaningful to grizzly bear management and ecology. The project further 
demonstrated, as a cases-study, that using this approach to reduce the GPS data set from all 
locations (i.e., pooled homogenous behavior) to a single behavior type (e.g., the use of large 
ungulate carcasses) allowed for the testing of the an a priori ecological hypothesis: that fall use 
of ungulate carcasses has increased from 2000-2011, a period associated with the decline of 
white bark pine within grizzly bear habitat in the Greater Yellowstone Ecosystem (GYE). 
 
Methods: 
 
Bear Capture and Handling: 
 
Bears were captured following handling procedures reviewed and approved by the Animal Care 
and Use Committee of the U.S. Geological Survey, Northern Rocky Mountain Science Center; 
Procedures conformed to the Animal Welfare Act and to U.S. government principles for the 
utilization and care of vertebrate animals used in testing, research, and training. Appropriate 
Federal and NPS research permits were also obtained.  Bears were fitted with Telonics GENIII 
or GENIV (Telonics Inc., Mesa Az.) For ground truthing studies Telonics spread –spectrum 
technology was used to facilitate remote downloads and follow-up visits as detailed in Schwartz 
et al. ( 2009), and Fortin et al. (2011).  For bears not involved in ground truthing studies remote 
downloads were unnecessary and Telonics store-on-board collars were used.  
 
GPS Data Handling: 
 
GPS acquisition scheduled varied during the period of study from approximately 0.5 hours to 3.5 
hours and successful fix acquisition rates varied across individuals. Because our focus was on the 
spatial clustering of GPS locations (i.e., not while the animal is actively moving) we approached 
the handling missing GPS locations (i.e., failure to acquire a GPS location) from what is 
ultimately a conservative perspective. Using a modified version of the “fill in” approach of Friar 
et al. (2004), missing locations were randomly allocated within a rectangle defined by the 
previous and subsequent successful GPS locations buffer missed locations.  We considered this 
approach conservative because the “filled-in” locations only entered the analysis when they were 
buffered by true locations that were within the same cluster.  While it is possible that the animal 
left the cluster and failed to acquire a positions continuously while not at the cluster, behavior 
driven factors (i.e. laying down on antenna while resting) are much more plausible assumptions 
for missing locations based on empirical data (Schwartz et al., 2010). Nevertheless, we flagged 
these “assumed” positions to allow for the assessment of their contribution to clusters that were 
predicted to be carcass use. 
 
We clustered data spatially (i.e. ignoring time) using the DBScan algorithm (Ester et al. 1996). 
This algorithm relies on the density-based notion of clusters, does not require specifying the 
number of clusters to find a priori, and excels at finding clusters of arbitrary size and shape. The 



algorithm requires two parameters: the local search neighborhood (ε) and the minimum number 
of points required to qualify as a cluster (γ). We used a fixed value of ε = 20 meters and allowed 
γ to vary as a function of GPS acquisition interval (γ = 7 / GPS acquisition interval in hours) 
which resulted in minimum cluster sizes of 2 locations for a 3.5 hour interval and 14 locations 
for 0.5 hour.  
 
For model development, we culled the full GPS dataset to locations identified as clusters by the 
DBScan algorithm. Using an iterative process for each GPS bear-year, clusters were given 
individual unique id numbers and a suite of quantitative variables were created including 
temporal attributes describing each cluster. Although temporal information was not considered a 
parameter for the original clustering of GPS data, we accounted for it explicitly when 
quantifying the attributes of individual clusters. We combined GPS cluster information with data 
from two independent field studies which visited locations of recently downloaded bear GPS 
data (< 10 days old) to quantify bear activity at GPS locations during randomly selected 24 hour 
periods between mid-May and mid-October (see Fortin et al., 2013 and Schwartz et al., 2009). 
This resulted in a subset of 174 GPS clusters where the food source, or more accurately the 
behavior, that resulted in the clustering of GPS data was estimated from evidence gathered at the 
GPS locations in the field.  

 
Parameterization of predictive model: 
The site visit field data was collected for detailed analyses of grizzly bear diet ecology and the 
number of behaviors and food types recorded were too fine-scaled for our general interest in the 
use of large ungulate carcasses. Accordingly, we lumped together cluster information collected 
in the field into 5 groups (old-carcass, carcass, low-biomass carcass, resting, and area-of-
interest), each representing a unique “type” of GPS cluster.  
 
We used the MASS package (Venebeles and Ripley, 2002) of program R (R Core Team, 2013) 
to perform multinomial logistic regression to estimate the probability of a cluster being 
associated with each of 5 the five categories whereby the total probability for a cluster summed 
to 1. Our modeling framework was strictly focused on maximizing predictive accuracy rather 
than explaining the relative importance of the covariates and therefore we do not interpret model 
covariates but rather focus on the overall predictive accuracy of the fitted model and the 
application of these fitted values to further analyses. We developed a global model based on a 
suite of cluster covariates (12) that made ecological sense and to protect against over-fitting of 
the data used the stepAIC function in the MASS package to identify a reduced model using both 
backward and forward AIC selection to determine which terms should be dropped from the 
model. We specified our global model as the upper limit of model complexity and an intercept 
only model as the lower limit for the stepwise AIC model selection.  
 
We extracted the predicted values from the estimated models and selected the cluster category 
with the highest predicted probability as the estimated cluster type. We evaluated classification 
accuracy for each cluster category as the proportion of observations correctly classified. We 
examined the Type I and Type II errors relative to the predict category and discuss these errors 
relative to the field observations. 

 
Case Study: Trends in large-ungulate carcass use in the Greater Yellowstone Ecosystem 



 
Using the 302 bear-GPS years from 2002-2011 we applied our clustering algorithm to reduce the 
full data set to a subset (5413) of spatial clusters distributed across years.  We used the same 
approach described above to create the cluster attributes from the top predictive model and 
appended the predicted probabilities for each cluster type. Using the subset of clusters that were 
predicted to be large ungulate carcasses, we developed an index of monthly carcass use from 
May through October for each year from 2002-2011. This index explicitly accounts for the 
number of bear-GPS days on the air for each month which varied across years.  
 
We used multiple linear regression to test the hypothesis of there being an increase in the carcass 
use index over time during fall months.  
 

H1: Time trend in carcass index for fall months but not non-fall months 
 

Using an information theoretic approach we compared two models to address the support for 
month as a predictor variable of the carcass index.   
   

1. ෠ܻ௜ = ଴ߚ	 ሻݎܽ݁ݕଵሺߚ	+ + ݁௜ 
2. ෠ܻ௜ = ଴ߚ	 ሻݎܽ݁ݕଵሺߚ	+ ℎሻݐ݊݋ଶሺ݉ߚ	+ + ݁௜ 

 
Because there was support for an increasing trend across years for fall months (September and 
October, see results section) we tested the hypotheses that the increases in the carcass index 
during fall months was not simply a function of more bears being located in areas open to 
hunting and having access to elk gut piles (H2). Using GIS and spatial information on hunting 
units in the study area we calculated the proportion of estimated carcasses that were in areas 
open to hunting during each month (prop_hunt). We also tested a two hypotheses related to 
whitebark pine (H3 and H4) using annual mortality adjusted cone count (macc), and if masting 
year was good or bad (GB). 
 

 H2: For fall months, time trend is not a function of sampling more bears in hunt areas over 
time 
 H3: For fall months carcass index is a function of median cone count (i.e., mast > time) 
 H4: For fall months carcass index is a function of mortality adjusted cone count (adjusted) & 
year (i.e., mast & time) 

 
Fall only dataset (H2 – H4): 

3. ௜ܻ = ଴ߚ	 ሻݎܽ݁ݕଵሺߚ	+ + ݁௜ 
4. ௜ܻ = ଴ߚ	 ଵሺ݉ܽܿܿሻߚ	+ 	+ ݁௜ 
5. ௜ܻ = ଴ߚ	 1ሻ_ܤܩଵሺߚ	+ 	+ ݁௜ 
6. ௜ܻ = ଴ߚ	 ሻݐ݊ݑℎ_݌݋ݎ݌ଵሺߚ	+ 	+ ݁௜ 
7. ௜ܻ = ଴ߚ	 ሻݎܽ݁ݕଵሺߚ	+ ଶሺ݉ܽܿܿሻߚ	+ 	+ ݁௜ 
8. ௜ܻ = ଴ߚ	 ሻݎܽ݁ݕଵሺߚ	+ + ℎሻݐ݊݋ଵሺ݉ߚ +	݁௜ 
9. ௜ܻ = ଴ߚ	 ሻݎܽ݁ݕଵሺߚ	+ ଶሺGBሻߚ	+ 	+ ݁௜ 
10. ௜ܻ = ଴ߚ	 ሻݎܽ݁ݕଵሺߚ	+ ሻݐ݊ݑℎ_݌݋ݎ݌ଶሺߚ	+ 	+ ݁௜ 
11. ௜ܻ = ଴ߚ	 ሻݎܽ݁ݕଵሺߚ	+ ሻݐ݊ݑℎ_݌݋ݎ݌ଶሺߚ	+ 	+ ଷሺGBሻߚ	 	+ ݁௜ 
12. ௜ܻ = ଴ߚ	 ሻݎܽ݁ݕଵሺߚ	+ ሻݐ݊ݑℎ_݌݋ݎ݌ଶሺߚ	+ 	+ ℎሻݐ݊݋ଷሺ݉ߚ	 	+ ݁௜ 



Results: 
 
Predictive model: 
 
The top predictive model correctly classified 88% of the carcasses identified in the field as large 
ungulate carcasses, our category of primary interest. Only 1 of the 174 clusters (type = 
inactive/resting) was categorized differently by the a priori model containing 12 parameters and 
the stepwise AIC selected model which selected 9 parameters. The ability of our approach to 
classify small biomass carcasses and old carcasses correctly appears to be rather low. However, 
some of these errors are more likely due to sample error in the field (e.g. calling a mule deer 
carcass low biomass, while our statistical model predicts it to be a large ungulate carcass). None 
of the incorrectly classified “inactive” or “area of interest (AoI)” clusters were attributed to the 
large biomass category (see table below). 
 

 
 
Case Study: 
For the case study application of this approach to large ungulate carcass use in the GYE, there 
was considerable support for model #2 which included month over Model #1 (year only) given 
the data. The year only model has nearly zero model probability 
 
MODEL       K       AICc   Delta_AICc  AICcWt  Cum.Wt       LL 
mod 2   8  -349.6564      0.0000            1            1      184.2400 



mod 1   3  -326.9363     22.7201           0            1      166.6825 
 
The table of coefficients shows that only months #9 and month #10 that are significant predictors 
of carcass index. We used this quantitative evidence as support for using a restricted dataset 
(months 9 and 10) to test the remaining hypotheses about whitebark pine and spatial relationship 
to hunting, which are also only biologically meaningful for the fall period. 
 

Coefficients: 

                   Estimate        Std. Error           t                  value Pr(>|t|)     
(Intercept)         -4.8187405  1.0771256  -4.474   4.10e-05 *** 
year                    0.0024083  0.0005368   4.486   3.93e-05 *** 
factor(month)6    0.0025408  0.0053412   0.476   0.636251     
factor(month)7    0.0046663  0.0053412   0.874   0.386256     
factor(month)8    0.0025381  0.0053412   0.475   0.636606     
factor(month)9    0.0202601  0.0053412   3.793   0.000383 *** 
factor(month)10  0.0260894  0.0053412   4.885   9.96e-06 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
Residual standard error: 0.01194 on 53 degrees of freedom 
Multiple R-squared: 0.5403, Adjusted R-squared: 0.4882  
F-statistic: 10.38 on 6 and 53 DF,  p-value: 1.385e-07 
 
There was considerable model selection uncertainty given the data and the candidate set of 
models in this analysis: 
Model selection based on AICc : 

 
Model   K       AICc         Delta_AICc     AICcWt        Cum.Wt        LL 
mod 7   4  -110.30005  0.0000000 0.33634114 0.3363411 60.48336 
mod 3   3  -109.93962  0.3604377 0.28087427 0.6172154 58.71981 
mod 9   4  -108.64518  1.6548749 0.14703762 0.7642530 59.65592 
mod 8   4  -107.83043  2.4696209 0.09783824 0.8620913 59.24855 
mod 10  4  -107.18640  3.1136552 0.07090198 0.9329932 58.92653 
mod 11  5  -105.52726  4.7727951 0.03093006 0.9639233 59.90649 
mod 12  5  -104.32923  5.9708233 0.01699152 0.9809148 59.30747 
mod 4   3  -104.09242  6.2076354 0.01509417 0.9960090 55.79621 
mod 6   3  -100.13260 10.1674503 0.00208423 0.9980932 53.81630 
mod 5   3   -99.95463   10.3454267 0.00190677 1.0000000 53.72731 
 
The top model (model #7)  ෠ܻ௜ = ଴ߚ	 ሻݎܽ݁ݕଵሺߚ	+  ଶሺ݉ܽܿܿሻ carried 34% of the model weightsߚ	+
and roughly 90% of the cumulative model weight was captured by the top 4 models. However, 
models #8-10 (AICc rankings 3-5) all contained one additional parameter, were within 2 delta 
AIC units of the top model, and have virtually identical log-Likelihoods. Accordingly there is 
lack of improvement in fit and these more complex models are not supported, or alternatively are 
“uninformative (Burnham and Anderson, 2002, Anderson 2008). Discounting the uninformative 
models the evidence ratios show that the highest ranked model containing the proportion of 
carcasses in hunting areas (model #10) had 0.11 times the support of model # 3 (ranking =2) and 
0.09 times the support of model #7 (ranking = 1). The year and mortality adjusted cone count 



(macc) predictors had slope estimates with 85% confidence intervals (Arnold, 2010) that did not 
include zero for all models they were included in; all other predictors had slope estimates with 
85% confidence intervals that contained 0 (Figure 1).  

 
 

 
 
 
Figure 1. parameter estimates and 85% confidence intervals for the candidate model set. 
 

Evidence ratios comparing the top model to the prop_hunt  model (ER = 109) suggests 
there is approximately  0.009 times the support for the prop_hunt model relative to the top 
model.  Thus there is little quantitative evidence to support the hypothesis that the increase in the 
predicted carcass index is simply a function of more carcasses (i.e. collared bears) being located 
in areas with access to hunting and elk gut piles in later years of the time series. Given the data 
and set of candidate models, the most quantitative support is for the H3 hypothesis that predicted 
carcass index is a function of year and the mortality adjusted cone count (macc).  
 
Coefficients: 
                Estimate Std. Error  t value   Pr(>|t|)    
(Intercept)   -6.4791975   2.0460064   -3.167   0.00564 ** 
year           0.0032500   0.0010194    3.188    0.00538 ** 
macc          -0.0010236   0.0005653   -1.811   0.08790 . --- 
 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  



 
Residual standard error: 0.01275 on 17 degrees of freedom 
Multiple R-squared: 0.4988, Adjusted R-squared: 0.4399  
F-statistic:  8.46 on 2 and 17 DF,  p-value: 0.002818 
 
Table 1; output from linear model of year and macc 
 

 
Figure 2. Linear model fit to fall carcass index data. 
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Estimating Grizzly Bear Use of Large Ungulate Carcasses with GPS Telemetry Data.  
Presenter: Michael R. Ebinger, U.S. Geological Survey lecture to visiting students. Bozeman, 
MT.  2013 
 
Estimating Grizzly Bear Use of Large Ungulate Carcasses with GPS Telemetry Data.  
Presenter: Michael R. Ebinger, The International Association for Bear Research and 
Management (IBA) international conference. Provo, Utah, 2013 
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Computer Programs: 
 
The NPS was provided with the computer 
programs (Matlab & R) that allow grizzly 
bear GPS data to be classified into the 
behavioral groups as used in this study. 
There are two primary uses for these 
programs:  
 
(1) The programs allow the GPS data to 

be dichotomized two behavioral 
groups: “active” and “non-active” for 
use in grizzly bear habitat studies. The 
figure on the right shows an example 
of this outcome for a single bear with 
red points indicating “inactive” 
locations and green points indicating 



“active” locations. Notice the concentration of green points in the meadow and on the 
meadow edges and the higher degree of clustering for the red locations. 

 
 
 
 
(2) The programs allow clusters of GPS 

data to be partitioned in classes 
associated with large ungulate carcass 
use, bedding areas, and other 
unspecified clusters.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Lessons Learned from this project: 

 

• This study produced a number of findings related to the study of grizzly bear ecology 
and management in YNP and the Greater Yellowstone Ecosystem (GYE).  

• We have learned that simply analyzing the grizzly bear GPS data is likely to be less 
powerful and possibly lead to misleading conclusion related to management and 
conservation compared to analysis behavior specific subsets of the GPS data set (e.g. 
habitat selection of bedding sites and active locations using separate datasets).  

• We have learned through the set of protocols and computer code provided how to 
conduct these analyses on existing and future NPS grizzly bear GPS datasets. 

• This work has demonstrated that is important to continue to collect GPS data using 
collars that record activity at the time of GPS acquisition in order to continue to use 
these tools. 
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