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Introduction 
 
Land managers have long been devising ways to visualize and quantify patterns 
inherent in the landscapes that they manage.  By investigating these patterns, land 
managers can glean information about vegetation distributions and abundance, thereby 
enabling them to study plant, wildlife, and human interactions, and in turn to make 
better decisions related to competing interests or uses of natural resources. 
 
Methods for visualizing and quantifying landscape patterns have changed dramatically 
during the last few decades, starting with manual interpretation of aerial photos, 
ranging through the beginnings of automated analysis of satellite imagery, and now to 
object-oriented analysis of high resolution satellite imagery (c.f. Mitri and Gitas 2004, 
Wang et al. 2004).  Because the human mind is well adapted to visual pattern 
recognition, we often see patterns that computers overlook, and as a result, we have 
often been dissatisfied with the results of standard image analysis procedures.  But with 
advances in remote sensing and computer science technologies, automated methods are 
improving in their ability to delineate patterns from satellite imagery.  Their outputs 
represent ground conditions in ways that are not only more realistic and pleasing to the 
human eye, but are statistically sound as well.   
 
For land cover classification, the goal of automated pattern delineation, or image 
segmentation, should be to produce spatial units (regions) that conform not only to 
physical patches on the ground but also to the scale of the available training data.  For 
example, one might not want to classify a segmentation with an average region size of 
100 ha with training data that represented 0.04 ha plots because the vegetation 
measured in the plot may not be representative of the larger region in which it falls.  
Thus the statistics collected from these training data would not be representative of the 
stand and would likely lead to misclassification errors.  By matching the region sizes 
with the scale of the training data, the statistics generated are more representative of the 
location where the data were collected, and thus should produce higher classification 
accuracies.  
 
The objective of this study was to determine how well a photo-interpreted segmentation 
could be mimicked by automated methods.  We specifically sought to evaluate and 
compare segmentations derived from two types of satellite imagery, Landsat TM-7 and 
Ikonos-2, and two software packages, M86 (Barsness 1996, Ford et al. 1997) and 
eCognition (2001).  These automated methods were designed to emulate a set of map 
units that were manually delineated through air-photo interpretation and according to 
standardized techniques used by the National Park Service (see Moritsch et al. unpubl).  
Thus, rather than trying to produce an optimal segmentation of map units to be labeled 
by image classification, our goal was to mimic or improve on the photo-interpretive 
process.  This required special attention to match the scale of automated patch 
delineation with that of the photo-interpreted polygons, while avoiding over-
segmentation of large, homogeneous landscape units, such as grassland or forest 
patches.   
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Study Area 
 
The study area follows the general administrative boundary of the Point Reyes National 
Seashore (PRNS), north of San Francisco, California (Figure 1).  The area covers 
approximately 40,000 ha (98,775 ac) west of the Pacific Coast Highway and between the 
towns of Dillon Beach and Stinson Beach.  Lying along the eastern edge of the Pacific 
plate, and extending from sea level to above 1000 m, the area is complex in terms of its 
geology, flora, and fauna.  Any effort to delineate landscape pattern must take into 
account both the scale and diversity of plant communities found within the area.   
 
 
Input Data 
 
Polygon coverages.  PRNS personnel provided two polygon coverages.  One was the 
general administrative boundary for PRNS; the other contained a set of landscape units, 
intended to represent discrete patches of land cover types, and derived by manual 
interpretation of 1994 aerial photography.  Both coverages can be downloaded from: 
http://www.nps.gov/gis/park_gisdata/california/pore.htm. 
 
Satellite imagery.  We relied on multi-spectral imagery from the Landsat Enhanced 
Thematic Mapper (TM-7) and Ikonos-2 satellites (Table 1).  Both sets of imagery were 
purchased by the National Park Service, and copies were made available to us.  The 
TM-7 image (Path 34/Row 44) was comprised of six bands covering the visible to 
shortwave infrared wavelengths at 30 m pixel resolution, one thermal-infrared band at 
60 m resolution, plus a 15 m panchromatic band sensitive to blue wavelengths.  The 
Ikonos-2 imagery contained four multi-spectral bands (visible to near-infrared) at 4 m 
resolution, and a 1 m panchromatic band sensitive to blue wavelengths.  The Landsat 
TM-7 image was acquired on June 10, 2001; the Ikonos-2 data were provided pre-
mosaicked from multiple images acquired on 11 and 14 July 2003.  Aside from pixel 
resolution (Figure 2), the primary difference between the two types of imagery is that 
the Ikonos-2 scanner is insensitive to wavelengths beyond the near-infrared (band 4), 
whereas the TM-7 scanner is sensitive to thermal and shortwave infrared radiation.  
Further details about the spectral sensitivities of the two scanning systems may be 
found at http://www.infoterra-global.com/data_media/spec_bands.gif.  
 
 
Table 1.  Comparison of satellite imagery inputs. 
 
 Landsat TM-7 Ikonos-2 
Spatial resolution MSa: 30 m 

Pan: 15 m 
MS: 4 m 
Pan: 1 m 

Bit depth (levels of grey) 8 bit (255) 11 bit (2048) 
Number of bands 7 MS + 1 Pan 4 MS + 1 Pan 
Spectral range Blue - Thermal Infrared Blue - Near Infrared 
Cost $0.19/km2 $30/km2 

aMS = multi-spectral; Pan = panchromatic/black and white. 
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Methods 
 
Segmentation of imagery.  WSAL-M86 was used to generate a segmentation of Landsat 
TM 30 m data. The WSAL-M86 segmentation methodology, designed by the Wildlife 
Spatial Analysis Lab (WSAL) for classifying Landsat TM 30 m imagery, employs a two-
stage segmentation process (see Barsness 1996, Ford et al. 1997). During the first stage, 
the image is divided into spectral classes using the ISODATA clustering algorithm, and 
during the second stage, those spectral classes are merged into contiguous regions 
using the M86 merging algorithm. 
  
In addition to the WSAL-M86 segmentation, eCognition (2001) software was used to 
produce seven segmentations using both the Landsat TM and Ikonos images as follows:  
Landsat TM 30 m; Ikonos 4 m; Landsat TM pan-sharpened 15 m; Ikonos 4 m principal 
components (PC) image; Landsat TM 15 m PC image; Hybrid 1; and Hybrid 2.  More 
detailed descriptions of the seven segmentations, and in particular the two hybrid 
methods follow below.  First, however, we review the general approach. 
 
The goal of the eCognition segmentations was to generate a segmentation with as 
coarse a scale as possible without missing the small and important land cover patches – 
thus matching the characteristics of the photo-interpreted regions. To this end, each was 
initially segmented at a very fine scale, creating a very large number of small regions. 
By iteratively increasing segmentation size with the eCognition software, these small 
regions were merged together into progressively larger ones until obviously distinct 
features were lost in the merge process. The image analyst then stepped back to the last 
acceptable scale and increased the shape parameter within eCognition. Once again, the 
analyst began to iteratively increase the segmentation scale until the obviously distinct 
feature was once more lost in the merging process.  Thus the final segmentation for each 
method resulted from the combined adjustments of the shape and scale parameters in 
eCognition. By emphasizing shape at the final stages of the segmentation, the resulting 
regions tended to have smoother boundaries and be more compact, and as such, they 
better mimicked the manually delineated map unit boundaries.  
 
While the above segmentation process was standard to all of the eCognition 
segmentations, specific techniques varied for the principal component and hybrid 
segmentations. Principal component analyses (PCA) of the pan-sharpened TM and 
Ikonos imagery were required for the former. PCA is a method of compressing an 
image’s spectral information into fewer bands by means of a linear transformation to 
the spectral values such that the maximum variation in spectral values is contained in 
the first principal component, and subsequent components are oriented orthogonally to 
the previous principal components along the axis of greatest variance. This results in an 
image whose bands are uncorrelated, whose first band contains the largest fraction of 
spectral variation, and whose last band is primarily noise (ERDAS 1997). The 
proportions of spectral variation contained in each principal component are referred to 
as Eigenvalues. 
 
Again, seven eCognition segmentations were generated.  The first two used the original 
Landsat TM 30 m and Ikonos 4 m images, while the rest used image products derived 
from these originals. The third segmentation was based on a Landsat TM pan-
sharpened 15 m image. This image’s spatial resolution was increased from 30 m to 15 m 
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using a process called a resolution merging or pan-sharpening (ERDAS 1997). The next 
two segmentations, Ikonos 4 m PC and Landsat TM 15 m PC, used images generated 
from PCAs applied to the pan-sharpened Landsat TM 15 m and Ikonos 4 m images. The 
Eigenvalues for each PC band were used as a guideline for weighting the bands during 
segmentation (see Table 2).  
 
 
Table 2.  Eigenvalues and segmentation weights for principal components (PC) bands 
produced from Landsat TM 15 m pan-sharpened imagery and Ikonos (IK) 4 m imagery. 
 

PC Band Eigenvalue Segmentation Weight 
TM PC1 76% 2.0 
TM PC2 16% 1.5 
TM PC3 4% 1.0 
TM PC4 3% 0.7 
TM PC5 1% 0.5 
IK PC1 69% 2.0 
IK PC2 28% 1.0 
IK PC3 3% 0.5 

 
 
The last two segmentations sought to combine the strengths of each imagery type and 
thus involved the most complex and creative strategies. Images from Landsat TM and 
Ikonos satellites are highly dissimilar, both in terms of pixel size and spectral 
information (Table 1). Landsat TM has much larger pixels than Ikonos imagery (30 m 
vs. 4 m in the multispectral bands and 15 m vs. 1 m in the panchromatic band). On the 
other hand, Landsat TM provides a broader spectral range than Ikonos imagery (seven 
vs. four bands).  
 
For the first hybrid segmentation, Hybrid1, we used the eCognition Landsat TM 30 m 
segmentation as a starting point and then re-segmented it to a finer resolution using the 
Ikonos 4 m imagery. For the second hybrid method, Hybrid2, we resampled the 
Landsat TM 15 m pan-sharpened PCA image to 4 m, then segmented this 
simultaneously with the Ikonos PCA 4 m imagery in eCognition.  
 
Comparison of Segmentations.  The purpose of undergoing image segmentation is to 
decompose the image into a jigsaw puzzle of interlocking regions based upon their 
spectral characteristics, with the goal being to represent distinct patches of vegetation 
on the ground. Thus, the pixels comprising the regions should be homogeneous, i.e., 
have similar spectral values, and the pixels between neighboring regions should be 
heterogeneous, i.e., have dissimilar values. We therefore calculated two statistics, one 
representing the homogeneity within regions, and one representing the heterogeneity 
between regions, using the first two bands from the Landsat TM and Ikonos PC images. 
The remaining bands were ignored because they contained relatively little variation in 
spectral information (Table 2). 
 
The homogeneity index (1) was calculated by scaling the standard deviations calculated 
for each region according to its size (to compensate for the inherent tendency of smaller 
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regions to be more homogeneous than larger ones), and then averaging the scaled 
values for each of the two PC bands and across the entire image [see (1) below]. Finally 
these mean values were weighted according to each principal component’s Eigenvalues 
(the percent contribution to overall diversity that each principal component represents) 
to produce an adjusted final score. For this statistic, lower scores indicate more 
homogeneous, and presumably more uniform, polygons. 
 

(1) Where:   
 Std = Standard Deviation; 

  Count_R = Number of pixels in each region; 
  Count_I = Total number of pixels in the image; 
  PC1 = Principal component 1; 
  R1 = Region 1; 
  Rn = Region n; and 
  n = Total number of regions in image; 
 

a) For each of the first two principal components, each region’s standard deviation 
was scaled by its size:  SclStdPC1R1 = (StdPC1R1 * Count_R1/Count_I) 

 
 b) The mean of these scaled standard deviations was calculated for each of the two 
principal components as: 
 MeanSclStdPC1 = (Σ (SclStdPC1R1 + SclStdPC1R2 +…+ SclStdPC1Rn))/n 

 
 c) The means were then scaled by their Eigenvalues, such that: 
 HomogeneityPC1 = MeanSclStdPC1 * EigenvaluePC1 
 
The heterogeneity index (2) was calculated by averaging the “mean distance to 
neighbor” values for each region – a standard calculation within eCognition – for each 
principal component. This variable represents the spectral Euclidean distance between 
neighboring regions, weighted by the length of their shared border. These values were 
then weighted according to each principal component’s Eigenvalues (the percent 
contribution to overall diversity that each principal component represents) to produce 
adjusted final scores. Larger scores indicate greater spectral differences between 
adjacent polygons and, presumably, more distinct regions.   
 

(2) Where:  
MDN = Mean distance to neighbor (eCognition 2001, pp 111-112); 
PC1 = principal component 1; 
Ri = Region 1; 
Rn = Region n; and 
n = Total number of regions in the image; 

 
HeterogeneityPC1 = (Σ (MDNPC1R1 + MDNPC1R2 + … + MDN PC1Rn)) 
/n * EigenvaluePC1 

 
Ideally, the best segmentation would have low values for homogeneity within regions 
and high ones for heterogeneity between regions.  We sought to explore this 
relationship by calculating the ratio of heterogeneity to homogeneity, with larger values 
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representing more optimal results.  For ease of comparison with the photo-interpreted 
(PI) regions, we then divided the results for each segmentation by the PI results.  These 
proportional values enabled us not only to easily see which segmentations performed 
better or worse than the PI, but also to quantify how much better or worse they were. 
 
 
Results 
 
Visual differences in the patterns common to each segmentation output are illustrated 
in Figures 3 and 4, while Table 3 summarizes the homogeneity and heterogeneity 
statistics for Ikonos and Landsat principal components. The segmentation patterns in 
Figure 3, when broadly examined, suggest that the PI regions are more closely aligned 
with the TM segmentation than with the Ikonos ones. At finer scales, however, the 
Ikonos segmentations appear to have the advantage over TM (Figure 4). The hybrid 
segmentations, which scored very well overall, have an unusual and somewhat 
unnatural appearance due to processing artifacts. This appearance tends to distract and 
somewhat offsets the statistical strength of the hybrid segmentations. 
 
Upon initial examination of Table 3, it is clear that the segmentations tested better in 
terms of both homogeneity and heterogeneity against the imagery used in their 
production, i.e., Ikonos-based segmentations tested better against the Ikonos imagery 
and TM-based segmentations tested better against the TM imagery. According to the 
Ikonos-based statistics, the Hybrid1 segmentation performed best, with the standard 
Ikonos and Ikonos PCA scoring second and third, respectively. When looking at the 
TM-based statistics, however, TM PCA scored best, with TM 15 m and Hybrid1 ranking 
second and third, respectively. This seeming bias, perhaps stronger for Ikonos than TM, 
makes it difficult to decide which method is truly best. Because the relative ratios 
quantify how much better or worse the segmentations are compared to the PI regions, 
we can get a possible indication of the “best” method by computing the mean of these 
two ratios: These results (Table 3) follow those for the Ikonos-based statistics: Hybrid1 
segmentation ranks highest, followed by the standard Ikonos and Ikonos PCA 
segmentations. 
 
 
Discussion and Conclusions 

 
The goal of this research was not to produce the best possible segmentation for land 
cover classification, but instead to determine whether manually photo-interpreted 
regions could be mimicked through automated techniques. Superficially, it is easy to 
grasp that the 4 m resolution of the Ikonos images matches more closely with the 
resolution of the aerial photos used for manual interpretation than with the 30 m 
Landsat TM; features not identifiable in the TM imagery may be easily distinguished in 
the Ikonos imagery (Figure 2b) and presumably the aerial photos. Thus, it is not 
surprising that the Ikonos-based segmentations performed much better overall than 
segmentations based on TM imagery. Perhaps more surprising, and certainly 
noteworthy, is that all of the Ikonos segmentations outperformed the photo-interpreted 
regions they were intended to emulate, whereas the eCognition Landsat TM 30 m and 
Landsat TM 15 m segmentations were the only ones to score lower than the PI regions.   
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This is not to suggest, however, that increased resolution will always produce better 
segmentations; as resolution increases, the overall variation in the image increases as 
well. As a result, features such as shadows may be identified as distinct regions instead 
of being incorporated in the larger features that spawned them, e.g., trees and 
buildings.  
 
The diverse spectral characteristics of the imagery also contributed to differences in the 
segmentations. PI regions were delineated from 1:24000 true color aerial photographs 
(Moritsch et al. unpubl.), whereas Landsat TM has seven bands ranging from ultraviolet 
through mid-infrared, and Ikonos has four bands ranging from ultraviolet through 
near-infrared. The multiple spectral bands in Ikonos and TM give them a distinct 
advantage over aerial photos because they provide data in spectral wavelengths beyond 
visual range. Although increased spectral information did not seem to override TM’s 
difficulty due to its large pixel size, it certainly contributed to Ikonos’ advantage over 
the PI regions. 
 
The hybrid outputs sought to optimize the segmentation process by combining the 
smaller pixel size of Ikonos with the greater spectral range of TM. Initial results are 
quite promising, with the Hybrid1 segmentation placing first overall. However, because 
of its somewhat oddly shaped regions, the segmentation loses much of its appeal, 
especially when compared to the PI regions. With more experimentation, a hybrid 
model may eventually yield the best results.  
 
Again, the objective of this comparison was to determine whether photo- interpreted 
polygons could be reasonably mimicked through automated methods. We found this to 
be the case. However, with end-user input and feedback, automated methods can be 
taken one step further to actually improve upon photo-interpreted outputs. A useful 
model incorporated in more recent work has been to generate multiple segmentations 
from many inputs, and then to create maps of each for field surveys. Field crews use 
these maps to perform ocular assessments of the segmentation patterns and then 
provide feedback as to which segmentations best match ground conditions, as well as 
suggestions for improving upon the current segmentations. 
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Figure 1.  Point Reyes National Seashore as seen from  IKONOS imagery.  Inset map indicates the two areas shown on figures to follow.
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Figure 2.  Comparison of image resolution: a) relative pixel sizes; and b) ability to distinguish fine-scale features on the ground (area
shown corresponds to smaller inset,  Figure 1).
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Figure 3. Segmentation outputs, with Ikonos imagery and photo-interpreted polygons shown as 
reference, for the larger inset area in Figure 1.  

Ikonos Imagery Photo Interpreted 

WSAL M86 TM 
eCognition TM  

eCognition Hybrid1 eCognition Ikonos  

WSAL M86 TM 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Segmentation outputs, with Ikonos imagery and photo-interpreted polygons shown as 
reference, for the smaller inset area in Figure 1. 
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Table 3.   Relative heterogeneity/homogeneity ratios generated from both the Ikonos and pan-sharpened TM principal component 
images and for the eight segmentations plus the photo-interpreted map units (PI). Because the objective was to mimic PI regions 
through automated methods, ratio values have been scaled relative to PI = 1.0; actual ratio values can be calculated using the actual PI 
ratio of 27426.7 from the Ikonos PC image and 41709.79 from the pan-sharpened TM PC image.  Larger numbers for the adjusted 
ratios indicate better results.    
 

Adjusted Heterogeneity/Homogeneity Ratios 
PC Image  PI WSAL-M86 TM30 TM15 TM-PC IK IK-PC HYBRID1 HYBRID2 

Ikonos  1.00 1.16 0.75 0.84 0.90 2.21 1.94 2.75 1.60 
TM  1.00 1.03 0.73 1.16 1.47 0.83 0.96 1.11 1.03 

  1.00 1.10 0.74 1.00 1.19 1.52 1.45 1.93 1.32 
           

 
 




