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ABSTRACT We present the first rigorous estimate of grizzly bear (Ursus arctos) population density and distribution in and around Glacier

National Park (GNP), Montana, USA. We used genetic analysis to identify individual bears from hair samples collected via 2 concurrent

sampling methods: 1) systematically distributed, baited, barbed-wire hair traps and 2) unbaited bear rub trees found along trails. We used

Huggins closed mixture models in Program MARK to estimate total population size and developed a method to account for heterogeneity

caused by unequal access to rub trees. We corrected our estimate for lack of geographic closure using a new method that utilizes information

from radiocollared bears and the distribution of bears captured with DNA sampling. Adjusted for closure, the average number of grizzly bears

in our study area was 240.7 (95% CI¼ 202–303) in 1998 and 240.6 (95% CI¼ 205–304) in 2000. Average grizzly bear density was 30 bears/

1,000 km2, with 2.4 times more bears detected per hair trap inside than outside GNP. We provide baseline information important for managing

one of the few remaining populations of grizzlies in the contiguous United States. ( JOURNAL OF WILDLIFE MANAGEMENT

72(8):1693–1705; 2008)
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Despite being listed as threatened under the Endangered
Species Act since 1975 (U.S. Fish and Wildlife Service
[USFWS] 1993), there are no rigorous estimates of grizzly
bear abundance for the population as a whole for the
Northern Continental Divide Ecosystem (NCDE) in
northwestern Montana, USA, including Glacier National
Park (GNP). The NCDE population is the largest in the
contiguous United States with uninterrupted connection to
continuously occupied range to the north. Because of the
importance of maintaining this link, the status of bears in
the greater Glacier National Park area (GGA), impacts the
long-term viability of bears south of Canada (USFWS
1993). Agencies responsible for recovering this population
require information on its status to guide management
decisions.

From the early 1880s until 1910, when GNP was
established, grizzly bears in northwestern Montana were
heavily hunted and trapped. The local population likely
reached its lowest level during this period (Bailey and Bailey
1918, Keating 1986). As late as 1895, bear trapping was
considered the greatest threat to game animals in the region;
�500 elk (Cervus elaphus) and moose (Alces alces), and
substantial numbers of deer (Odocoileus spp.), bighorn sheep
(Ovis canadensis), and mountain goats (Oreamnos ameri-

canus) were killed each year for bear bait (Bailey and Bailey
1918). Many bears continued to be killed on lands
surrounding the park to protect large domestic sheep herds
during the first half of the 20th century. After grizzly bears
south of Canada were listed as a threatened species in 1975,

annual legal harvest in the NCDE was first limited to 25
bears, then progressively fewer animals, before being
completely discontinued in 1991 (Dood and Pac 1993,
USFWS 1993). It is likely that few bears range exclusively
within the confines of GNP throughout their life, or even
within each year. Although fairly secure within the center of
GNP, bears are exposed to a variety of mortality risks when
they move outside park boundaries (K. Kendall, United
States Geological Survey, unpublished data). From 1976 to
2000, ,9% of the 401 known mortalities that occurred
within 40 km of GNP were within the park, which
represents 20% of this area.

Increasing trends in grizzly bear sighting rates and
informal population estimates in GNP between 1910 and
the early 1970s coincided with protection from hunting in
GNP (1910), curtailment of predator control within the
park (1931), and waning predator control near the park
(mid-1950s–1960s; Keating 1986). Fewer predators were
killed with the decline of sheep ranching along the park’s
eastern boundary and agency-sponsored predator control
along the park’s western boundary. Early (pre-1967)
methods used in GNP to estimate grizzly bear population
size were informal, often unspecified, and likely unreliable
(Baggley 1936). Martinka (1974) estimated population size
from density calculations based on annual sightings of
unmarked bears in a core area of GNP and extrapolation to
the entire park. Because grizzly bear population trends
during the 1980s–1990s adjacent to GNP were inconsistent,
trends in the park could not be inferred from neighboring
areas. Bear numbers increased northwest of GNP in the
North Fork of the Flathead River, British Columbia,1 E-mail: kkendall@usgs.gov
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Canada, during 1979–1994 (k̂ ¼ 1.085, 95% CI ¼ 1.032–
1.136; Hovey and McLellan 1996) but decreased to the
south in the Swan Mountains from 1987 to 1996 (k̂¼0.977,
95% CI¼ 0.875–1.046; Mace and Waller 1998). However,
range expansion suggests population growth in the ecosys-
tem since 1993 (T. Wittinger, United States Forest Service,
unpublished data; D. Carney, Blackfeet Nation, unpub-
lished data; J. Jonkel, M. Madel, and T. Manley, Montana
Department of Fish, Wildlife, and Parks, unpublished data).

Sampling at baited, systematically distributed barbed-wire
hair traps is widely used to estimate bear population
abundance (Boulanger et al. 2002, Boersen et al. 2003).
Surveys conducted annually in GNP 1983–1997 to docu-
ment bear sign (tracks, scat, etc.) found that bear rub trees
(trees used by bears for rubbing and other forms of marking)
were common and distributed throughout the park (Kendall
et al. 1992). Most rub trees were identified by presence of
bear hair, suggesting that they could be a source of DNA for
individual identification and could be used to augment
sampling at baited hair traps.

Estimation of density from DNA-based mark–recapture
analyses requires adjustment of population estimates to
account for violation of closure caused by bear movement on
and off the study area during sampling. The proportion of
points on the sampling grid from radiocollared bears can be
used to scale population estimates assuming that the
distribution of collared bears represents overall bear
distribution (White and Shenk 2001).

Our objectives for this study were to 1) estimate grizzly
bear population size and density for the GGA, 2) explore
the use of covariates to improve abundance estimates derived
from multiple data sources, and 3) develop methods that use
hair trap data to correct closure estimates for nonrepresen-
tative distribution of radiocollared bears.

STUDY AREA

The GGA encompassed 7,933 km2, straddling the Con-
tinental Divide in northwestern Montana along the United
States–Canada border. The study area represented the
northern third of the NCDE Grizzly Bear Recovery Zone
(Fig. 1). The GGA was considered a largely intact natural
system (Slocombe 1993). All wildlife species that occurred
in the GGA before European settlement were still present,
including sympatric grizzly bear and black bear (U.

americanus) populations. The eastern and western edges of
the study area (38% of perimeter) coincided with the
approximate limit of occupied grizzly bear range, whereas
the population extended beyond the northern and southern
boundaries. Topography varied from the glaciated peaks,
valleys, and lakes of GNP to the foothills of the Rocky
Mountains and the western fringe of the Great Plains.
Elevation ranged from 960 m to 3,190 m. Average annual
precipitation was 63 cm, much of which was deposited as
snow during winter. The Pacific maritime-influenced
climate west of the Continental Divide was moister than
that found on the eastern side, and the mountains received
more precipitation than lower elevations. Vegetation was

characterized by coniferous forests, shrub fields, and alpine
tundra in the mountains, mixed deciduous–coniferous trees
and herbaceous meadows in the valleys, and prairie grass-
lands and agricultural fields along the eastern boundary.
Land management policy and human use in the study area
differed by ownership. Glacier National Park (51% of
GGA) was largely roadless and managed as wilderness but
hosted approximately 1.75 million visitors per year,
primarily in the 1% of the Park with roads and visitor
services. In the rest of the study area, national (29%) and
state (5%) forests were managed primarily for timber
harvest and recreation. Blackfeet Tribal lands (8%)
principally supported ranching and logging. Corporate
timberlands (1%) maximized silviculture, and individually
owned private parcels (6%) were mostly rural and low-
density residential developments.

METHODS

Sampling Methods
We used 2 methods concurrently to collect bear hair for
genetic analysis: hair traps and rub trees. We collected bear
hair at barbed-wire hair traps systematically distributed on
a grid of 125 8 3 8-km cells from mid-May to mid-August
in 1998 and 2000 (Fig. 1; Table 1). Traps consisted of one
25-m length of 4-pronged barbed wire nailed to 3–6 trees
at a height of 50 cm (Woods et al. 1999). We baited traps
with 1 L of scent lure poured on rotten wood and other
forest debris piled in the center. The primary liquid scent
lure we used at all sites consisted of a 3:3:1 mix of liquid
from decomposed fish, aged cattle blood treated with
anticoagulant, and glycerin. We placed wool saturated with
a secondary lure in a punctured film canister and hung it
above the trap. For each of the 5 hair trap sessions, we used
a unique secondary lure: 1998—beaver castor, fennel oil,
smoky bacon oil, cherry extract, skunk; 2000—shellfish
essence, beaver castor, fermented egg, cherry extract,
skunk.

We placed one hair trap in each cell for 14 days, after
which we collected hair. We defined a sample as all hairs
from one set of barbs. We placed each hair sample in a
uniquely numbered paper envelope and passed a flame under
the barbs to remove any trace of hair. We then dismantled
traps and moved them to another site within each cell. We
repeated this for each cell for a total of 5 hair trap sampling
sessions per year. We divided each 64-km2 cell into 9 equal
subcells. We placed each of the 5 traps within a cell in a
different subcell and �1 km from all other hair traps. We
based selection of specific trap locations on presence of
natural animal travel routes, seasonal habitat quality, and
bear sign. All traps were �200 m from maintained trails and
500 m from developed areas, including campsites.

We also collected bear hair periodically from mid-May to
mid-October during 1998 and 2000 from naturally occur-
ring bear rub trees found along maintained trails in GNP
(Fig. 1; Table 2). In addition, from 17 August to 17 October
2000, we surveyed rub trees on the Flathead National Forest
(FNF) to determine if bear use of rub trees on multiple-use
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lands was similar to that in GNP. We tagged each rub tree
with a unique number for identification. To facilitate hair
collection, we attached short pieces of barbed wire in a zig-
zag pattern to the rubbed surface. We only collected hair
that accumulated on the barbed wire; hair snagged on bark

was not collected. Rubbing is a ubiquitous behavior of
grizzly bears (Green and Mattson 2003); we used no
attractant to draw bears to the trails or rub trees. To exclude
hair that may have been left the previous year, we only used
samples for which the time period of hair deposition was

Figure 1. Location of bear (Ursus spp.) hair traps distributed within an 8 3 8-km grid and bear rub trees surveyed in the greater Glacier National Park study
area in northwestern Montana, USA, 1998 and 2000. NCDE ¼Northern Continental Divide Ecosystem.

Table 1. Grizzly bear hair trap results from the Greater Glacier Area Bear DNA Project, Montana, USA, 1998 and 2000.

Yr Session Session datesa
No.
sites

% traps with
�1 grizzly bear

hair sample

Grizzly bear samples/trapb Total no.
grizzly bear

samples

No. unique bears No. new bears

x̄ SD F M F M

1998 1 18–31 May 124 22.6 2.6 1.9 74 14 13 14 13
2 1–14 Jun 117 23.1 6.3 7.0 171 18 16 16 14
3 15–28 Jun 129 24.8 3.4 3.0 109 12 11 9 10
4 29 Jun–12 Jul 131 35.9 4.3 4.5 204 35 11 27 10
5 13–26 Jul 125 35.2 4.7 4.4 206 39 16 25 9

x̄ 125 28.3 4.3 4.5 153 24 13 18 11
Total 626 764 91 56
2000 1 22 May–4 Jul 123 30.9 3.8 3.1 143 21 25 21 25

2 5–18 Jun 125 24.0 2.4 1.8 72 18 15 15 12
3 19 Jun–2 Jul 125 26.4 2.6 2.0 86 14 22 10 13
4 3–16 Jul 128 28.1 3.8 3.7 136 19 15 16 9
5 17–30 Jul 132 31.1 3.3 3.8 136 31 15 23 11

x̄ 127 28.1 3.2 3.1 115 21 18 17 14
Total 633 573 85 70

a Session dates reflect the date we installed hair traps for each session. We collected samples 14 days after installation (e.g., in 1998 we collected hair from
session 5 traps during 27 Jul–9 Aug).

b Of those hair traps that had �1 grizzly bear sample.
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known. We assigned rub tree surveys to the 14-day session
in which we collected samples.

We compiled capture, telemetry, mortality, and age data
for all grizzly bears handled for research or management in
the GGA during 1975–2006. We genotyped hair, blood, or
muscle samples from these bears when samples were
available. Collaring effort and radiocollared bear distribution
did not appear to be representative of the distribution of
bears. We realized that our grid-based DNA detections of
bears provided a snapshot of bear distribution during
sampling and could be integrated with the radiocollared
bear data to provide better estimates of closure violation and
density. To estimate geographic closure during the study, we
used radiotelemetry data from individuals that had �1
location on the GGA study area between 15 May–15
September within 10 years of our sampling, were ,20 years
old during our study if we did not know if the bear was still
alive, and were genotyped. We used histories of previous
live-captures to model heterogeneity in hair trap capture
probabilities.

Genetic Methods
Samples were analyzed at 2 laboratories that specialize in
noninvasive genetic samples. We discarded all obvious
nonbear (e.g., ungulate) hair samples. Initially, we analyzed
all putative bear hair samples with �5 follicles; however,
over the course of the project genotyping success improved,
allowing us to get reliable genotypes from �2 follicles.
Species was initially determined by a length polymorphism
in the mitochondrial control region (Woods et al. 1999).
Species was verified with the G10J microsatellite, which has

species-specific alleles for grizzly bears and black bears
(Mowat et al. 2005; D. Paetkau, Wildlife Genetics
International, unpublished report). Finally, an assignment
test (Paetkau et al. 1995) was performed with the most
complete set of microsatellites available, excluding G10J,
which confirmed all species determinations. For every
sample, 6 microsatellite loci were analyzed to determine
individual identity: G1A, G10B, G10C, G10L, G10M, and
G10P (Paetkau et al. 1995). Up to 10 additional loci were
analyzed for �1 sample from each individual to enable more
detailed population genetic analyses. These extended
genotypes were used to confirm differences between
individuals with similar 6-locus genotypes. Gender was
initially determined using the SRY marker (Taberlet et al.
1993) and was verified using a size polymorphism in the
amelogenin marker (Ennis and Gallagher 1994). Mixed
samples (samples with hair from .1 bear) were reliably
identified by evidence of �3 alleles at �1 locus (Roon et al.
2005a).

In addition to the procedures described above, we followed
recommendations in Paetkau (2003) and Roon et al. (2005b)
for detecting and eliminating genotyping error. We
replicated genotypes for all 1) individuals identified in one
sample, 2) pairs of individuals that differed at only 1 or 2
loci (1- and 2-mismatch pairs), 3) pairs of individuals that
differed at 3 loci when �1 locus was consistent with allelic
dropout, and 4) individuals with samples geographically
separated by large distances. We also analyzed additional
markers for geographically disparate samples from the same
individual. For all samples with sufficient DNA, genotypes

Table 2. Grizzly bear rub tree survey results from the Greater Glacier Area in northwestern Montana, USA. We conducted surveys 18 May–10 October 1998
and 22 May–27 October 2000. Session dates correspond to the 14-day hair trap session intervals (see Table 1) plus 4 additional collection sessions after hair
trapping was complete. We combined sessions with low sampling effort for mark–recapture analysis.

Yr Session

No.
rub tree

visits

% rub trees
with grizzly

bear hair

No. grizzly bear
samples/rub treea

Rub tree
effortb

Total
no. grizzly

bear samples

No. unique bears No. new bears

x̄ SD F M F M

1998 1–3 31 25.8 1.9 1.4 388 15 0 3 0 3
4 48 10.4 1.2 0.4 620 6 1 2 1 1
5 131 19.1 1.4 0.6 2,877 33 6 8 6 6
6 210 19.5 1.7 1.4 4,628 71 7 12 6 11
7 471 12.7 2.0 1.5 10,742 120 8 22 6 14

8–10 505 9.1 1.7 0.9 18,124 74 11 13 7 9
x̄ 233 13.3 1.7 1.2 6,230 53.2 6 10 4 7
Total 1,396 37,379 319 26 44
2000 1 99 20.2 1.5 0.6 1,249 29 0 8 0 8

2 267 20.2 1.6 0.8 3,903 87 1 25 1 20
3 384 16.9 1.6 0.9 7,072 103 3 30 3 19
4 405 10.9 1.5 0.8 7,293 66 6 17 6 7
5 473 12.1 2.1 1.4 8,283 119 7 20 5 3
6 525 12.4 1.6 0.9 10,305 101 14 26 10 8
7 683 6.6 1.8 1.3 12,073 79 12 18 9 1
8 511 3.3 2.0 1.2 7,894 34 5 9 2 0
9 558 7.5 1.6 1.1 10,921 66 11 13 8 6

10–12 452 17.7 1.7 1.0 14,605 134 20 26 10 9
x̄ 436 11.2 1.7 1.0 8,360 81.1 8 19 5 8
Total 4,357 83,598 818 54 81

a Of those rub tree visits that had �1 grizzly bear sample.
b Rub tree effort (RTE) is defined as the cumulative no. of days between successive hair collections for each tree sampled/session. For example, if we

surveyed 300 rubs during session 2, each surveyed 20 days earlier, the RTE for session 2 would be 300 3 20¼ 6,000.
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identified by the initial laboratory were independently
verified by a second laboratory. We used Program DROP-
OUT (McKelvey and Schwartz 2005) to provide further
evidence that our dataset was free of genotyping errors. We
used the observed number of alleles (A) and expected
heterozygosity (HE) to express genetic variation in our
population. We used probability of identity (PID) and of
siblings (PSIB) to describe the power of our markers to
identify individuals (Paetkau and Strobeck 1998). We
performed calculations using GENALEX 6 software
(Peakall and Smouse 2006).

Data Analysis
To estimate total population size, including dependent
young, we used Huggins–Pledger closed mixture models
(Huggins 1991, Pledger 2000) in Program MARK (White
and Burnham 1999; Pledger model updated May 2007;
White 2008). We developed one encounter history for each
bear for each year. We entered hair trap detections as
sessions 1–5, followed by rub tree detections as sessions 6–
11 (1998) and sessions 6–15 (2000; Boulanger et al. 2008a).
For example, the encounter history for a bear detected in the
first 3 hair trap sessions and the first 3 rub tree sessions in
1998 would be 11100111000. This approach is permissible
because the order of sessions only affects estimates if a
behavioral response (e.g., waning response to scent lure) is
present in the data (Boulanger et al. 2008a). We assumed
that any behavioral response to hair traps was negligible
because sites were moved between sessions (Boulanger et al.
2006), the scent lure provided no food reward, and a
different secondary lure was used each session. We also
think a behavioral response in the rub tree sample was
unlikely because no attractant was used, and rubbing on
trees was a natural behavior.

We obtained estimates of the female, male, and total
population size as derived parameters from the Huggins
model. Calculation of 95% log-based confidence intervals
about those estimates incorporated the minimum number of
bears known to be alive on the study area (Mtþ1; White et al.
2002). We calculated variances for pooled estimates from
the variance–covariance matrix of the derived N estimates.
Biologically plausible models constructed a priori included
time variation (t), linear trends (T), and varying capture
probability by type of sampling method (type: hair trap or
rub tree). We entered the sex of each bear as a group
covariate. Number of rub trees sampled and the number of
days between successive hair collections for each tree varied
for each sampling session. We used a rub tree effort (RTE)
covariate to model the time variation caused by varying rub
tree sampling intensity. The RTE was the cumulative
number of days between successive hair collections for all
trees sampled per session. All rub trees sampled in 1998
were inside GNP; 5.3% of the trees sampled in 2000 were
outside of GNP (Fig. 1). We predicted an inverse relation-
ship between each bear’s mean distance to the closest rub
tree and capture probability at rub trees. To model this
effect, we included an individual covariate for the distance
(dRT) and log-transformed distance (ldRT) to the nearest cell

that contained surveyed rub trees from the mean capture
location for each bear. Bears whose mean location was
within GNP received a zero for this covariate. This set their
rub tree capture probability equal to the mean population
(intercept) value for rub tree capture probability. Because
capture probability for either sampling method may be a
function of proximity to geographically open study area
boundaries (Boulanger and McLellan 2001) and because our
study area was open on the north and south edges, we
evaluated parameters for distance (d), log distance (ld), and
quadratic distance (d2) to the north or south boundaries.
Lastly, Boulanger et al. (2008b) found that detection
probability at hair traps was lower for bears that have a
history of live-capture than for those that have not been
handled; therefore, we tested for an effect of previous live-
capture (livecap).

We used the sample size-adjusted Akaike’s Information
Criterion (AICc) and AICc weights to evaluate relative
support for each of our candidate models. We considered
the model with the lowest AICc score the model that best
balanced bias and precision (Burnham and Anderson 2002).
We used changes in AICc values (DAICc) to compare model
support. We averaged population estimates based on their
support by the data as estimated by AICc weights to further
account for model selection uncertainty (Burnham and
Anderson 2002).

During our sampling periods, 62% of the study area
boundary was geographically open to bear movement.
Therefore, estimates from closed models corresponded to
the superpopulation of bears (total no. of full- and part-time
residents during the sampling period; Crosbie and Manley
1985) on the grid and surrounding area under the assumption
that movement of bears was random across grid boundaries
(Kendall 1999). We used the distance of mean capture
location to the study area edge (DTE) as an individual
covariate to efficiently model low capture rates near the edge
caused by closure violation (Boulanger and McLellan 2001).
We corrected our population estimates to account for the lack
of geographic closure by using data from radiocollared bears
that were in the study area during the sampling season (White
and Shenk 2001). We calculated the proportion of time spent
on the study area for each radiocollared bear; if a bear was
collared for multiple years, we used the mean proportion of
locations across years. We used data only from grizzly bears
with �15 locations and did not include data from dependent
offspring or relocated bears. Higher concentrations of
collared bears occurred in locales with chronic bear–human
conflicts (often near the study area boundary) and in research
areas. To achieve a representative sample of the population,
we weighted collared-bear data in proportion to bear density
based on the distribution of DNA captures relative to the
edge of the sampling grid. For this procedure, we assigned
bears detected in hair-snaring efforts in 1998 and 2000 into
successive 5-km DTE bins (i.e., 0–5 km, 5–10 km, etc. DTE)
for each sex and calculated the relative proportion of bears in
each DTE bin. We also estimated DTE for the collared bears
based on mean radio locations and binned these into
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corresponding 5-km intervals. We then assigned a weight to
each radiocollared bear based on the relative proportion of
DNA bears in its DTE bin. We then used this weight when
estimating the mean proportion of radio locations on the
DNA sampling grid, which gave radiocollared bears that were
in areas of higher expected bear density more weight in
estimates of closure violation (and vice-versa). We calculated
estimates for each sex and each year. We also estimated
variance using the weighted means procedure. Superpopula-
tion estimates (Kendall 1999) and the proportion of collared
bears on the sampling grid have inherent sampling error. We,
therefore, used the delta method (Seber 1982) to estimate
variance for the average number of bears on the grid during
each sampling season under the assumption of no covariance
among estimates.

We calculated bear density using our sampled area size of
7,933 km2. Only 2% of the study area was not suitable
habitat for bears (e.g., lakes and glaciers); therefore, we
retained these areas in sampled area and density calculations.

RESULTS

Sampling Effort
During 5 14-day sessions (x̄ ¼ 14.13, SD ¼ 1.55), hair
trapping yielded 5,582 grizzly and black bear hair samples
from 626 sites in 1998 and 5,234 samples from 633 sites in
2000 (Table 1; Fig. 1). We collected grizzly bear hair at
28% of hair traps.

We monitored 660 and 829 rub trees in 1998 and 2000,
respectively, along 1,041 km of trails in GNP. We surveyed
an additional 78 rub trees on 144 km of trails in the FNF in
2000 (Table 2; Fig. 1) and found that bear use of rub trees
was similar to that in GNP. Mean survey frequency was 2.12
visits per tree (SD ¼ 1.31) in 1998 and 5.26 visits per tree
(SD¼ 2.59) in 2000. The higher total rub tree survey effort
in 2000 compared to 1998 resulted in the collection of more
hair samples: 867 samples in 1998 versus 3,118 samples in
2000 (Table 2). We collected grizzly bear hair during 11.7%
of all rub tree visits (1998 and 2000).

Genetic Analyses
We attempted genetic analysis on all samples meeting our
minimum thresholds for number of follicles. Of the 4,848

(44.8%) hair trap samples analyzed, 8.9% did not yield
species results, 63.5% were identified as black bear, and
27.5% were identified as grizzly bear. Of the grizzly bear
samples, 74.2% (n¼ 991) were genotyped to individual. We
conducted genetic analysis on 2,236 (56.1%) rub tree
samples. Of these, 12.2% did not yield species results,
36.9% were identified as black bear, and 50.9% were
identified as grizzly bear. Of the grizzly bear samples,
71.1% (n¼ 809) were genotyped to individual. Fortunately,
samples containing DNA from .1 bear were rare: 1.8% of
hair trap and 2.0% of rub tree samples were mixed. The
only way to obtain individual identities from mixed samples
is to analyze single hairs—an expensive process with low
success rates. Furthermore, analyzing single hairs does not
always avoid mixture because saliva from conspecifics can be
the source of mixture (D. Paetkau, unpublished data). We
did not attempt individual identification on mixed samples.

The G10J test distinguishes black and grizzly bears on the
basis of whether both alleles of an individual are an even
number of base pairs (grizzly bear; e.g., 86.90) or odd (black
bear; e.g., 101.107). In our population, 11% of our G10J
genotypes were 94.odd—a result that typically indicates a
black bear (D. Paetkau, unpublished data). A 6–15-locus
assignment test excluding the G10J locus confirmed that
94.odd, as well as all odd.odd genotypes were correctly
classified as black bears, and all even.even genotypes were
correctly identified as grizzly bears.

Mean observed heterozygosity across the 6 markers used
to identify individuals was 0.71 (Table 3). The probability
that 2 randomly drawn, unrelated individuals would share
the same genotype (PID) was 0.000006, and the probability
that full siblings would have identical genotypes (PSIB) was
0.007 (Table 3). Based on the observed distribution of
genotype similarity for the 6 loci used for individual

Table 3. Variability of microsatellite markers used to determine individual
identity of grizzly bears in the Greater Glacier Area, northwestern
Montana, USA, 1998 and 2000.

Marker HE
a HO

a Aa PID
a PSIB

a

G1A 0.69 0.76 6 0.13 0.44
G10B 0.76 0.78 9 0.09 0.39
G10M 0.70 0.70 8 0.15 0.44
G10P 0.74 0.79 7 0.10 0.40
G10C 0.65 0.66 5 0.16 0.47
G10L 0.60 0.56 4 0.23 0.51
x̄ 0.69 0.71 6.5
Overall probability

of identity 6E � 06 0.007

a HE¼ expected heterozygosity; HO¼observed heterozygosity; A¼no. of
alleles; PID¼ probability of identity, PSIB¼ probability of sibling identity.

Figure 2. Observed distribution of genotype similarity for the 185 and 222
grizzly bears detected in 1998 and 2000, respectively, in the Greater Glacier
National Park area in northwestern Montana, USA, for the 6 loci used for
individual assignment. Mismatching markers ¼ pairs of individuals that
differ at 1, 2, 3 . . . etc. markers. Note that 97% of all grizzly bears detected
had �9-locus genotypes and, when all available loci were considered, all
individuals differed at �4 loci.
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identifications (Fig. 2), we predicted that one pair of
matching genotypes could exist within our dataset, resulting
in failure to identify one individual during the course of the
project (Paetkau 2003). By extending the genotypes for each
individual by up to 9 loci and scrutinizing geographically
distant captures, we did identify one such pair. Of the 290
individual grizzly bears represented in this analysis, 97%
had �9-locus genotypes and, when all available loci were
considered, all individual bears differed at �4 loci.

Population Size and Density
Genetic analysis of the samples from hair traps and rub trees
identified 185 and 222 unique grizzly bears in 1998 and
2000, respectively (Table 4). Averaged across 1998 and
2000, 58% of unique individuals identified at hair traps
were females compared with 39% females from rub tree
data. Sampling at rub trees increased the minimum number
of known bears by 24% above that detected with hair traps
alone. We successfully genotyped 69 grizzly bears that had
been handled for research or management purposes. Of the
individual bears identified during hair sampling in 1998 and
2000, 10.3% and 11.3%, respectively, had been live-
captured at least once.

Nine models were supported by the 1998 data as indicated
by DAICc values ,2 (Table 5) but none had a high
proportion of the model weight. In general, hair trap capture
probabilities varied by sex with a linear trend in female
capture probabilities. Rub-tree capture probabilities also
varied by sex, rub tree effort, and distance of bears from
nearest rub tree. Capture probabilities for both data types
were also influenced by distance from geographically open
study area edge. Capture probabilities contained undefined
heterogeneity (as estimated by mixture models) for rub tree
data in 9 of 10 of the most supported models.

In contrast to the 1998 data, fewer models were supported
by the data from 2000 (Table 6). The most supported
models had undefined heterogeneity for both data types
with capture probability varying by sex and capture type.
There were also linear trends in capture probabilities for sex
and capture type. In addition, rub tree capture probabilities
varied by effort and distance of bears to the nearest rub tree.
For both data types, capture probabilities varied as a
function of distance from the open edges of the sampling
grid.

Inspection of hair trap capture probability estimates from

Table 4. Number and percent of individual grizzly bears detected by
sampling method in 1998 and 2000 in the greater Glacier National Park
area in northwestern Montana, USA, date(s).

Sample method

1998 2000

M F M F

n % n % n % n %

Hair-trap only 40 48 75 74 27 25 60 53
Rub-tree only 28 33 10 10 38 35 29 25
Both methods 16 19 16 16 43 40 25 22
Total 84 101 108 114
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the models revealed linear trends among sessions. Male hair
trap capture probabilities were relatively constant or
decreasing whereas female capture probabilities increased
with session in both 1998 and 2000 (Fig. 3). Rub-tree
capture probabilities were influenced by effort, with male
capture probabilities always higher than females. A bear was
unlikely to be detected at a rub tree if its average capture
location was .5 km from the nearest cell with rub trees
(Fig. 4).

We used 66 radiocollared bears (41 F and 25 M) for the
closure correction. The proportion of points on the grid was
slightly lower for males in both 1998 and 2000, suggesting
that they violated closure more than did females (Table 7).
When corrected for this lack of closure, estimated
population size for the GGA was 241 grizzly bears (95%
CI¼ 202–303) in 1998 and 241 bears (95% CI¼ 205–304)
in 2000. Mean grizzly bear density was 30 bears/1,000 km2

(95% CI ¼ 27–35). Grizzly bear detections were not
distributed equally across the GGA. Considering only the
hair trap results (equal sampling effort throughout the study
area), we identified 2.4 times more bears per hair trap inside
than outside GNP (Fig. 5).

DISCUSSION

We present the first rigorous estimate of grizzly bear density
in the Greater Glacier Area. By using multiple data sources,
we obtained a precise estimate (CV ¼ 10%) for this large
study area despite fairly low capture and recapture rates. The
remarkable consistency of our estimates between years lends
credibility to these results and is consistent with the low
average annual mortality rate (4.6%) recorded in the GGA
during 1998–2000.

Because previous studies used different methods and
provided no estimates of precision, there is little value in
contrasting our population estimate to historical estimates
made in GNP. At 30 bears/1,000 km2, grizzly bear density
in the GGA is comparable to levels commonly found in
interior North American populations (McLellan 1994,
Miller et al. 1997, Schwartz et al. 2003, Mowat et al.
2005). However, comparisons of density across studies must

be made cautiously due to differences in age groups included
in the estimates and bias caused by lack of geographic
closure (White and Shenk 2001, Schwartz et al. 2003).
Furthermore, mammalian carnivore density estimates tend
to increase with decreasing study area size (Smallwood and
Schonewald 1998), presumably because smaller studies tend
to target areas where animals are known to occur rather than
marginal habitat or areas where populations are sparse
(Miller et al. 1997). Larger study areas include more habitat
heterogeneity, which is typically associated with substantial
variation in animal abundance. Larger areas also have
proportionally less edge effect (i.e., include proportionally
fewer animals with home ranges overlapping the study area
boundary; Miller et al. 1997). The GGA included highly
diverse habitats. The eastern edge of the GGA was in the
prairie biome where bears primarily inhabited narrow,
widely spaced riparian corridors between large agricultural
fields. The high relief and topographic complexity of the
mountains and valleys of GNP in the center of the study
area contrasted with the gentler slopes and lower elevations
of commercial forests and small towns on the western edge.
Density varied widely across the study area, complicating
comparisons of average density to other populations. The
notably higher density found inside compared to outside
GNP was consistent with the park’s high habitat quality
(USFWS 1993) and the security of a central protected area
(Schwartz et al. 2006). Grizzly bear population density
reported for the Flathead River drainage of British
Columbia, adjacent to GNP, was 57–80 bears/1,000 km2

(McLellan 1989; study area size¼ 264 km2). The Flathead
study area was selected because of high levels of logging and
gas exploration, not because of anticipated high bear density
(B. McLellan, British Columbia Ministry of Forests,
personal communication). In the Swan Mountains located
to the southwest of the GGA, density was 16 bears/1,000
km2 in 1,457 km2 of multiple-use forests and rural lands
(Mace and Waller 1998). At 7,933 km2, our study area was
5–30 times larger than adjacent study areas. In addition to
real differences in population density, it is likely that
differences in study area size as well as differing approaches

Table 6. Model selection results from analysis of the 2000 Greater Glacier Area (GGA) in northwestern Montana, USA, grizzly bear population sampled
using hair traps (sampling occasions 1–5) and rub trees (occasions 6–15). Models shown account for �90% of the Akaike weights. See Table 5 for parameter
definitions.a

Model
no. GGA 2000 models

F M

AICc DAICc wi

No.
parameters DevianceN SE N SE

1 p(.) p1&2( 3 type) þ sex 3 type 3 T þ RTE þ ldrub þ ldNS 198.1 22.25 133.2 8.99 2,385.2 0.00 0.420 14 2,357.11

2
p(.) p1&2( 3 type) þ sex 3 type 3 T þ RTE þ ldrub þ sex

3 ldNS

202.2 25.75 133.2 9.13 2,387.1 1.82 0.169 15 2,356.91

3b p(.) p1&2( 3 type) þ sex 3 type 3 T þ RTE þ ldrub 204.6 26.45 139.0 12.74 2,387.2 1.92 0.161 13 2,361.05
4 p(.) p1&2( 3 type) þ sex 3 type 3 T þ RTE þ ldrub þ dNS 199.6 24.21 135.9 11.44 2,388.7 3.48 0.074 14 2,360.59
5 p(.) p1&2( 3 type) þ sex 3 type 3 T þ RTE þ ldrub þ d 200.9 23.90 135.9 10.74 2,388.8 3.56 0.071 14 2,360.66

6
p(.) p1&2( 3 type) þ sex 3 type 3 T þ RTE þ ldrub

þ ldNS–HT

205.9 28.30 139.8 14.00 2,389.1 3.90 0.060 14 2,361.00

a AICc ¼ Akaike’s Information Criterion adjusted for small sample size; wi¼ Akaike wt.
b Example definition of notation for model 3: Constant mixture probability. Mixtures modeled are method-specific. Capture probabilities (p1&2) are

method-specific for sex, plus sex- and method-specific linear trends. Capture probability also influenced by log-transformed distance to the closest rub tree–
sampled cell and RTE for RT p1&2.
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to adjusting for lack of closure were responsible for some of
the variation in density estimates.

The relative density of bears revealed by hair sampling
matched expectations based on the NCDE Grizzly Bear
Recovery Zone boundaries and knowledge of population
status in adjacent parts of Canada. The east and west study
area boundaries coincided with the edge of the recovery
zone. We predicted lower bear density in these areas,
because the number of bears often declines near the edge of
occupied habitat. The higher number of detections along
the north and south boundaries supported our assumption
that bears moved freely across these study area edges.

Our goal in distributing hair traps was to sample
intensively enough to provide an opportunity to detect each
bear during each sampling occasion. Our choice of a 64-km2

grid cell for hair trapping was based on grizzly bear home-
range sizes in our area. The average seasonal and 14-day

minimum convex polygon home ranges of adult females in
our area was 231 km2 (n¼ 40, range: 42–1199 km2) and 68
km2 (n ¼ 95, range: 2–528 km2), respectively (R. Mace,
Montana Department of Fish, Wildlife, and Parks, personal
communication). These home-range calculations were based
on bears that had �15 Global Positioning System fixes and
were monitored for �70% of days during the relevant
period (i.e., the entire season or each session). These home-
range sizes, in conjunction with moving hair traps between
sessions, suggest that our sample intensity was sufficient to
have given all bears the opportunity to encounter �1 trap.

A simple proportion of telemetry locations on the study
area often is used to adjust abundance estimates for closure
violation (White and Shenk 2001). Our data demonstrated
that distribution of radiocollared animals does not always
represent actual distribution of animals on a study area,
especially if live-capture efforts were concentrated in specific

Figure 3. Estimates of gender- and session-specific grizzly bear capture probabilities from hair trap and rub tree surveys in the greater Glacier National Park
area, Montana, USA, 1998 and 2000. We derived estimates from the most selected models from Tables 5 and 6. Rub tree effort was the cumulative number of
days between successive hair collections summed over all trees sampled per session.
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areas. Our weighted mean method to estimate closure

violation used the distribution of DNA bears relative to the

study area perimeter to reduce potential biases caused by

nonrepresentative distribution of radiocollared bears.

Knowing the age classes of animals included in abundance

estimates is vital for meaningful comparison of density

between populations. We maintain that our population

estimates include the total population based on the results of

a larger study conducted in the NCDE, which used the

same sampling methods. Hair-trap and rub tree sampling

conducted in 2004 sampled 7 of 16 (44%) cubs and 12 of 15

(80%) yearlings known to be present (Kendall et al. 2009).

This represents the most conclusive evidence to date that

DNA-based grizzly bear population estimates include all

age classes.

We believe there were 2 primary reasons for the large
number of supported models in 1998. First, low capture
probabilities and small sample sizes resulted in low power to
select models (Fig. 3). Second, most of the candidate models
were very similar. The similarity of the population estimates
derived from all models bolstered our confidence that the
model-averaged abundance estimates in both 1998 and 2000
were reasonable.

In our study, female capture probabilities generally
increased over the sampling season for both sampling
methods in both years. Increasing female HT capture
probabilities have been previously documented (Boulanger
et al. 2007), but the underlying causes remain unknown.
Females with dependent offspring may range more widely as
their young mature, allowing them to encounter more
sample sites, or females with young may avoid sites
frequented by males during the breeding season. Both of
these theories are consistent with the patterns observed for
hair trap and rub tree sampling; however, more behavioral
data are needed to clarify factors affecting the trends we
observed in capture probabilities.

Mark–recapture models assume individual capture prob-
abilities are independent. This condition was violated by
sampling dependent offspring, yet we could not remove
these individuals from our dataset because we could not
determine age through DNA analysis. However, capture of
one member of a family group did not ensure that all
members were detected. In a larger study that used similar
methods conducted in this area in 2004, it was common to
detect varying numbers of individuals (1–4) from a family
group at hair traps and rub trees (Kendall et al. 2009).
Variable detection of bears traveling together would
decrease dependence of capture probabilities within groups
of mothers and their offspring and would decrease the
amount of bias in variance estimates. Simulations suggest
inclusion of dependent offspring causes minimal bias to
population estimates but potentially a slight negative bias to
variance estimates, which is caused by overdispersion of
multinomial variances (Miller et al. 1997, Boulanger et al.
2004). At this time, there is no valid approach to estimate

Figure 4. Estimated rub-tree capture probability for male and female
grizzly bears in the greater Glacier National Park area, Montana, USA in
2000 as a function of the distance from the area sampled with rub-trees;
similar trends were found during 1998. Intercept values are offset to allow
easier interpretation. Estimates for capture probability are from the sessions
with the largest sample sizes, session 1 for males and session 10 for females.

Table 7. Model-averaged estimates of total population size and density (including dependent offspring) derived from Huggins–Pledger closed mixture
models for grizzly bears in the greater Glacier National Park Area in northwestern Montana, USA, 1998 and 2000.

Yr Sex

Super populationa
Proportion time

on study area
Population size corrected

for lack of geographic closureb Grizzly bear densityc

Estimate SE x̄ SE Estimate SE 95% CI lower 95% CI upper Bears/1,000 km2 CV

1998 F 161.7 16.68 0.78 0.05 125.4 15.25 104 166 15.81 12.2%
M 157.6 23.18 0.73 0.07 115.3 20.20 88 171 14.53 17.5%
Totalc 319.4 29.51 0.75 0.11 240.7 25.31 202 303 30.34 10.5%

2000 F 201.1 24.89 0.73 0.05 146.0 20.96 116 202 18.40 14.4%
M 135.3 11.02 0.70 0.07 94.6 12.40 82 137 11.93 13.1%
Totald 336.4 30.39 0.72 0.10 240.6 24.36 205 304 30.33 10.1%

a Mark–recapture population estimate of all bears that were full- and part-time residents on the study area during the sampling period. We did not adjust
the superpopulation estimate for lack of geographic closure.

b Closure-corrected population estimate is the average no. of bears on the study area during the sampling period.
c Density estimates are based on the closure-corrected population estimate in the 7,933-km2 study area.
d Total may not equal the sum of F and M due to rounding error.
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overdispersion or model fit for closed models (White 2002,
Boulanger et al. 2008b).

Rub-tree detections were sensitive to the amount of rub
tree sampling effort; however, this effect was explained well
by the RTE covariate in the Huggins model. The lower
number of bears identified at rub trees in 1998 reflected the
lower number of trees monitored, longer survey interval, and
shorter sampling season compared to 2000. We found rub
trees in all types of habitat, in all areas searched. Further, our
pilot surveys in the FNF found that patterns of bear use of
trails and rub trees on multiple-use national forest land were
similar to observations in GNP. Our results suggest that
bears’ average locations need to be relatively close to rub
trees (within 5 km) to have an opportunity to be detected
with rub tree sampling (Fig. 4). However, in our study it was
not essential for all bears to have nonzero rub tree capture
probabilities as long as they were vulnerable to hair trap
sampling (Boulanger et al. 2008a).

Models using bears detected during multiple sessions of
hair trap sampling have been used extensively to estimate
grizzly bear population size in North America (Woods et al.
1999, Boulanger et al. 2002). Ours is the first study to use
detections from rub trees in a mark–recapture population

estimate. Boulanger et al. (2008a) used simulation and
empirical data from our study to compare estimates made
with hair trap–only and joint hair trap–rub tree data. They
found that the 2 datasets produced similar estimates, but
joint data improved precision as a result of increased sample
coverage. Despite minimal sample coverage of rub trees in
half of our study area, rub tree detections increased the
number of unique individuals above that identified at hair
traps by 24%. Our use of covariates in Huggins mixture
models also improved precision of our estimates. We
developed an individual covariate that incorporated a bear’s
proximity to areas sampled with rub trees, which effectively
modeled heterogeneity caused by uneven rub tree sampling
coverage and greatly improved the relative fit of the mark–
recapture models. For example, if we removed the distance
from rub tree covariate from the most supported models
(model 1) in Tables 5 and 6, the resulting models were less
supported by 28.4 and 47.1 AICc units for 1998 and 2000,
respectively. We refined the methods presented in Bou-
langer et al. (2008a) by using a simple covariate to model
variation caused when some bears had little or no
opportunity to be detected by one of the sampling methods.
Our modeling approach could be used to improve estimates

Figure 5. Relative density of grizzly bears detected at hair traps systematically distributed in the greater Glacier National Park (GNP) area in northwest
Montana, USA, during 15 May–15 August 2000. Density inside GNP was 2.4 times the density outside of the park in the study area. Similar patterns of
distribution were found when this area was sampled in 1998 using the same methods. NCDE¼Northern Continental Divide Ecosystem.
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of other populations and species in which mark–recapture
data are available from multiple sources. Use of multiple
sampling methods can also improve sample coverage for
other research objectives such as occupancy modeling,
assessing landscape connectivity, and population genetic
structure.

The NCDE is one of the last remaining strongholds of
grizzly bears south of Canada. We provide data on
population status in the northern quarter of the NCDE.
The data we present will be useful as benchmarks for
monitoring future trends in the size, distribution, and
genetic status of the GGA population. Our results highlight
the value of large protected core areas. Grizzly bear density
in GNP was substantially higher than in surrounding areas.
The robust park population is potentially a source of bears
for natural range expansion and augmentation of other at-
risk populations. As the primary link between the
threatened populations in the United States and the larger
population in the Canadian Rocky Mountains to the north,
the park plays an important role in long-term persistence of
grizzly bears south of Canada. Our study provides a
snapshot of population status in the GGA; however,
comparable data are not available for the remaining 16,000
km2 of the NCDE. This void will need to be filled before
recovery status can be evaluated.

MANAGEMENT IMPLICATIONS

To ensure that desired estimate precision is met, we
recommend researchers conduct pilot studies, simulations,
and power analyses to guide study design (e.g., cell size, no.
of sample sessions, and the need for moving traps between
sessions; Miller at al. 1997, Boulanger et al. 2004). We also
recommend that bear studies consider collecting hair from
rub trees in addition to other sampling method(s). We
found that it was less expensive to increase sample size and
coverage by adding rub tree surveys than by increasing hair
trapping intensity. Rub-trees that are located on trails and
other animal travel routes often can be surveyed while field
crews are en route to hair traps or performing other duties.
In general, use of multiple data sources can cut costs and
yield more precise abundance estimates. Because equal
sampling effort across the study area is only required for one
of the sampling methods, opportunistic data, such as
management records, sometimes can be used as secondary
sampling type. Covariates (e.g., the distance from rub tree
covariate used in our study) provide a simple way to account
for variation caused by unequal sampling effort.

The more complex population models we used offer a
number of benefits but they will not work for all projects.
Inclusion of covariates can more effectively model hetero-
geneity but more data are needed for model selection as the
number of parameters increases. For many studies, small
sample sizes or low capture probabilities result in low power
to select models. Based on our experience, we recommend
several measures to boost capture probabilities and sample
sizes. We believe that 1 L of scent lure per hair trap was a
minimal attractant and advocate the use of substantially

more lure (e.g., �3 L). It is also important for bear studies
to use lure proven to be effective for their population. In our
case we needed 12 months of lead time or a heated facility to
sufficiently age the fish we used in our scent lure. Hair-trap
sites should be selected before the field season by a small
number of people armed with bear habitat and activity
information, which will ensure that sites are chosen using
the best available information and that site selection will be
consistent throughout the study area.

Abundance and density estimates should be corrected for
lack of geographic closure to facilitate comparison with
other populations. Before radiotelemetry data are used to
correct estimates for closure violation, locations of the
collared animals first should be plotted. If their distribution
is not representative of the population, we urge researchers
to use a weighted method, such as we developed, for
calculating proportion of time on study area. We also
advocate clearly stating what population cohorts are
included in abundance estimates. Our data suggest that
estimates of bear population abundance based on barbed-
wire hair trap sampling include all age classes; however, we
recommend that this be evaluated by other research projects
for their specific methods.
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