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INTRODUCTION, IMAGERY, SOFTWARE

For use in resource management and long-term monitoring by scientists and planners at
Pinnacles National Monument, California, the Wildlife Spatial Analysis Lab at the
University of Montana has produced a digital database of existing vegetation and land
cover from high-resolution Ikonos satellite imagery.  Pinnacles National Monument
(referred to as PINN throughout this report) had significant acreage added in expansion of
November 2000,  and this new mapping provides additional resource information to
cover the full area plus an adjacent buffer zone.

Two Ikonos images were assembled into a seamless layer for classification.  Figure 1
below shows the Ikonos imagery with the park boundary as a white line.  This park
boundary encompasses 10,950 hectares (27,059 acres).  An additional buffer zone of 2
kilometers surrounding the park was also classified.  The yellow line shows the full area
that was classified and included in the digital database, and this area is then
approximately double in size at 22,239 ha (54,954 acres).  The white background not
covered by imagery on three edges, as can be seen in the figure, is not included in that
number:  we have classified roughly 55,000 acres.    
 
Figure 1:  Ikonos imagery displaying r-g-b color values as image bands 4-3-1, with
National Monument and classified area boundaries.  The top of map points due north. 



The Ikonos imagery and resulting classification grid are 4-meter resolution.  The imagery
from the Ikonos-2 satellite sensor is 4-band multispectral:  3 visible bands plus near-
infrared.  (The panchromatic black&white 1-meter resolution band was used in visual
analysis but not in the computer classification.)  The two images are dated 05-03-2000
and 06-05-2000.  There are some band differences between the two images due to the
acquisition dates being one month apart during the end of the wet season and/or plant
phenology.  Thus, the mosaic of the two images has some differences across the project
area but is deemed okay for classification with good distribution of training samples
across the whole study area in both images.  (See distribution in Figure 2 below.)  

Preparation of the imagery and some visual analyses were done in Erdas Imagine
software.  Image segmentation was output from eCognition software (using parameters of
Scale 17.5, Shape Factor .2, Smoothness .8, Compactness .2).  The layers input for
segmentation in eCognition included:  3 spectral bands (red, green, near-infrared; blue
band was not used); 2 of the 3 Principle Components Analysis (PCA) layers (PCA-3 not
used); and layer for NDVI – Normalized Difference Vegetation Index.  

Each segmented region (raster polygon area) was attributed for spectral and topographic
statistics.  After converting output to ESRI ArcInfo software grid format, an attribute was
also added separately in ArcInfo for proximity to water, to aid in classifying vegetation
types adjacent to streams.  Training data were examined and coded in ESRI ArcGIS.  

Classification, as described below, is accomplished using the data-mining software
WEKA.  It utilizes multiple machine-learning algorithms, rather than a more traditional
single “Nearest Neighbor” approach.  Classification output was visually checked in
ArcGIS.  Canopy cover is classified from NDVI in ArcGIS as described below, and
attached as an attribute in the database.      

TRAINING DATA

Data from field plots (“Releve” data) were taken from the most recent spreadsheet file
provided by PINN.  These point data were converted into an ArcInfo coverage consisting
of 591 points labeled with attributes for vegetation Group, Alliance, Association, plot
shape and size, along with their original Releve plot identification number and locational
x,y coordinates.  2 plots labeled by PINN as “Bad point” and “Garbage” were
immediately coded for exclusion:  although they did contain attribute for veg Association,
without knowing why PINN had labeled them as bad, such as an incorrect location, we
exclude them.  Frequency tables were built to verify numbers of points per vegetation
types to assist with comparison of target list of cover types to be mapped.



Figure 2:  Distribution of training plots over hillshade background.

Analysis of Training Points with Segmented Regions

After initial trial classifications, each of the points was then manually inspected on-
screen, one by one, for validity in relation to the segmented regions and the Ikonos
imagery.  Using finer-scale 1-meter black&white panchromatic image as background
display helped confirm the validity of plot location and suitability.  Also somewhat useful
was older PINN classified polygons from photo-interpretive classification.  Photography
of all the vegetation types, from the University of California Digital Library, was also
helpful for double-checking basic plant form, as were our photos from visit to Pinnacles.

Points were examined and coded as suitable/unsuitable.  Suitability and locational
problems consisted of:



1. Multiple field plots within segmented region/polygon:  we then omit ones that are
either judged as not meant for that particular patch of vegetation, or simply a duplicate;
or if very near the edge, move one point to adjacent similar polygon, as described
below.  As our polygons are small in size, this occurred for a small number of points.  

2. Points on the very edge of regions/polygons where it could not be positively
determined which vegetation patch was intended.  

3. Points simply deemed poor training examples in comparison to the majority, after
gaining expertise in identifying vegetation in the imagery.   

4. Plot is more than likely not located in intended vegetation, with plot placed on the
edge of a patch instead of actually in it.  Field crew's attribute for plot shape and size
perhaps is meant to cover these cases (or they figured it would be obvious during
mapping).  Some of these are plots lying in a shadow polygon on the image rather than
the vegetation polygon (typically a tree).  The field collector may have simply been
standing beside the tree rather than under the tree, and plot dimension noted.  Where
obvious, many of these points were then manually moved into the veg polygon as
described below.  

5. Percent cover of the intended vegetation is judged too low overall for that particular
segmented region/polygon to be a suitable training plot. For example, a plot that is
coded for one vegetation type but appears to be in a particular polygon shaped so that
for its entirety it is not very densely vegetated, and is likely to be misclassified and
confuse the good training data.     

It is important to note that the PINN field crew was not placing plots based on our
delineated regions, as the field data were collected earlier.  So plots are not placed
perfectly in the center of visually appropriate polygons.  Data also may not have been
originally collected for use with fine-resolution multi-spectral imagery.  Thus, the plots
are not always a good fit in terms of sampling our regions, which are computer generated
polygons of a certain size and shape.  In the field, the Releve plots are sometimes not
good samples of our polygons but that is due more to how the polygons split up the
vegetation patches rather than the field crew's collection methods.   

Sometimes the problems above reflect drawbacks of the image segmentation process:
occasionally a region/polygon might be an odd shape.  Overall the polygons appear to fit
the landscape viewable on the imagery very well, but when we're dealing with over
100,000 polygons, a small percentage may be an odd fit – not how one would draw the
shape if one could manually draw every single polygon.  

Figures 3, 4, and 5 show an example of how computer-derived segmentation splits up the
imagery.  Shown is a zoom-in detail of the project area near the westside Chaparral
Ranger Station/Picnic Area/Trailhead.  If we compare these labeled regions with earlier
polygon mapping from photo-interpretive methods, the computer-derived regions are a
much finer detail than the generalized polygons.  



Figure 3:  Detail of Ikonos Imagery with Segmented Regions (Image bands 4-3-1).

Figure 3 is a closeup detail from the top of the next two figures.  By displaying the
regions as yellow polygons atop the imagery, we see the results of segmentation with
individual 4-meter pixels aggregated into regions representing vegetation patches.    Each
of these regions is attributed with all the image statistics and topographic variables and
run through the classification program.  

Figures 4 & 5 on the next page are zoomed out to a slightly bigger area of the west side.
Park features that are recognizable:  the west entrance road as it approaches Chaparral
Ranger Station at top; round overflow parking area as barren white color, upper middle;
rock formations of Resurrection Wall at right; Juniper Canyon on the far right with the
“red” vegetation; and a grassy field just north of the West Entrance at lower left.  Figure 4
again shows the Ikonos imagery in a color band combination that makes lusher green
vegetation stand out here as brighter red.  You can see individual trees as red, with their
shadow.  Figure 5 then shows polygon regions color-coded for land cover type.  Looking
at them next to each other, it is an example of how the segmented regions are classified.

Figures 4 & 5:  Ikonos Imagery and Coded Land Cover for a Comparison Area.



   



Manual Editing & Moving of Training Points

Where possible during inspection, problematic points were manually moved to vegetation
polygons for which they were obviously intended (and coded as having been moved, in
case they were utilized later on).  This was often done for plots lying on the edges of
polygons (sometimes exactly on the edge of the 4-meter pixels), or to move a plot out of a
shadow.  Points were usually moved only a few meters – less than or equal one pixel, a
single 4-meter cell – and never more than a couple cells, in order to prevent mistakenly
moving it into an incorrect patch, even if the field crew stated that the plot represented a
large patch.  Plot sizes from the field data are often as large as 1000 square meters,
whereas our delineated polygons are based on groupings of 4 meter pixels, so the original
point can end up in an incorrect adjacent polygon than intended.  For example, a tree
point is located in an obviously grassy area between the trees in a large field plot, so we
move the point to the tree polygon.  Or the field crew was standing in the shadow of the
tree, in grass or shrub or barren, and with a large plot size noted; so the point is moved to
the tree polygon.  On the other hand, training plots in shadows (either woodland or
topographic shadow) sometimes could not be moved if they're too far from edge of region
and then might be incorrect if moved; so then these are coded as unsuitable for the
training set.  

Sometimes when more than one plot occurred within a polygon, one of them was moved
to the adjacent polygon, but only if it was close enough to an edge of what also appeared
to be intended sample vegetation and the Releve plot dimension included it.  Otherwise it
was coded for exclusion.  Field plot size and shape helped guide this.
 
After the first rounds of classification produced less than desired results, omitting poor
examples and manually moving points generated a big jump in classification accuracy.
99 points were moved and 154 points were coded as unsuitable by the final classification.
Of the 154, 15 of those were cases where multiple plots occurred in a polygon and were
unable to move and thus invalidated.  The remainder were judged either poor training
examples or an under-represented type that would confuse the other types.  As mentioned
already, bad training samples could be points lying in shadows but too far away from the
edge of polygon to be moved manually with confidence.  Specific vegetation types were
under-represented and omitted, as described below:  if allowed to remain, they do not
introduce sufficient meaningful training information and confuse the remaining data and
bring down accuracy.  It is important to have a minimum number of training samples for
each cover type.  

By the final classification, some plots had visually been analyzed numerous times over.
For difficult classes, grouping of vegetation types in slightly different ways, while aiming
for the desired target classes, required tweaking of the training data by re-coding or
omitting or putting back in, and re-running multiple times.  Notes on specific problems
with the classes are elaborated below.

Further evaluation of the training set was provided by the classification software WEKA.
It checks consistency of points with all their attributes using its same ensemble of learner
algorithms as described in methods below, and removes more or less points, depending



on user input, as outliers in its pre-processing classification filter.        
   
LAND COVER CLASSES

We attempted to group vegetation types to follow a target list of cover types to be mapped
after earlier meeting with PINN.  The final classification includes 11 cover types:  6
Chaparral classes, 3 Woodland/Riparian, Herbaceous/Grass, and Sparse/Non-veg.  Below
is a description of each class with how and why the groups were combined.  Chaparral is
said to cover approximately 80% of Pinnacles and thus has a larger number of classes.

Field data were coded by PINN with a Group label, which are groupings of vegetation
Alliances.  Alliance and Association are part of the classification hierarchy of the U.S.
National Vegetation Classification System (USNVCS), being followed nation-wide by
the National Park Service.  Field data contain a far greater quantity of Groups than are
intended to be classified successfully from remote sensing methods, and so they have
been re-grouped further towards a lesser number of targeted cover types.  These classes
could be considered a mid-level classification of vegetation types that share similar
ecological habitat.

Many Groups were severely under-represented in the training set, with some having only
a few plots, probably due to their rarity or knowing that our classification would re-group
them.  Because of this, initial classification rounds were done first on a very broad
scheme and then later rounds refined to aggregate Groups into different classes.  At the
broadest level, we classified basic life-form as just 4 classes: Woodland/Riparian,
Chaparral, Herbaceous/Grass, and Sparse/Non-veg.  Final classification at this life-form
level is at a very high accuracy (95% -- see the Evaluation section below), as it does not
have trouble distinguishing between those 4 types.  We are including in the database for
PINN this 4-class classification, and also delivering a simple 4-class covertype grid along
with an 11-class covertype grid.  This is in addition to the large database grid containing
all of the associated attributes, which can be somewhat unwieldy in use.  

As you try to break out more and more classes from the field data, with lesser and lesser
numbers of training plots per each class, accuracy drops proportionally and to a very poor
result when trying for certain types with insufficient training plots and/or less readily
distinguishable by the program.  We repeatedly tried to classify certain groups without
very good success, and finally settle on the 11 classes to reach the target goal of at least
80% accuracy, with our final classification of those 11 at 85% accuracy.  Quite good via
remote sensing.  (See further notes in Results and Discussion sections below.)    

Some of the field data were coded by PINN as mixed species, undoubtedly due to their
growing patterns in the landscape.  PINN's primarily chaparral vegetation is more
heterogenous than some landscapes containing stands of pure single species.  Thus we
end up with mixed-species groups in the classification.  For example, Chamise-
Buckbrush or Chamise-Manzanita, as there were no Manzanita single-species plots.    

PINN's targeted list of cover types to be mapped was originally somewhat greater than the



final 11:  approximately 20 types, including a few rare types that might need to be
mapped manually rather than with the program.  It included some classes as both separate
vegetation species and a mixed class, whereas the field data later was primarily mixed
species with insufficient quantity of training plots for single species mapping.  For
example, initial desire for separate classes for both Buckbrush and Chamise-Buckbrush;
whereas we end up with just one Chamise-Buckbrush class.  

The original list had a few veg species as potentially being mapped manually, rather than
thru the computer classification, but this would be quite difficult on this imagery.  We
ended up with a single mixed Riparian class and Cottonwood and Sycamore points were
included in that; Buckeye we did end up mapping on its own as one of the 11 computer-
derived classes; Foothill Ash (with no training points provided) ended up as association
with Prunus/Mixed Chaparral; and Calif.Sagebrush did well classified with Buckwheat.

For the final classification, each training example was cast into one of the following
classes based on its Group code, with Alliance or Association used as secondary
information for some points.  Table 1 shows the number of points per class in the final
training set.  These are the basic class names: see more detailed descriptions below. 

Table 1:  Frequency of training points with basic class name.

# POINTS     CLASS NAME
     29           c1    Chamise
     39           c2    Chamise-Ceanothus
     24           c3    Chamise-Manzanita / Mtn.Mahogany
     36           c4    Prunus / Mixed Chaparral
     40           c5    Buckwheat / Calif.Sage
     27           c6    Chamise-Black Sage
     44             g    Herbaceous / Grass
     59             n    Sparse / Non-veg
     62           w1    Oak / Pine
     12           w2    Buckeye
     66           w3    Riparian Mix
    -----
    437 total points

 

Classes were given a short character name, such as C1 or W1, for ease of use as a field in
the database.  The database also includes attribute for a numeric code for each class (see
the database metadata).  

When describing how points were grouped below, grouping success also depended on
carefully inspecting each point, sometimes multiple times, for how it looked as training
sample in the imagery.  Does it look like a good patch as training sample, and if getting
incorrectly classified, does that patch look confusingly like something else?  In the
following descriptions, when description refers to one type of veg point getting
“confused” with another, it is referring to the fact that cross-validation evaluation in
WEKA outputs a “Confusion Matrix” which shows which class any incorrectly classed
points fell in.  As an example of looking at the confusion matrix for the Prunus class:  28



points classified correctly; 4 points classified as W1-Woodland (which is not surprising,
as Prunus is somewhat of a woody shrub that could appear as tree-like in remote sensing
imagery and confusing to the program); 1 point as Buckeye; 1 point each as C2 and C3
(also not surprising, as these are more woody shrubs); 1 point tossed out by WEKA as an
“outlier”, for a total of 36; and no points confused with C1-Chamise.  Thus, overall for
this class, 80% accurate – not too bad.  See the final confusion matrix in the evaluation
section of this report, with further example of reading it.  Description of the classes
follows:

C1:  Chamise         
Although Chamise is a predominant species at Pinnacles, much of it is in the mixed
species following.

C2:  Chamise-Ceanothus
This is the Chamise-Buckbrush mix.  Included mostly mixed-species Adenostoma-
Ceanothus plots, with some Ceanothus plots.  We attempted classification of Ceanothus
alone, with poor results, because there were insufficient Ceanothus plots and/or they get
too confused by the program with Chamise, even if we toss out the large number of
mixed-species Chamise-Ceanothus plots.  So rather than omit all those as useful training
samples, we did not break out Ceanothus alone..

C3:  Chamise-Manzanita/Mtn.Mahogany
This is the Arctostaphylos-Adenostoma spectrum, with PINN Group definition that it did
or did not include significant amounts of Adenostoma (no single-species Arctostaphylos
points provided); along with Cercocarpus (Mountain Mahogany).  Mtn.Mahogany was a
difficult type to place.  We attempted to classify it on its own but with very poor result
(about 50% accurate), perhaps because not enough plots were provided.  When grouped
with a mixed Chamise class, it lowered accuracy significantly.  Rather than dropping all
these plots, it fit best with this class based on how it looks in the imagery and on the
accuracy results.

C4:  Prunus/Mixed Chaparral
This is the Holly-leaf Cherry class (“anything dominated by Prunus”), along with PINN's
“Mixed Chaparral”.  It includes both of those plot types along with the mixture Prunus-
Mixed Chaparral.  The program distinguished Prunus quite well right from the start.  We
first placed Mixed Chaparral plots with mixed chamise/sage/etc types (and tossed out the
mixed-species Group as confusing), with poor results:  “Mixed Chaparral” does not
belong with those -- this type is not a mixed Chamise sort of grouping.  PINN's definition
states it is separate from Prunus by not having significant amounts of Prunus, but on the
imagery it was obviously related in the landscape.  These are north-slope species “not
fitting in other Alliances”.  In the imagery, Mixed Chaparral appears very similar to
Prunus and obviously does not fit with Chamise types.  The Alliance is often Rhamnus.
Plots with Fraxinus (Foothill Ash) in Association are included in Prunus or Mixed
Chaparral Groups;  thus this class includes Foothill Ash.
Juniper.  This class also includes 2 points of the Juniperus Group:   2 which had a
Prunus Association.  Juniperus (Calif.Juniper – a scrub-type juniper) was difficult to



class, either due to insufficient points and/or its sometimes smaller size or scattered
growth pattern.  We were provided a small number of Juniper points and attempted to
classify it by itself without success – none of the points classified correctly, 0%.  In the
imagery the points appeared in patches of a scattered nature, or else our polygons simply
did not capture them well.  It was getting confused with both the Oak woodlands and with
other shrubs.  We tried lumping it in a Pine/Juniper class, lumping the conifers together,
but was also far too low an accuracy.  It was getting most confused with either Oaks or
Manzanita (not with Chamise), and as it is a scrub-type plant, we tried going ahead and
putting  it with the Manzanita class (not with a mixed Chamise/Scrub class).  But then
this class started getting confused with woodlands, which it wasn't at all before; and
likewise the Woodland class was now getting more confused with shrubs.  As training
data, that scheme brought both classes down.  In the end, for the best success, we split up
the Juniper points:  the 2 with Prunus Association were lumped here with Prunus class
(and this class then actually improved in accuracy percentage); 2 points with a Quercus
Association were lumped with the Oak woodlands class; and the other 7 points were
coded as unsuitable.        

C5:  Buckwheat/Calif. Sagebrush
This is Eriogonum (Buckwheat types) along with Artemisia californica.  In early rounds
of classification, Eriogonum had only moderate success (in the 40-60% accuracy range).
Cal.Sagebrush was very poor by itself (about 30%), and when included in a mixed
Chamise-Sage chaparral type of class, was not too accurate there either.  But the majority
of Cal.Sage plots are mixed Alliance with Eriogonum and PINN stated “could possibly go
in the Eriogonum Group”.  So when these two types were combined, accuracy for both
increased, as the Eriogonum was also no longer getting confused with some other class.
In fact, final classification accuracy for this class ended up very high at 94%.  
Lupinus.  This class also includes a single point labeled as Lupinus Group and having
Association with Eriogonum.  We tried to classify Lupine as a class of its own, but with
insufficient good training points, it was extremely poor with only a single point
classifying correctly.  Or else because even with high-res imagery, pixels that are 13 feet
square are not fine enough to capture scattered Lupine; but those polygons were also not
of such low-density to put them with the Sparse Group either.  For the one Lupine point
with Eriogonum Association, we lumped it here and coded as unsuitable all the others.    

C6:  Chamise-Black Sage
Includes Salvia (Black Sage) and mixed Salvia-Adenostoma plots.  We attempted to
classify Salvia alone (with only about 50% accuracy at first), but rather than toss out
those mixed-species plots, include them.
 
G:  Grassland/Herbaceous
This is the Grassland forbs/herbaceous Group.  It also includes the smallish number of
points for Heterotheca (Golden Aster) Group, (as sometimes Grassland does have an
Association with Heterotheca), if those plots did not look extremely sparse. 

N:  Sparse/Non-veg
This class includes the Sparse Group (<10% cover Alliances, Rock, Scree, Lichen, etc),



along with other plots that were too sparsely vegetated to classify with remote sensing as
other than Sparse.  These included some of the points for Baccharis salicifolia (Mule-fat),
Artemisia dracunculus (Wormwood), Mimulus (Sticky Monkeyflower), Selaginella
(Spikemoss), and Herbaceous Streambed.  Some of these with sufficient quantity of plots,
such as Selaginella and Mule-fat, we first attempted to classify on their own, but without
success.  When inspected, many of these points are stream channel types appearing very
sparse in the imagery.  We lumped those points in this Sparse class or else disqualified
the rest as unsuitable for the training set, as they are not good training data for other
classes either.  For Selaginella (Spikemoss), perhaps these little plants just grow too
sparsely on rocks or barren areas to distinguish on 4-meter pixels.  PINN's Group
definition stated for Mule-fat “some of these may get confused with the Sparse
Vegetation Group”.  Likewise, PINN definition states Herbaceous Streambed points
“could possibly be clumped into the Sparse Vegetation Group”.  We first attempted to
place Mule-fat with the Riparian class, where it lies ecologically, but it does not appear
visually similar in the imagery and confused the Riparian class.  Most Mule-fat plots
looked very sparse and unlike other Riparian.  Mimulus and Wormwood did not classify
well when lumped with a mixed Chamise/Scrub class either, as they are quite different.  
Early rounds tended to over-classify this Sparse class, at a range from 8 to 13% of total
area.  Points were then inspected for polygon sparsity.  Streambed types were often
obviously low-density when looking at the 4-meter pixels (very light or white color in the
imagery).  If not, they were coded as unsuitable and not utilized at all.  A substantial
portion of the total 154 points deemed unsuitable as training data were of the Sparse and
Selaginella Groups.  Some of these points might be included in the other
Grassland/Herbaceous class but are too dissimilar in appearance, and rather than try to
create a second and somewhat vague Herbaceous class, we coded them as unsuitable.
Sedum.  Sedum is one other Group not described elsewhere.  We first tried lumping it
here with the other low-density types.  But the small number of points were inspected and
found to be a total mish-mash of pixel variation, probably due to its growing location, and
all were disqualified for training data.
 
W1:  Oak/Pine
This is mixed Oak Woodlands and Gray Pine, and including Scrub Oak.  We attempted
over and over to break out Pine as a separate class.  But with insufficient number of
training points, or perhaps as it seems to often be interspersed with the Oaks (and in fact
some of the plots were attributed with Quercus Association), ended up lumping them
together.  And PINN's Group definition for Pine did state “this group is highly
questionable...”.  Likewise, we attempted to classify both Blue Oak and Coast Live Oak
on their own, but they were always confused with the other Oaks.  Perhaps with
additional training data or in a landscape of larger and less heterogenous stands, we could
separate out one or more of these species.  Remote sensing has trouble distinguishing one
Oak from another in this landscape.  Live Oak and Valley Oak (only a handful of points
provided for Valley Oak) are sometimes said to be Riparian types but plots were mostly
in mixed Woodlands and not located beside streams, and thus were not included in the
Riparian class.  For Scrub Oak, we tried classifying it either with the other Oaks or with
shrublands.  PINN's plant listings place it as shrubland ecologically, but from a remote
sensing standpoint, it had far better accuracy when lumped with the other Oaks.  On the
imagery, it looks far more like Quercus family than it does shrubland.  (In comparison,



the also scrub-like Juniper was a tougher call, as described above.)  This class did contain
2 points in its training set for Juniper with Oak Association, as described in discussion of
Juniper above in the Prunus class.    

W2:  Buckeye
This is the Aesculus Group.  It appeared to be growing on slopes where we hoped the
program could distinguish it, although with moderate success with limited training data.
It is probably the weakest of class results but in attempt to separate out as many tree
species as possible, we leave it as a separate class.  When we view the final classification
mapping and compare to previous PINN mapping, it does not look at all unreasonable.
Again, each one of these training plots was inspected multiple times over in hopes of
improvement.

W3:  Riparian Mix
This is a Woodland and mixed Riparian class containing the Groups Willow,
Cottonwood, Sycamore, Mixed Riparian Woodland, Rosa, Coyotebrush, Juncus, and
Seep/Spring.  Some of those only had small numbers of training plots and thus are
lumped together here.  We attempted to classify Willow separately but it was too
confused with the other Riparian points and less than 30% accurate.  Likewise, we
attempted to classify Rosa with Coyotebrush as a class of their own (Coyotebrush often
has Association with Rosa).  But they were getting confused with the Riparian points (or
to a lesser extent with other shrubs), with all points located in Riparian corridors.  They
are Riparian types at Pinnacles, as the PINN Plant Checklist states.  The couple plots for
Seep/Spring could possibly be located basically beneath trees, but visually they appear
like the surrounding trees and are included in this class.  PINN definition stated Juncus
plots “could possibly be clumped into the Grassland Group”, but when we tried that,
Juncus had better accuracy when clumped here with the Riparians.  On the imagery,
Juncus plots looked like Riparian vegetation.

CANOPY COVER CLASSES

One of the project goals besides land cover type was a classification of canopy cover.
Without no canopy data coming from the Releve field plots, the other method of
accomplishing this attribute was to use NDVI and produce a histogram from that
vegetation measure that is used to split canopy cover into low, medium, and high classes.
This is produced from Mean-NDVI value for each region.  The histogram (see Figure 3
below) did show 2 distinct points in the curve at which to break out 3 classes, so this was
preferable to splitting the classes simply on plus and minus one-standard deviation
breaks, for example.  The range of values for Mean-NDVI was 87.4 to 245.4, with an
overall mean of 170.0 and standard deviation 15.2.  Our 3 canopy classes were split at
these points:

  87.4 – 159.3  =  LOW CANOPY
159.4 – 181.6  =  MEDIUM
181.7 – 245.4  =  HIGH



This is a very basic measure of canopy coverage of the landscape.  As there is no ground-
reference data for canopy cover, there is no post-classification assessment of accuracy of
this layer.  Upon review, the class breaks could easily be modified:  using the Mean-
NDVI attribute, calculate the numeric canopycode attribute at different values.  For ease
of display in ArcGIS or other software, we also output a simpler canopy cover grid from
the canopycode attribute.

Figure 3:  NDVI Histogram for the 138,360 Regions.

  
    

REGION ATTRIBUTES SELECTED FOR CLASSIFICATION

A variety of attributes were tested for usefulness in developing accurate learning
algorithms for the WEKA data-mining classification software.  (See more about WEKA
below.)  Imagery statistics are output from eCognition and attributed to each segmented
region.  Proximity to water features is separately attached, with source input being a
streams file obtained from PINN that came from fine-scale digitizing of streams from
Ikonos imagery.  An ArcInfo program attaches all variables to each training point by
location.  Databases for the training set and for the output classification grid are input to
WEKA, and the best variables are determined in WEKA.  This selected set of variables is
specific to the Pinnacles area imagery and a somewhat different set might be chosen for a
different geographic area.  

The following list of 38 “best variables” were used in this classification.  For brief
definitions of each, see the metadata for the product database.  But you can see listed by
the numbers there are variables (attributed to each of the 138,360 regions) for each of the
PCA layers, NDVI values, and each of the spectral bands (as mean value, standard
deviation, ratio, and mean difference to neighbor); then “brightness” and “max
difference”, and then topographic attributes and the proximity to water attribute.
Description of the proximity to water variable follows below.   



Table 2:  Variables used in the classification.

              MEANPCA1
              STDDEVPCA1
              RATIOPCA1
              MEANDIFFPCA1
              MEANPCA2
              STDDEVPCA2
              RATIOPCA2
              MEANDIFFPCA2
              MEANPCA3
              STDDEVPCA3
              RATIOPCA3
              MEANDIFFPCA3
              MEANNDVI
              STDDEVNDVI
              RATIONDVI
              MEANDIFFNDVI
              MEAN1
              STDDEV1
              RATIO1
              MEANDIFF1
              MEAN2
              STDDEV2
              RATIO2
              MEANDIFF2
              MEAN3
              STDDEV3
              RATIO3
              MEANDIFF3
              MEAN4
              STDDEV4
              RATIO4
              MEANDIFF4
              BRIGHTNESS
              MAXDIFF
              DEMMEAN
              SLOPEMEAN
              ASPECTMEAN
              PROXWATER

These variables were checked utilizing several attribute fitness tests in WEKA. WEKA
has the capability of analyzing datasets with very large numbers of attributes, and this
allows us to include far more variables than classification programs which input just the
basic spectral band values, for example.  Initially, 4 other statistics variables from
eCognition were ouput for the “shape” variables Lengthwidth, Compactness, Shapeindex,
and Density.  These were also input for WEKA but then removed because they did not
add meaningful information for classification.  Inclusion of too many attributes can
hinder the classification results by adding extra confusion:  the number of correctly
classified points during cross-validation accuracy assessment (see below) can increase
with removal of weak attributes.     

WEKA analyzes variables with attribute evaluators such as CfsSubset, InfoGain, and
ChiSquared, and ranks subsets of attributes for merit.  We ran 6 different WEKA



attribute evaluators in 10-fold cross-validation evaluation mode, and took the results in
ensemble for removing those 4 shape variables, and for checking removal of any other
weakest variables.  For instance, multiple evaluators also agreed that certain variables
were weakest as far as providing useful information, such as the variables for Standard-
dev-Band2 or Mean-Diff-Neighbor-NDVI or Mean-Diff-Neighbor-Band4.  We tried
removal of as many as 10 weakest attributes but results showed accuracy dropped:  these
variables were indeed adding useful information and thus these final 38 variables were
kept. The most important measures for the overall classification, according to WEKA,
were based on mean pixel values; however we feel the topographic and water-proximity
variables are also quite useful for certain types, even if not in an overall index.  

DEM-elevation, Slope, and Aspect are derived from a 10-meter resolution elevation
dataset provided by PINN.  They were resampled to 4-meter cell size to match the
imagery and output grid.

The variable based on the water proximity measure was extremely useful in assigning
labels to groups that occur near water.  It is a focal sum of small radii from stream (8
meters, or about 26 feet from stream, thus ~ 50+ feet diameter stream zone).  It is
accomplished as a raster model by converting stream lines to raster cells and calculating
focalsum for desired radius, then attaching result to database grid using a zonalstats
function.  It sums pixels within that radius and when displayed atop imagery, the 2-cell
radius (8 meters), looks roughly the best.  It appears to capture riparian vegetation and
although probably misses a little and perhaps could be expanded to 3 cells, on the other
hand, it doesn't overdo it so that it would be less meaningful in WEKA as a good
variable.

We also assigned somewhat heavier “weighting” in WEKA to the variables for
topography and water proximity, and this increased accuracy results.  Believing that some
veg types are dependent on these and in hopes of capturing north-slope or riparian types
better, for example, we weighted Aspect and Water-Proximity heavier, and to a much
lesser extent, Elevation (DEM mean) and Slope value.

CLASSIFICATION

Description

Machine learning algorithms have proved to be very successful in classifying landcover
from remotely sensed data.  For example, MODIS data is classified with a decision tree,
Feature Analyst uses neural networks, and eCognition uses a single nearest neighbor
approach.  We employed the machine learning software WEKA for classification of the
data.  (WEKA is an acronym for Waikato Environment for Knowledge Analysis,
University of Waikato, New Zealand; Weka is also the name of a bird - a flightless New
Zealand rail.)  WEKA has been utilized most frequently in the business world for data-
mining techniques and classification of large amounts of data through pattern recognition,
but it can employ a great variety of learner algorithms useful to classification of our



spectral and topographic statistics, such as nearest neighbor and particularly decision
trees.  Decision trees predict class membership by recursively partitioning (“pruning”) a
data set into more homogeneous subsets.  Trees can be better suited than other
classification techniques in those situations where a cover type is represented by more
than one set of remote sensing characteristics – in our case, the 38 variables listed above
– and it is immediately apparent to the software which variables contribute to the
discrimination between classes.

The problem with most machine-learning algorithms is they cannot fully refine the
concept space of a complicated class. This means that each algorithm has a certain
amount of error associated with its prediction. There are many methods for mitigating this
error, the best of which revolve around combining various types of learning algorithms
into a committee or ensemble and allowing them to vote on their final prediction.  In this
manner, 7 learners each had a vote in labeling each region.  Another statistic output from
WEKA is a “percent confidence” that the region/polygon is indeed that type, and this
attribute is also attached to the final product grid.    

Thus, an ensemble of machine-learning algorithms was used to classify the segmented
regions. Varying types of base learners were used in the ensemble to induce variation in
their error spaces, which allows for more stable population votes.  For each region,
covertype label was assigned based on a majority vote of the ensemble's component
learners.  Our ensemble of 7 learners (described below) consisted of 4 decision-tree
algorithms (including one that is a “forest” of trees), 2 nearest-neighbor, and 1 rule-based.
Thus, it is weighted in those proportions (4-2-1) as each of those 7 has one vote in
labeling the regions.  The results of the ensemble are greatly improved over the results of
any single learner.     

Ensemble Components

WEKA J48: Implementation of Quinlan's C4.5 decision tree.  This learner is the “industry
workhorse for off-the-shelf machine learning” and typically produces accurate results, so
the ensemble includes one of these.  (Ross Quinlan, "C4.5: Programs for Machine
Learning", 1993, Morgan Kaufmann Publishers, San Mateo, CA.;  Witten, I. and Frank,
E., “Data Mining – Practical Machine Learning Tools and Techniques”, 2000, Morgan
Kaufmann Publishers.)      

WEKA REPTree: Learner that uses gain and variance to build a tree and then simplifies
the tree with reduced error pruning.  This method is quite different from the C4.5 so these
learners tend to error in differing areas of the input space.  One REPTree was present in
the ensemble.  (Witten, I. and Frank, E., “Data Mining – Practical Machine Learning
Tools and Techniques”, 2000, Morgan Kaufmann Publishers.)

WEKA RandomForest: Learner that constructs a forest of 10 random trees rather than a
single tree: very robust and increases our classification accuracy.  The learner grows 10
decision trees, each tree gives a classification, and the forest chooses the classification
having the most votes.  A fairly accurate classification could be produced using just one
RandomForest learner along with one KNN learner.  (Leo Breiman, "Random Forests",



Machine Learning 45 (1):5-32, October 2001; Witten, I. and Frank, E., “Data Mining –
Practical Machine Learning Tools and Techniques”, 2000, Morgan Kaufmann
Publishers.) 

WEKA DecisionStump: Learner which uses regression or classification (based on
entropy).  Decision stump is usually used in conjunction with a boosting algorithm, but in
our case also improved correctly-classified accuracy with our other learners, whereas
adding another boosting learner did not.  (Witten, I. and Frank, E., “Data Mining –
Practical Machine Learning Tools and Techniques”, 2000, Morgan Kaufmann
Publishers.)
 
WEKA KNN: Implementation of the k-nearest neighbor learning algorithm. This learner
assigns classification based on Euclidean distance, which produces fairly accurate
classifications.  As it relies on a distance-based metric, this method arrives at its solution
space in a completely different manner than the others, which helps to foster variation in
the error space.  Two KNN learners were present: as a good traditional technique for land
cover classification, we wanted KNN to cast two votes in the ensemble, not just one.  We
include one with k = 5 and one at k = 10.  (Aha, D., and D. Kibler, "Instance-based
learning algorithms", Machine Learning, 1991, vol.6, pp. 37-66;  Witten, I. and Frank, E.,
“Data Mining – Practical Machine Learning Tools and Techniques”, 2000, Morgan
Kaufmann Publishers.)

WEKA Decision Table: This rule-based learner was selected specifically for the variation
created by the manner in which it arrives at its solution space. Decision trees work from
the top down, seeking to split on the attribute that provides the most information gain at
each split. On the other hand, rule-based learners look at each class in turn and seek to
create a set of rules that cover every instance in that class.  (Kohavi R., "The Power of
Decision Tables", in Proceedings of European Conference on Machine Learning, 1995,
Springer-Verlab;  Witten, I. and Frank, E., “Data Mining – Practical Machine Learning
Tools and Techniques”, 2000, Morgan Kaufmann Publishers.)

Ensemble Evaluation, Classification Accuracy

The learning method discussed above was tested for fitness with WEKA's own
bootstrapping method of a stratified ten-fold cross-validation, which is the standard for
evaluating machine learning schemes.  Cross-validation methods hold out a percentage of
the training examples with the same distribution as the overall data and then test the
trained learner's fitness against the held out examples. At each fold a new ensemble of
learners are trained on nine-tenths of the data and evaluated on the remaining one-tenth.
In this method, the learning scheme is created, trained, and evaluated ten times so that the
learners are never evaluated on any portion of its own training set.  At the end of ten runs,
the results are averaged to produce a statistical evaluation of the scheme's accuracy
performance.  Each run utilizes the full ensemble of learners.

Overall accuracy as shown below was 84.9%, but if we do a doublecheck of our training
plots after the classification, we find that actually 89.5% of the points end up in a grid
region of that class (391 out of 437 total, with no outliers removed).  However, accuracy



of the program cannot be stated as 89.5% as that would be evaluating against its own
training set, which would be expected to be higher than evaluating against a randomly
held out 10%.  

We also checked output accuracy of the training samples using a common percentage-
split scheme, where a certain portion of points are held out once.  The difference in
accuracy from the 10-fold cross-validation method was not more than a few percentage
points, whether it was set to train on 2/3 of points and hold out 1/3 to test accuracy on
those remaining 1/3; or to train on half and test accuracy on half.   

The database attibute “percent confidence” is a measure output by the program itself for
each of the regions as to how confident the program is that each region is that particular
labeled covertype. 

If an independent set of ground-reference data became available, it could be used in post-
classification assessment of the thematic accuracy of this land cover product.

RESULTS

The results of the accuracy evaluation on our learning scheme are presented below.  As
stated in the description of the training data, the training set coverage consisted of 437
points and after WEKA removed outliers, classified on 392 instances.  

Displayed are the summary statistics, accuracy by class, and classification error matrix as
a confusion matrix table.  In the summary statistics we see the overall percentage
accuracy of nearly 85%, and Kappa statistic.  Kappa statistic is an indication of how
much better than random are the overall results – in this case, 83% better than random.  

Table 3:  WEKA Output Results, Confusion Matrix (continues next page).

Scheme:       weka.classifiers.meta.Vote -B 
Instances:    392
Test mode:    10-fold cross-validation

=== Classifier model (full training set) ===

Vote combines the probability distributions of these base learners:
weka.classifiers.trees.DecisionStump 
weka.classifiers.rules.DecisionTable -X 1 -S 5
weka.classifiers.trees.RandomForest -I 10 -K 0 -S 1
weka.classifiers.trees.J48 -C 0.25 -M 2
weka.classifiers.lazy.IBk -K 5 -W 0
weka.classifiers.lazy.IBk -K 10 -W 0
weka.classifiers.trees.REPTree -M 2 -V 0.0010 -N 3 -S 1 -L -1



=== Stratified cross-validation ===
=== Summary ===

Correctly Classified Instances     333            84.949  %
Incorrectly Classified Instances        59              15.051  %
Kappa statistic                      0.8306
Mean absolute error                      0.0614
Root mean squared error                  0.1541
Relative absolute error                 41.349  %
Root relative squared error             56.5666 %
Total Number of Instances              392     
=== Detailed Accuracy By Class ===
TP Rate   FP Rate   Precision   Recall  F-Measure   Class
  0.76      0.014      0.792     0.76      0.776    c1
  0.765     0.031      0.703     0.765     0.732    c2
  0.625     0.005      0.833     0.625     0.714    c3
  0.8       0.02       0.8       0.8       0.8      c4
  0.943     0.008      0.917     0.943     0.93     c5
  0.792     0.014      0.792     0.792     0.792    c6
  0.929     0          1         0.929     0.963    g
  1         0          1         1         1        n
  0.808     0.038      0.764     0.808     0.785    w1
  0.444     0.005      0.667     0.444     0.533    w2
  0.885     0.033      0.831     0.885     0.857    w3

=== Confusion Matrix ===
  a  b  c  d  e  f  g  h  i  j  k   <-- classified as
 19  3  0  0  1  1  0  0  0  0  1    25  a = c1
  2 26  1  1  0  1  0  0  3  0  0    34  b = c2
  1  3 10  1  0  1  0  0  0  0  0    16  c = c3
  0  1  1 28  0  0  0  0  4  1  0    35  d = c4
  1  0  0  0 33  1  0  0  0  0  0    35  e = c5
  1  3  0  0  1 19  0  0  0  0  0    24  f = c6
  0  0  0  0  1  0 39  0  0  0  2    42  g = g
  0  0  0  0  0  0  0 59  0  0  0    59  h = n
  0  0  0  2  0  0  0  0 42  1  7    52  i = w1
  0  0  0  3  0  0  0  0  1  4  1     9  j = w2
  0  1  0  0  0  1  0  0  5  0 54    61  k = w3

 24 37 12 35 36 24 39 59 55  6 65   392  TOTAL

 
The first column for “TP Rate” above lists “Producer Accuracy” for each of the classes:
the number of correctly classified points (moving the decimal place gives you a
percentage).  The column for “Precision” lists “User Accuracy”.  

For an example on reading the confusion matrix, reading the last horizontal line for Class
W3 (Riparian), 54 points out of 61 total Riparian points were classified correctly (88.5%
Producer Accuracy).  Out of all the instances,  65 points were classified as Riparian



(totals across the bottom of matrix), of which 54 are correct (83.1% User Accuracy).
Also note that from Table 1, the training set included 66 points for Riparian, but 5 were
removed during pre-processing by WEKA as outliers, leaving that total of 61 points to
train the classification.  

As another example, note that one class (N – Nonveg/Sparse) had 100% accuracy.  All 59
training plots classified correctly, and no plots from other classes were mistakenly
classified as Nonveg/Sparse.    

Results for a simple 4-Class Lifeform

We also present the results for a classification of what is basically lifeform, but here
labeled as the same four basic types – C,G,N,W – from the 11-class scheme (same
lettering scheme).  Not quite true lifeform, as in Tree-Shrub-Grass-Nonveg.  W is mostly
woodlands but includes some riparian shrubs; N is mostly non-vegetated but includes
some “Sparse” types; and C contains the large area covered by Buckwheat, which might
be more of an herbaceous life form, but PINN plant lists place it with the Chaparral.
These four classes then are Chaparral, Grassland/Herbaceous, Non-veg/Sparse, and
Woodlands/Riparian.  

This output grid is not simply a recombining of the 11-Class grid, although there would
be nothing wrong with that.  It is a full separate classification for just 4 classes.  It was
done for comparison to see how well the program could distinguish between the simplest
set of classes.  Input is the same set of 437 training plots, with points relabeled based on
the C,G,N,W scheme above.  In this case, you see that out of the 437 points, WEKA
removed as outliers only 13 and classified on 424 instances.  

Table 4:  4-class covertype results, displaying similar WEKA output tables and confusion
matrix as above (but without the highlighting):

=== Stratified cross-validation ===
=== Summary ===
Correctly Classified Instances         403               95.0472 %
Incorrectly Classified Instances        21                4.9528 %
Kappa statistic                          0.9247
Mean absolute error                      0.0546
Root mean squared error                  0.1315
Relative absolute error                 20.5033 %
Root relative squared error             36.0905 %
Total Number of Instances              424     



=== Detailed Accuracy By Class ===
TP Rate   FP Rate   Precision   Recall  F-Measure   Class
  0.969     0.057      0.935     0.969     0.952    c
  0.811     0          1         0.811     0.896    g
  1         0          1         1         1        n
  0.94      0.028      0.94      0.94      0.94     w
  
=== Confusion Matrix ===
   a   b   c   d    <-- classified as
 188   0   0   6      a = c
   5  30   0   2      b = g
   0   0  59   0      c = n
   8   0   0 126      d = w
   

The overall accuracy is over 95%.  Grassland is the lowest at 81%, but it's not very
surprising that 5 of the points might get confused with Chaparral (see the Confusion
Matrix), as perhaps some of the plots were representing polygons that are a mixture.

In reading the Confusion Matrix, again note that N-Nonveg/Sparse classified at 100%.
Chaparral and Woodland/Riparian classified at 97 and 94%, with primarily just a few
points confused with each other, not surprisingly.   

Area Statistics for Both Classifications

Table 5:  Classification by Percent Area.
                                     
                                      WITHIN   FULL
                                   PINNACLES   BUFFER AREA
                                     
   C1  Chamise                          15.4   10.6
   C2  Chamise-Ceanothus                20.9   15.0
   C3  Chamise-Manzanita/Mtn.Mahogany    5.6    3.7
   C4  Prunus/Mixed Chaparral            4.7    2.9
   C5  Buckwheat/Calif.Sage             14.6   17.9
   C6  Chamise-Black Sage               18.5   14.5

   W1  Oak/Pine                          8.6    9.9
   W2  Buckeye                           0.2    0.2
   W3  Riparian Mix                      2.0    2.4

    G  Grassland/Herbaceous              5.8   17.4

    N  Sparse/Non-veg                    3.7    5.4
                                       -----   ----
                                       100.0   99.9

Shown is area by percent of each class within Pinnacles N.M., and area for the full
buffered area for grid/database being delivered, which is approximately twice as large an
area, as noted in Introduction.  Area was calculated for Pinnacles by  creating a second



grid with a “mask” within the full area.

Note that there is a far larger proportion of Grassland outside of Pinnacles: pastures that
can be seen in the imagery.  Also perhaps notable, the other Chaparral types outside of
Pinnacles then drop in proportion, except for Buckwheat/Cal.Sage, perhaps as it gets
mixed in with pasture lands.

As a subtotal, adding the 4 major types within Pinnacles, C-W-G-N, from Table 5 above,
for the 11-Class grid:

    Chamise                 = 79.8%
    Woodland/Riparian       = 10.7
    Grassland/Herbaceous    =  5.8
    Non-veg/Sparse          =  3.7
                             -----
                             100.0   

These amounts jibe very well with earlier estimates from PINN of its land cover.
Differences could also be explained by the fact that some polygons with a training plot in
them are not the best polygon examples and might be mixes of veg type and density.

Percent amounts from the 4-Class grid (which was estimated at 95% accurate):

Table 6:  Area by Percent for 4-type Classification.
                          
                                      WITHIN   FULL
                                   PINNACLES   BUFFER AREA
                                     
    C  Chaparral                        84.6   75.6
 
    W  Woodland/Riparian                10.0   12.2
   
    G  Grassland/Herbaceous              1.9    5.8

    N  Sparse/Non-veg                    3.5    6.4
                                       -----  -----
                                       100.0  100.0

These amounts differ somewhat from the subtotals above.  As described earlier, these
were two separate classifications.  This one is stated 95% accurate, and it should be easier
to distinguish just these 4 classes from each other with accuracy.  Looking at the
classified grids atop the imagery, we like the 11-class grid, and perhaps the actual
percentage amounts on the ground are in between these 2 sets.    
     
Discussion

It was evident when looking at the imagery that many patches are mixed species, not
always nice pure stands of shrubs or trees.  Of the 11 classes, Buckeye shows the weakest



result but was originally not thought to be computer classified at all and instead be
manually mapped; and as it was classified from a small number of training plots, it could
be more successful with additional training.  For its small number of points, Buckeye
shows confusion (see the Confusion Matrix) with the tree types and especially with
Prunus class, which is not surprising for its habitat.  Likewise, Prunus shows confusion
with the Woodland types.

Woodland and Riparian classes show some confusion with each other, which is not
surprising as they are both primarily tree cover.  The Chaparral classes other than Prunus
show confusion almost solely only with each other, which is also not surprising, as the
training data and habitat are often a Chamise mixture and look similar on the imagery.

Overall accuracy from initial classifications improved 20-25% and for individual classes
as much as 40-50% for some of the weaker ones.  Additional ground-truth data for some
species could potentially increase accuracy further.  But in particular, it could allow for
breaking out additional classes, or different grouping schemes of the Groups or Alliance
species. 

Accuracy of the classification might be improved if each of the specific points which
ended up classifying incorrectly, as seen in the confusion matrix, were analyzed again.
But if looking at these again simply on a visual basis, there is no guarantee that they can
positively be judged for whether to delete or move these points in comparison to the other
training data.  Some vegetation types are simply difficult to tell apart via satellite view.
In addition, sometimes a final product can turn out stronger if not too many outliers are
removed and some degree of variation in training plots are kept. 

Overall accuracy for this number of classes is quite good despite the fact that the ground
truth data was not collected while viewing the segmented polygons.  The big advantage to
this method over photo interpretation is the efficiency and repeatability of the computer
model.  One could supplement the existing ground truth data, or substitute updated
imagery, and run the model again relatively quickly for the same area or a slightly
different area.  


