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Abstract. A fundamental challenge to estimating population size with mark–recapture
methods is heterogeneous capture probabilities and subsequent bias of population estimates.
Confronting this problem usually requires substantial sampling effort that can be difficult to
achieve for some species, such as carnivores. We developed a methodology that uses two data
sources to deal with heterogeneity and applied this to DNA mark–recapture data from grizzly
bears (Ursus arctos). We improved population estimates by incorporating additional DNA
‘‘captures’’ of grizzly bears obtained by collecting hair from unbaited bear rub trees
concurrently with baited, grid-based, hair snag sampling. We consider a Lincoln-Petersen
estimator with hair snag captures as the initial session and rub tree captures as the recapture
session and develop an estimator in program MARK that treats hair snag and rub tree
samples as successive sessions. Using empirical data from a large-scale project in the greater
Glacier National Park, Montana, USA, area and simulation modeling we evaluate these
methods and compare the results to hair-snag-only estimates. Empirical results indicate that,
compared with hair-snag-only data, the joint hair-snag–rub-tree methods produce similar but
more precise estimates if capture and recapture rates are reasonably high for both methods.
Simulation results suggest that estimators are potentially affected by correlation of capture
probabilities between sample types in the presence of heterogeneity. Overall, closed population
Huggins-Pledger estimators showed the highest precision and were most robust to sparse data,
heterogeneity, and capture probability correlation among sampling types. Results also
indicate that these estimators can be used when a segment of the population has zero capture
probability for one of the methods. We propose that this general methodology may be useful
for other species in which mark–recapture data are available from multiple sources.

Key words: bear rub trees; DNA; Glacier National Park, Montana, USA; grizzly bears; hair sampling;
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INTRODUCTION

One of the fundamental challenges to estimating

population size using mark–recapture methodology is

heterogeneous capture probabilities of animals within

the sampled population (Otis et al. 1978, Seber 1982)

and subsequent bias in estimates of population size and

associated variance (Seber 1982). Various mark–recap-

ture estimators have been developed that are robust to

heterogeneity (Williams et al. 2002); however, these

often have stringent sampling requirements such as the

need to conduct many (�5) sequential sampling sessions

(Otis et al. 1978). In addition, estimates may still be

biased if inappropriate models are selected when capture

probabilities for a segment of the population approach

zero (Boulanger et al. 2004b). One way to confront

heterogeneity is to use multiple methods to sample the

population, thereby minimizing the impact of heteroge-

neity caused by any one method (Williams et al. 2002).

Simultaneous application of multiple sampling methods

also has potential to reduce sampling costs by increasing

fieldwork efficiency, especially for studies of large

carnivores and other species with logistically challenging

sampling designs.

In this paper we consider study designs for estimating

grizzly bear population size using multiple DNA

sampling methods. Hair snag DNA-based mark–recap-

ture methods have been used to estimate grizzly bear

(Ursus arctos) and black bear (U. americanus) popula-

tions at unprecedented scales and levels of precision and

in previously inaccessible geographic regions in British

Columbia, Alberta, and the United States since 1996
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(Woods et al. 1999, Boulanger et al. 2002, Boersen et al.

2003, Triant et al. 2004, Mowat et al. 2005). However,

successful grid-based hair snag sampling must be of

sufficient intensity to produce high recapture rates, is

expensive to conduct, and can result in estimates with

low levels of precision in large-scale projects (Boulanger

et al. 2002).

We became interested in collecting hair from naturally

occurring bear rub trees as a complementary method of

sampling bear populations based on the prevalence of

rub trees and hair encountered during bear sign

inventories in Glacier National Park (GNP) 1984–1997

(Kendall et al. 1992). Rubbing is a natural behavior of

grizzly and black bears range-wide (Burst and Pelton

1983, Green and Mattson 2003) (see Plate 1). As such,

bear rub surveys may target a different segment of the

population compared to methods that use attractants

and may avoid behavioral responses to baited sites or

aversion due to previous live capture. Collecting hair

from bear rubs found on trails is inexpensive relative to

implementing a hair snag grid, and efficiencies can be

realized by field crews collecting from rubs while en

route to hair snags. During pilot surveys in 1997, we

found that placing short pieces of barbed wire on the rub

surface improved hair collection from rub trees and did

not appear to discourage rubbing. As a result, we

collected hair concurrently from barbed wire on

unbaited bear rubs and baited hair snag corrals during

a study to estimate the density of the grizzly bear

population in the greater Glacier National Park area

(Greater Glacier Area, GGA).

Heterogeneity is present in grizzly bear mark–recap-

ture data due to factors that cannot be identified from

DNA, such as bear age and reproductive status. Given

this, we explore strategies to combine hair snag and rub

tree data to improve DNA mark–recapture population

estimates for grizzly bears. First, we use the Lincoln-

Petersen (LP; Lincoln 1930) estimator with the number

of individuals identified by hair snag sampling as one

session and individuals identified by rub tree sampling as

the other session. The LP estimator is potentially robust

(unbiased) to capture probability heterogeneity inherent

to each form of capture as long as capture probabilities

from the two capture types are independent (Williams et

al. 2002). In fact, unbiased estimates are possible even if

the capture probabilities of some bears are zero for one

capture method as long as all capture probabilities are

above zero for the other form of capture (Seber 1982).

However, if capture probabilities are not independent it

is likely the LP estimator will be biased. In addition,

because data is pooled for each method, the LP

estimator discards information on individual heteroge-

neity associated with each sampling method. Therefore,

we also investigated the Huggins (Huggins 1991) closed

model estimators in program MARK (White and

Burnham 1999) to assess potential gains in robustness

and precision when session-specific models are used.

One potential advantage of multiple sampling meth-

ods is that the robustness to capture probability
variation potentially reduces the need to conduct

multiple sessions of sampling (to allow modeling of
capture probability variation). Much of the cost of

DNA sampling is due to the need to access remote sites
in synchronized sessions through the use of helicopters
or large ground crews. The use of joint modeling could

result in an overall reduction of field efforts and
expenses. The conditional form of the LP estimator

and the closed MARK models are increasingly complex
forms of a general mark–recapture closed model

estimator. For example, the LP model is analogous to
a two-session closed model estimator with time-varying

capture probabilities (Otis et al. 1978, Huggins 1991).
The fundamental question becomes whether the gains in

robustness by session-specific sampling (and increasing
model complexity) justify the additional expense when

joint methods are used. We explored robustness of
methods using Monte Carlo simulation and comparison

of joint hair-snag–rub-tree methods with hair-snag-only
methods.

We suggest that the general method of incorporating
multiple data sources to estimate population size could

be applied to other species. For example, species are
often identified during mark–recapture estimation proj-
ects by genotyping scats, live capture, or incidental

sightings. We argue that this approach may enhance
precision and accuracy of estimates and simplify field

sampling for these types of projects as well.
The data used in this paper were collected as part of

the Greater Glacier Area Bear DNA Project, a multi-
year, multi-agency effort led by the U.S. Geological

Survey. Because some models have been simplified in
order to focus on modeling issues, the estimates of

population size presented in this paper differ slightly
from final estimates for this area generated using more

complex models (K. C. Kendall, unpublished manu-
script).

METHODS

Study area

Our study encompassed two nested study areas

straddling the Continental Divide in northwestern
Montana, USA (Fig. 1). The 7993-km2 Greater Glacier

Area (GGA) is bounded on the north by the United
States–Canada border and on the west by Highways 2

and 93. The eastern, southern, and western flanks
include parts of the Blackfeet Indian Reservation, the

Lewis and Clark National Forest, and the Flathead and
Kootenai National Forests, respectively. The Glacier

National Park (GNP) study area covered the center 50%

of the GGA.

Field methods

Two bear hair sampling methods were employed
simultaneously: hair snags and rub trees (Fig. 1).

Barbed-wire hair snags baited with a scent lure were
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distributed systematically on an 8 3 8 km grid

throughout the GGA. These were deployed in each of

126 grid cells during five 14-d sessions beginning in mid-

May, following protocols similar to Woods et al. (1999).

Hair snags were moved at least 1 km within cells

between sessions to decrease the likelihood of a declining

trap response over time. To collect hair from rub trees,

we surveyed hiking trails in GNP (1998, 2000) and, at a

lower intensity, surrounding forestlands (2000). Barbed

wire (but no attractant) was attached to the rub trees to

facilitate hair collection. All hair was removed from the

barbed wire during sampling to ensure that hair found

during subsequent visits had been deposited since the

last survey. Rub trees were checked at less frequent and

regular intervals than hair snags. Session dates for rub

tree surveys were based upon the 14-d interval (corre-

sponding to hair snag sessions) in which samples were

collected.

Genetic methods

Species, individual identity, and gender of bears were

determined through analysis of DNA extracted from the

hair samples (Woods et al. 1999). Six nuclear microsat-

ellite loci were used to define unique individuals: G1A,

G10B, G10C, G10L, G10M, and G10P (Paetkau et al.

1995). Up to 10 additional loci were analyzed for at least

one sample from each individual. Of the 290 individual

grizzly bears used in this analysis, 97% had �9-locus
genotypes, and, when all available loci were considered,

all individual bears differed at four or more loci. Gender

was initially assigned using the SRY marker (Taberlet et

al. 1993) and independently verified with the amelogenin

marker (Ennis and Gallagher 1994). Exhaustive efforts

to minimize errors were undertaken following the

procedures of Paetkau (2003), Roon et al. (2005), Waits

and Paetkau (2005), and K. C. Kendall (unpublished

manuscript).

Data analysis

Capture histories for individual bears were used in

mark–recapture models to estimate population size. We

compared population estimates from models using hair-

snag (HS)-only data and joint hair-snag–rub-tree

(HSRT) data. We also calculated rub-tree (RT)-only

estimates for GNP to address the possibility of using rub

trees as a stand-alone sampling method. For the HSRT

FIG. 1. Location of bear hair snags distributed within an 8 3 8 km grid and bear rub trees surveyed in the nested Glacier
National Park (GNP) and Greater Glacier (GGA) study areas, Montana, USA, 1998 and 2000.

April 2008 579ESTIMATING GRIZZLY BEAR POPULATION SIZE



data, we used the bias-corrected LP estimator (Lincoln

1930, Seber 1982) with HS captures pooled as the initial

session (n1) and RT captures pooled as the second

session (n2). Bears identified using both methods

represented marked bears in the second sample (m2).

We also used the Huggins-Pledger (HUPL) closed

mixture models (Huggins 1991, Pledger 2000) in

program MARK for HSRT and HS-only data. For

the HSRT-HUPL model, we entered HS session data

followed by RT session data. For example, for the 1998

and 2000 GNP data, sessions 1–5 were from hair snags

and sessions 6–11 were from RT surveys. This approach

allowed consideration of sampling type using one

encounter history entry per animal and is theoretically

acceptable under the assumption of independence of HS

and RT samples. For our application, the order of

sessions only affects estimates if a behavioral response is

present in the data. We assumed behavioral response

was minimal in our data because hair snag sites were

moved between sessions (Boulanger et al. 2006) and

because use of rub trees by bears is a natural behavior.

The sex of each bear was entered as a group covariate.

Differences in capture probabilities for each sampling

type were modeled as time variation. For example, a

heterogeneity model with sex-specific capture probabil-

ities for hair snag and rub tree sampling,Mh(sex3 type),

was formulated by constraining (using the design matrix

in MARK) capture probabilities to be unique for

sessions 1–5 and 6–11 for both males and females.

Heterogeneity that could not be explained by identifiable

factors (e.g., sex) was modeled using a mixture model

approach. Our Mh mixture models use a mixture of two

capture probability distributions to model heterogeneity

of a single capture probability distribution (Pledger

2000). The parameters are the probability that a given

capture probability comes from the first distribution (p),
the mean capture probability of the first distribution

(h1), and the mean capture probability of the second

distribution (h2). From Carothers (1973), the mean

capture probability (h̄) (based on two-mixture distribu-

tions) and coefficient of variation for the mean capture

probability (CV(h̄)) were estimated as h̄ ¼ p1h1 þ (1 �
p1)h2 and CV(h̄) ¼ [

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p1ð1� p1Þ
p

jh1 � h2j]/h̄. A higher

CV(h̄) indicated a greater degree of heterogeneity in

capture probabilities. Hair-snag- or rub-tree-specific

mixture capture probabilities (hi) were modeled as

additive b terms with a logit link function. All mixture

HSRT models assumed a common probability of

mixture for HS and RT data types. By constraining

the parameter index matrices in MARK we also

introduced models that used mixtures for only one of

the data types. Population estimates were obtained as a

derived parameter from the Huggins estimator. We

calculated log-based confidence intervals that incorpo-

rate the minimum number of bears known to be alive in

the study area for both the Huggins and LP estimators

(White et al. 2002). The Pledger (2000) estimator in

MARK was updated in May 2007; we used this version

for all analyses and simulations.

The number of rub trees sampled and the number of

days between successive rub tree hair collections for each

tree varied for each sampling session. We used a rub tree

effort (RTE) temporal covariate to model the time

variation caused by varying rub tree sampling intensity

in conjunction with mixture models to confront poten-

tial heterogeneity bias. Rub tree effort was the

cumulative number of days between successive hair

collections for all trees sampled per session.

Relative support of models was evaluated using the

sample-size-adjusted Akaike Information Criterion

(AICc) index of model fit. The model with the lowest

AICc score was considered the model that best balanced

bias and precision (Burnham and Anderson 1998).

Changes in AICc (DAICc) values were used to evaluate

the fit of models when AICc scores were close. We

deemed any model with a DAICc score of less than two

worthy of consideration. The AICc weights (wi) were

calculated to determine the proportional support for

each of the candidate models. Parameter estimates were

averaged based on their support by the data as indexed

by AICc weights to further account for model selection

uncertainty (Burnham and Anderson 1998).

Simulations

We used Monte Carlo simulation to evaluate the

effects of several forms of heterogeneity variation on the

HS and HSRT estimators. We considered two scenarios.

In the first, all bears had capture probabilities greater

than zero and we simulated different levels of mean

capture probability, as well as varying correlation of HS

and RT capture probabilities. In the second scenario,

33% of the bears had capture probabilities of zero in the

RT sample (which was not correlated with HS capture

probability). This corresponded to the GGA RT survey

effort, in which ;40% of the study area (with lower bear

density) was not sampled with rub trees.

We used a bivariate normal distribution model to

generate correlated capture probabilities. First, the

desired mean capture probability (p) and associated

variance (Var(p)) for hair snags (X ) was transformed to

the logit scale (Xp) using the equations Xp¼ ln(p/(1� p))

and rx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VarðpÞ=p2ð1� pÞ2
p

(Burnham et al. 1987).

Then a normal random variate was generated for each

simulated bear using the formula X 0
p ¼XpþrxZ1, where

rx was the standard deviation of Xp and Z1 was a

standardized random normal variable. A correlated

variate for rub trees (Y 0
p) with the same mean and

standard deviation as Xp was then generated for the

simulated bear using the formula Y 0
p ¼ Xp þ rrxZ1 þ

rx

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2
p

Z2 where r was the correlation coefficient and

Z2 was a standardized random normal variable inde-

pendent of Z1 (Brown and Rothery 1993). Finally, X 0
p

and Y 0
p were logistic transformed (pX0 ¼ eX 0

p /(1þ eX 0
p )) to

ensure that probabilities ranged between 0 and 1. We

generated paired capture probabilities for hair snags and
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rub trees with varying mean levels, correlations, and

dispersion (heterogeneity) by varying p, r, and rx.
Dispersion was indexed by the coefficient of variation of

px (CVp¼Var(p)0.5/p), which scaled dispersion for mean
px levels. Using the normal distribution to simulate

heterogeneity is simplistic because it assumes a unimodal
distribution of capture probabilities; using a more
complex multimodal model would obscure the effects

of correlated capture probabilities. In addition, our
simulations assumed equal mean capture probabilities

between HS and RT sampling and no temporal
variation in capture probabilities. Again, this simplifi-

cation allowed us to directly evaluate the relationships
between p, r, and rx. Unequal mean capture probabil-

ities between HS and RT are similar to temporal
variation in capture probabilities that can be modeled

in MARK to minimize bias. In addition, the LP
estimator has been shown to be robust to temporal

variation in other studies (Menkens and Anderson
1988).

We simulated a population of 200 bears with mean per-
session capture probabilities (p) of 0.1 and 0.2 and five

sessions of concurrent HS and RT sampling. The
population level of 200 was selected as an intermediate

value between sex-specific and entire population esti-
mates in the Greater Glacier Area. The levels of p
corresponded to the range of capture probabilities

observed in our study. Per-session capture probabilities
of 0.1 and 0.2 equate to pooled LP capture probabilities

(pLP) of 0.41 and 0.67, respectively (using the formula pLP
¼ 1 � (1 � pj)

s, where s is the number of sessions (five).

Using the pLP formula with 10 sample sessions, the
overall mean proportion of the population sampled was

0.65 and 0.89, with per-session capture probabilities of
0.1 and 0.2. We simulated correlations of hair snag and

RT capture probabilities ranging from�1 to 1 and levels
of CVp of 0.15 and 0.4. These CVp levels resulted in

approximately normal distributions of capture probabil-
ities with ranges of 0.06–0.17 and 0.02–0.29, respectively

(when p¼0.1). As discussed later, simulations with CVp¼
0.4 best represents grizzly bear DNA mark–recapture

data, whereas the CVp of 0.1 demonstrate the effect of
reduced heterogeneity on estimator performance. The
following models were tested in simulations: the HSRT-

LP estimator, a HS-only two-point mixture model
[Mh2 p(.) h1,2(.)], a model with HS- and RT-specific

capture probabilities [Mh p(type)], and a two-point
mixture model with HS- and RT-specific capture

probability distributions [Mh2 p(.) h1,2(type)].

RESULTS

Data summary

Hair snagging was conducted mid-May to early

August with 626 hair corrals deployed in 1998 and 633
deployed in 2000. Rub tree surveys were conducted from
May until October with 602 and 828 rub trees sampled

in 1998 and 2000, respectively. Rub tree survey effort
was 3554 6 3863 rub tree days per session (mean 6 SD;

n¼9 sessions) in 1998 and 8559 6 3888 rub tree days per

session (n ¼ 12 sessions) in 2000. Effort was lower in

1998 due to funding levels and addition of surveyed trees

over the course of the 1998 season. And, while the

distribution of trees was broadly comparable across

years, areas surveyed were limited during early and late

sessions. Rub tree surveys continued after hair snag

sampling was completed for an additional four and six

14-d sampling periods in 1998 and 2000, respectively.

The mean interval between visits to rub trees was 26.8 6

19.5 d (n¼ 1193) in 1998 and 19.2 6 13.4 d (n¼ 4344) in

2000.

Summary statistics from the LP model were calculated

for the GNP study area where both RT and HS

sampling occurred, as well as for the GGA study area,

which contained large areas where no rub trees were

sampled (Table 1, Fig. 1). Primarily due to lower rub

tree sampling effort, relatively few individuals were

detected in both HS and RT surveys (i.e., m2) in 1998

leading to lower RT capture probabilities for both sexes

than in 2000 (Table 1). The LP estimates suggest that

female capture probabilities were higher for HS than for

RT in both study areas in both years. Male HS capture

probabilities were higher in 2000 than in 1998 in both

study areas.

Model selection

Model selection results were similar for the GGA and

GNP study areas. However, because sample sizes were

larger for both HS and RT samples in the GGA area

(Table 1), we focused our analysis on this area. Model

selection results for the GNP area are provided in

Appendices A and B.

Greater Glacier Area: hair-snag-only data

Model selection results for the HS data suggested that

capture probabilities varied by sex (Table 2). In

addition, there were linear trends in capture probabil-

ities for females in 1998 and for both sexes in 2000

(Table 2, Fig. 2). Mean capture probabilities were low

(i.e., model 1, 1998, males p̂ ¼ 0.090, females p̂ ¼ 0.135;

2000, males p̂ ¼ 0.138, females p̂ ¼ 0.097). Undefined

heterogeneity was not detected as indicated by low

support of mixture models; however, low capture

probabilities may have prevented its detection.

Greater Glacier Area: joint hair-snag–rub-tree data

Low numbers of female captures in early and late

sessions for rub trees caused convergence issues with

HUPL estimators. As a result, RT sessions 1–3 and 8–10

were pooled into two sessions resulting in six sessions for

the 1998 RT data set. Sessions 10–12 were pooled for the

2000 data set, resulting in 10 RT sampling occasions.

Model selection results for the 1998 HSRT data

suggested that capture probability varied by sex and

changed linearly for HS data (Table 3, models 1–2). Rub

tree capture probability varied by sex, changed linearly

for males and females, and varied with RTE. Unlike HS
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data, undefined heterogeneity existed in the RT data set

as shown by support for mixture models. For 2000,

capture probabilities also varied by sex, type of capture,

and RTE in addition to linear trends in capture

probabilities for each sex and sample type. In contrast

to 1998, mixture models that assumed undefined

heterogeneity in both data types (models 1 and 2) were

more supported than a model that assumed undefined

heterogeneity only in the RT data (model 3). We

presume this was a result of increased power to detect

more complex forms of heterogeneity due to higher

sample sizes. Various forms of the joint mixture model

were also supported by the data (models 4 and 5). In

both data sets, models that assumed no undefined

heterogeneity in either data type were not supported

(1998, model 6; 2000, model 11).

TABLE 1. Lincoln-Petersen (LP) summary statistics for joint hair snag (HS) and rub tree (RT)
sampling.

Area, year,
and sex

No. captures LP estimates of capture probability

HS (n1) RT (n2) HSRT (m2) HS (m2/n2) RT (m2/n1)

GGA, 1998

Male 56 37 15 0.41 0.27
Female 91 25 16 0.64 0.18

GGA, 2000

Male 70 81 43 0.53 0.61
Female 85 54 25 0.46 0.29

GNP, 1998

Male 40 14 3 0.21 0.08
Female 73 13 7 0.54 0.10

GNP, 2000

Male 46 65 30 0.46 0.65
Female 61 25 10 0.40 0.16

Notes: The numbers of unique bears identified in HS (n1) or RT (n2) samples and identified in
both samples (HSRT; m2) are used to provide estimates of LP capture probability. The study
encompassed two nested study areas straddling the Continental Divide in northwestern Montana,
USA. The Greater Glacier Area (GGA) statistics are based on five sessions of HS and 9–12 sessions
of RT sampling in the GGA. The Glacier National Park (GNP, nested in the GGA) statistics are
based only on the five concurrent sessions of HS and RT sampling in the GNP area.

TABLE 2. Model selection results for hair-snag-only (HS-only) data in the 1998 and 2000 Greater
Glacier Area (GGA).

No. Model AICc DAICc wi K Deviance

1998

1 p(sex þ TF) 686.7 0.00 0.60 3 680.7
2 p(sex 3 T ) 688.7 2.01 0.22 4 680.7
3 p(sex 3 t) 691.0 4.30 0.07 10 670.7
4 p(.) h1,2(þTF) 691.6 4.92 0.05 6 679.5
5 p(.) 693.0 6.30 0.03 5 682.9
6 p(.) h1,2(sex 3 T ) 693.7 6.95 0.02 7 679.5
7 p(sex) h1,2(sex 3 T ) 695.3 8.60 0.01 8 679.1
8 p(sex þ t) 695.6 8.94 0.01 7 681.5

2000

1 p(sex 3 T ) 744.1 0.00 0.26 4 736.1
2 p(.) 744.5 0.43 0.21 1 742.5
3 p(sex 3 TF) 744.6 0.51 0.20 3 738.6
4 p(sex) 745.0 0.87 0.17 2 741.0
5 p(sex 3 t) 747.4 3.29 0.05 10 727.1
6 p(t) 747.8 3.69 0.04 5 737.7
7 p(.) h1,2(.) 748.1 3.98 0.04 3 742.1
8 p(sex þ t) 748.2 4.14 0.03 6 736.1
9 p(sex) h1,2(sex þ TF) 749.9 5.76 0.01 6 737.8

Notes: A ‘‘þ’’ refers to an additive term [i.e., p(sexþT ) ffi bintþ bsexþT, where ‘‘int’’ stands for
‘‘intercept’’], whereas a ‘‘3’’ refers to interactive terms [i.e., p(sex 3 T ) ffi bintþ bsexþ bTMþ bTF,
where ‘‘M’’ and ‘‘F’’ stand for ‘‘male’’ and ‘‘female,’’ respectively], as discussed in White (2007).
Sample-size-adjusted Akaike Information Criteria (AICc), the difference in AICc values between
the ith model and the model with the lowest AICc value (DAICc), Akaike weights (wi), and number
of parameters (K ) are presented. ‘‘T ’’ refers to a linear trend in capture probabilities; ‘‘TF’’ refers to
a linear trend for female bears only; ‘‘t’’ refers to a time-specific model in which a unique capture
probability is estimated for each sampling occasion. A ‘‘(.)’’ means the parameter was held constant
(an intercept-only model).
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Interpretation of within-year trends in RT capture

probabilities was complicated by the lower amount of

effort in initial rub tree surveys (Fig. 2). In 1998, RT

capture probabilities increased with increased sampling

effort. In 2000, capture probabilities were more variable

partly due to variable sampling effort. The slope (b)
terms for temporal RT trends suggested increasing

capture probabilities for females and decreasing capture

probabilities for males. However, the confidence inter-

vals overlapped zero for both sexes, suggesting that

these trends were weak. The average CV of mixture

probabilities for HS data in 1998 and 2000 from the

most supported mixture models (Table 3) was 0.085 and

0.133, whereas the average CV for RT data was 0.779

and 0.362, respectively, indicating that heterogeneity

was higher in RT samples.

Population estimates

Population estimates for the GGA from the HS-

HUPL and HSRT-HUPL estimators were higher than

from the HSRT-LP (Fig. 3). The HSRT estimators

displayed higher precision than the HS estimators in all

years. However, as discussed later, correlation of

capture probabilities could have resulted in negatively

biased population size and variance estimates from the

HSRT-LP estimator.

We also estimated population size for the GNP study

area (Table 4) because rub tree sampling was primarily

conducted in this area (Fig. 1). Small sample sizes

resulting in low precision precluded solid comparison of

estimates in 1998 (Table 1). In general, the magnitude

and precision of estimates were similar for HS and

HSRT models. The HSRT-HUPL model was the most

precise of all estimators for both sexes in both years.

Estimates using RT-only data were not possible for 1998

due to low sample sizes of bears (Table 1). The RT-only

estimates for females in 2000 were significantly lower

and less precise than for HS and HSRT estimates for the

GNP area, whereas male estimates were only slightly

FIG. 2. Estimates of session-specific capture probability from hair snag (HS) and rub tree (RT) surveys in the Greater Glacier
study area (GGA), 1998 and 2000. Estimates were model averaged from Huggins-Pledger (HUPL) Mh2 (mixture) models in Table
3. Rub tree effort (RTE) was the cumulative number of days between successive hair collections summed over every sampled tree
per session.
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lower (Table 4), suggesting that some female bears had

zero RT capture probability.

Simulation results

The robustness of estimators to correlation in HS and

RT capture probabilities was influenced substantially by

mean capture probability levels and the degree of

heterogeneity variation simulated. The capture proba-

bilities and estimated levels of heterogeneity from the

mixture models (from the GGA analysis) and levels of

heterogeneity observed in other hair-snag-based DNA

mark–recapture studies (Boulanger et al. 2002) suggest

that simulations with sparse data (p ¼ 0.1, pLP ¼ 0.41)

and substantial (CVp ¼ 0.4) heterogeneity were most

applicable to the data in this study.

When data were sparse and heterogeneity substantial,

the LP and most HSRT estimators showed a negative

bias that increased as correlation increased (Fig. 4). The

least bias occurred when correlation was 0 (no

relationship between HS and RT capture probabilities).

With correlation ranging from �1 to þ1, model

Mh2 p(.) h1,2(type) was moderately robust with bias

ranging from 2.7% to �2.3%, model Mh p(type) was

less robust with bias ranging from 1.3% to �9.1%, and

the LP estimator was the least robust of the HSRT

models, with bias extending from 10.7% to �7.8%.

Because it was not affected by correlation of HS and RT

capture probabilities, the HS-only mixture model was

one of the least biased when r ¼ 1; however, it did not

converge in ;30% of the simulations due to instability

of the mixture estimator in MARK when the number of

sessions is low. The precision of HSRT estimators was

higher than the HS-only estimator in all simulations

(Appendix C). Confidence interval coverage for the LP

estimator was only near 95% when r was close to 0, with

sparse data (p¼ 0.1) and substantial heterogeneity; only

the Mh p(type) model had poorer coverage when r ¼ 1.

The HSRT Mh2 p(.) h1,2(type) maintained confidence

limits around 90% across the range of correlations.

Estimators exhibited less bias when mean per-session

capture probability was increased from 0.1 to 0.2 or

when heterogeneity was reduced from 0.4 to 0.15

(Appendix C). One exception was the HS-only mixture

model, which showed a positive bias when heterogeneity

was low and data were sparse. Confidence interval

coverage was still slightly reduced for the LP and HSRT

Mh p(type) when r was close to 1.

The performance of estimators when a segment of

bears had zero capture probability in the RT sample was

affected by mean capture probability and the degree of

heterogeneity simulated (Fig. 5, Appendix D), similar to

the heterogeneity scenario. The LP estimator displayed

comparable performance to simulations in which all

bears had nonzero capture probabilities. The model

Mh2 p(.) h1,2(type) was still moderately robust with

similar levels of bias (at approximately �5%) across

the range of correlations when heterogeneity was high

(CVp ¼ 0.4) and was nearly unbiased when CVp ¼ 0.15.

Confidence interval coverage was substantially reduced

for model HSRT Mh p(type) estimators, especially when

TABLE 3. Model selection results for the joint hair-snag–rub-tree (HSRT) analysis, Greater Glacier Area (GGA), 1998 and 2000.

No. Model AICc DAICc wi K Deviance

1998

1 HS: p(sex þ TF); RT: p(.) h1,2(þ sex þ TF þ TM þ RTE) 1292.9 0.00 0.433 10 1272.8
2 HS: p(sex þ TF); RT: p(sex) h1,2(þ sex þ TF þ TM þ RTE) 1293.8 0.86 0.282 11 1271.6
3 p(.) h1,2(3 type þ sexHS þ sexRT þ THS-F þ TRT-M þ TRT-F þ RTE) 1294.9 1.99 0.160 11 1272.7
4 p(sex) h1,2(3 type þ sexHS þ sexRT þ THS-F þ TRT-M þ TRT-F þ RTE) 1295.5 2.60 0.118 12 1271.3
5 p(.) h1,2(sex 3 type 3 T ) 1303.6 10.71 0.002 13 1277.4
6 p(sex 3 type 3 T þ RTE) 1303.7 10.81 0.002 9 1285.6
7 p(sex) h1,2(sex 3 type 3 T ) 1304.5 11.58 0.001 14 1276.3
8 p(sex 3 t) 1306.0 13.09 0.001 22 1261.5

2000

1 p(.) h1,2(3 type þ sexHS þsexRT þ TRT3sexþ THS3sex þ RTE) 2425.5 0.00 0.208 12 2401.4
2 p(.) h1,2(3 type þ sexHS þsexRT þ TRT3sexþ RTE) 2426.4 0.88 0.133 10 2406.3
3 HS: p(sex 3 T ); RT: p(.) h1,2 þ sex þ TRT-F þ TRT-M þ RTE) 2426.4 0.93 0.130 11 2404.4
4 p(sex) h1,2(3 type þ sexHS þsexRT þ TRT3sexþ THS3sex þ RTE) 2426.7 1.23 0.112 13 2400.6
5 p(.) h1,2(3 type þ sexRT þ TRT3sex þ RTE) 2427.0 1.48 0.099 10 2406.9
6 p(.) h1,2(3 type 3 sex þ TRT3sex þ RTE) 2427.2 1.64 0.092 11 2405.1
7 p(sex) h1,2 (3 sex 3 type 3 T þ RTE) 2427.7 2.18 0.070 15 2397.5
8 HS: p(sex 3 T ); RT: p(sex) h1,2(þ sex þ TRT-F þ TRT-M þ RTE) 2428.1 2.60 0.057 12 2404.0
9 p(.) h1,2(3 sex 3 type 3 T þ RTE) 2428.2 2.73 0.053 14 2400.1
10 p(sex) h1,2(3 type þ sexRT þ TRT3sex þ RTE) 2428.6 3.04 0.045 11 2406.5
11 p(3 sex 3 type 3 T þ RTE) 2461.0 35.46 0.000 11 2438.9

Notes: Sample size-adjusted Akaike Information Criteria (AICc), the difference in AICc values between the ith model and the
model with the lowest AICc value (Di), Akaike weights (wi), and number of parameters (K ) are presented. Mixture models were only
used for one of the data types if models are listed with ‘‘HS:’’ or ‘‘RT:’’. ‘‘T ’’ refers to a linear trend in capture probabilities. ‘‘TF’’ and
‘‘TM’’ refer to linear trends in capture probabilities for females or males, respectively. ‘‘RTE’’ refers to rub tree sampling effort (see
Methods: Data analysis). ‘‘Type’’ refers to sampling type (hair snag or rub tree). ‘‘SexHS’’ and ‘‘sexRT’’ refer to sex-specific capture
probabilities for HS or RT. ‘‘THS3sex’’ and ‘‘TRT3sex’’ refer to sex-specific trends for HS or RT data types. ‘‘TRT-F,’’ ‘‘TRT-M,’’ ‘‘THS-F,’’
and ‘‘THS-M’’ refer to a linear trend in capture probabilities for female RT, male RT, female HS, and male HS, respectively.
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capture probabilities and heterogeneity were high (p ¼
0.2 and CVp ¼ 0.4; Appendix D).

DISCUSSION

General comments

The methodology we developed in this manuscript

offers a way to potentially increase sample coverage and

estimator robustness by supplementing mark–recapture

analyses with information from other less expensive

sources. While our study focuses on rub trees and hair

snags, we suggest that the general principles developed

in this paper could be applied to other species. For

example, scat sampling (Bellemain et al. 2005), radio

telemetry (Powell et al. 2000), and sightings (White

1996) have been used in combination with traditional

mark–recapture methods to estimate population size.

The main constraint in the application of this technique

is the degree in which data sources are correlated. If

correlation is minimal, simple Lincoln-Peterson methods

may be adequate. If correlation and heterogeneity exist,

more complex mark–recapture models may be needed.

However, even in the latter case, estimates are improved

by the incorporation of multiple data sources.

FIG. 3. Grizzly bear population estimates (HS-HUPL, hair snag, Huggins-Pledger model; HSRT-LP, hair-snag–rub-tree,
Lincoln-Petersen model; HSRT-HUPL, hair-snag–rub-tree, Huggins-Pledger model) and associated precision (coefficient of
variation) for the Greater Glacier Area (GGA), 1998 and 2000. Huggins-Pledger estimates were model averaged from models in
Tables 2 and 3 and Appendix A. Error bars indicate 95% confidence intervals for population estimates.

TABLE 4. Population estimates for Glacier National Park,
1998 and 2000.

Data Estimator Estimate SE CV 95% CI

1998, female

HS HUPL 153 26.4 17.3 116, 223
HSRT HUPL 142 19.7 13.8 114, 194
HSRT LP 130 26.7 20.6 98, 213

1998, male

HS HUPL 107 33.7 31.6 66, 210
HSRT HUPL 129 31.3 24.3 88, 217
HSRT LP 154 55.9 36.4 89, 330

2000, female

HS HUPL 153 36.0 23.6 105, 254
HSRT HUPL 154 25.7 16.7 118, 222
HSRT LP 147 29.1 19.8 109, 230
RT HUPL 82 54.3 66.2 37, 300

2000, male

HS HUPL 92 18.8 20.5 67, 145
HSRT HUPL 94 5.1 5.4 87, 108
HSRT LP 100 7.5 7.5 90, 121
RT HUPL 81 7.3 9.0 72, 103

Notes: All Huggins-Pledger (HUPL) estimates are model
averaged from models in Appendix A. Rub tree (RT)-only
estimates for 2000 were made using modelMh2p(.) h1,2(sex3T )
þ RTE. Low sample sizes precluded RT-only estimates for
1998.
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Our results found that joint hair-snag–rub-tree

sampling improves population estimates over HS-only

surveys if minimal sampling requirements for both data

types are satisfied. The HS-only estimates from this

study were relatively imprecise due to low capture

probabilities. Incorporation of the RT data increased

sample size and overall coverage of marked animals with

subsequent gains in estimate precision. Increasing

sampling coverage also reduced heterogeneity leading

to greater robustness of estimators when capture

probabilities were higher. In general, the HS-only and

the HSRT-HUPL estimates were higher than the

HSRT-LP estimates (Fig. 3) for the GGA data set.

Empirical comparisons were limited by low capture

probabilities that restricted our ability to detect and

model heterogeneity variation. Due to this and because

it is not possible to infer bias from empirical trials,

simulations were used to evaluate these effects on the

estimators. Sparse data simulations showed that joint

HSRT estimators can be biased when data are sparse

and capture probabilities are correlated (Figs. 4 and 5).

The general correspondence between HS-only and

HSRT estimates suggests that HS-only estimates target

the same general cohorts of bears that are targeted by

HSRT sampling. For example, if HS sampling ‘‘missed’’

a segment of bears, HSRT estimates would be substan-

tially higher. The low number of bears captured in both

sample types in Table 1 may seem to suggest that hair

FIG. 4. Performance of estimators when heterogeneity
variation is substantial (CVp ¼ 0.4). Simulations from (a)
sparse data (capture probability, p ¼ 0.1; Lincoln-Petersen
estimator, pLP ¼ 0.41) and (b) less sparse data (p ¼ 0.2, pLP ¼
0.67) are shown. All estimators used five sessions of hair snag
(HS) and five sessions of rub tree (RT) data except for the HS-
only estimator, which only used five sessions of HS data.

FIG. 5. Performance of estimators when heterogeneity
variation is substantial (CVp ¼ 0.4) and 33% of the bears have
zero capture probability (p) in the rub tree sample. Simulations
from (a) sparse data (p¼ 0.1; Lincoln-Petersen estimator, pLP¼
0.41) and (b) less sparse data (p ¼ 0.2, pLP ¼ 0.67) are shown.
All estimators used five sessions of hair snag (HS) and five
corresponding sessions of rub tree (RT) data except for the HS-
only estimator, which only used five sessions of HS data.

JOHN BOULANGER ET AL.586 Ecological Applications
Vol. 18, No. 3



snags and rub trees sample unique segments of the

population; however, this is more due to overall low

capture probabilities than sampling bias with the HS

technique. In contrast, it is likely that some cohorts had

minimal or zero capture probabilities with RT sampling,

as suggested by reduced RT-only abundance estimates

for females for the 2000 GNP study area. These results

support use of hair snags as the primary sample for

abundance estimation studies, with rub trees used as a

lower-cost method of improving the estimate than

increasing hair snag grid sampling intensity.

Comparison of estimators

In general, the model-averaged HSRT-HUPL estima-

tor displayed better performance than the HSRT-LP

and HS-HUPL estimators, producing estimates of

similar magnitude, often with greater precision. This

was because the HSRT-HUPL estimator utilized the

most information from the encounter history data set.

The HSRT-HUPL analysis also documented temporal

trends in the data set, i.e., increasing female and

decreasing male HS capture probabilities in 2000. In

addition, undefined heterogeneity (Table 3) was docu-

mented, suggesting that factors other than sampling

type, rub tree effort, temporal trend, and sex influenced

capture probabilities. Simulation results further indicat-

ed that HUPL model Mh2 p(.) h1,2(type) was most robust

to correlation between HS and RT capture probabilities

when heterogeneity was high, as is typical of bear hair

snagging data sets (Fig. 4). This is likely due to the fact

that session-specific information was used to estimate

semi-independent two-point capture probability distri-

butions for HS and RT samples or two-point distribu-

tions for the RT data set, thereby minimizing the linkage

between the two data types. A more significant effect of

correlations between HS and RT capture probabilities

was decreased confidence interval coverage (;80% as r

approached 1; Appendix C). This most likely was due to

overdispersion of multinomial variances caused by

nonindependence of HS and RT capture probabilities.

The HSRT-HUPL mixture models assumed a shared

probability of mixture that might limit the ability of the

models to accommodate more complex forms of

heterogeneity variation. However, support for pooled

probability of mixture for sex-specific analyses and

overall support of mixture models (compared to non-

mixture models; Table 3) suggests that the assumption

of a common probability of mixture was reasonable in

our analysis.

The HSRT-LP estimator displayed lower estimates

for females in GNP, lower estimates for both sexes in the

GGA, and more precise estimates for the 2000 GGA

and GNP data compared to the HS-only and HSRT-

HUPL estimators (Fig. 3, Table 4). However, simula-

tions found that LP population and variance estimates

were more influenced than other estimators by correla-

PLATE 1. A wild grizzly bear investigating and rubbing on a tree along a maintained hiking trail in Glacier National Park,
Montana, USA. Note the obvious discoloration due to rubbing activity on a second tree to the right of the bear. Also visible is a
path worn by bears walking between these rubs. Genotyping hair samples from bear rubs in conjunction with video documentation
has shown that multiple bears will rub on these trees over even short time periods, and a given bear may use the same rubs for many
years. Images were pulled from motion-activated high-definition video. Footage by J. B. Stetz, courtesy of the U.S. Geological
Survey.
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tion between HS and RT capture probabilities when

there were high levels of heterogeneity and low capture

probabilities (pLP ¼ 0.41; Fig. 4). With positive

correlation between data types, the number of bears

captured by both HS and RT increases, causing a

positive bias in capture probability and negative bias in

population size. With negative correlation, the number

of bears captured by both HS and RT sampling methods

is reduced, causing capture probability to be underesti-

mated and a positive bias in estimates. It is likely there

was a moderate positive correspondence between RT

and HS capture probabilities in our data set. For

example, males that move a lot could encounter more

hair snag sites (Boulanger et al. 2004a) as well as rub

trees, creating a positive correlation between their

capture probabilities. In addition, female use of both

hair snags and rub trees increased as the sampling period

progressed. Positive correlation of capture probabilities

could explain why LP estimates usually were lower than

the HS-only and HSRT-HUPL estimates for the GGA

area. Given this, the higher precision observed for the

LP estimator was likely due to an underestimate of

variance. Therefore, we argue that for our data, the

advantages of the LP estimator are outweighed by non-

robustness to correlations in HS and RT capture

probabilities when data are sparse and heterogeneity is

present in the data set, as it is with most bear hair snag

studies (Boulanger et al. 2002).

The LP estimator is unbiased when there is no

correlation between HS and RT capture probabilities

and heterogeneity is minimal or when mean capture

probability is high enough so that a substantial

proportion of the population is captured. This assumes

that capture probability is greater than zero for all bears

in at least one of the sampling methods. When these

conditions are met, the LP estimator may be a more

efficient and less expensive way to obtain robust

population estimates in the presence of heterogeneity

by allowing less-structured sampling designs. While our

data did not meet these requirements, they may be

adequately met with other species or other sampling

methods and designs.

Study design considerations

Our paper is focused on grizzly bear DNA mark–

recapture data; however, the general findings apply to

any study that employs multiple data sources. Results of

simulations and empirical trials suggest that multiple

sampling types can be employed even when sampling

using one type is not conducted over the entire study

area. However, this method still assumes that all

individuals have a nonzero capture probability in at

least one of the data types. This assumption is most

likely met with DNA-based bear studies if hair snag

sampling is intensive enough to ensure that all bears

have the opportunity to encounter a hair corral

(Boulanger et al. 2004a, b, 2006). In addition, sampling

should ensure adequate numbers of animals are

captured in both sample types for the LP estimator or

adequate recaptures by the secondary sampling method

to allow the use of mixture models that are robust to

heterogeneity. We suggest that future studies (1) sample

intensively enough to ensure adequate capture proba-

bilities, i.e., p � 0.2 with each sampling method, (2)

synchronize the area covered by sampling types to

minimize heterogeneity, and (3) consider seasonal

behavior to target sampling periods that optimize

capture probabilities among sampling methods. For

instance, HS and RT capture probabilities generally

increased for both sexes as the sample season pro-

gressed. The relatively simple simulation model present-

ed in this paper provides a useful way to explore

sampling intensities needed to ensure reliable perfor-

mance of multiple data source estimators.
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APPENDIX A

Huggins-Pledger closed model selection for hair-snag-only data for Glacier National Park, Montana, USA, 1998 and 2000
(Ecological Archives A018-017-A1).

APPENDIX B

Huggins-Pledger closed model selection for hair snag and rub tree data for Glacier National Park, Montana, USA, 1998 and
2000 (Ecological Archives A018-017-A2).

APPENDIX C

Model performance in simulations as a function of mean capture probability level, correlation between hair snag and rub tree
capture probabilities, and heterogeneity variation when capture probability .0 for all bears in both data types (Ecological Archives
A018-017-A3).

APPENDIX D

Model performance in simulations as a function of mean capture probability level, correlation between hair snag and rub tree
capture probabilities, and heterogeneity variation when rub tree capture probability ¼ 0 for 33% of bears (Ecological Archives
A018-017-A4).
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