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Abstract 14 

The relationship between large fire occurrence and drought has important implications 15 

for fire hazard prediction under current and future climate conditions. The primary objective of 16 

this study was to evaluate correlations between drought and fire-danger-rating indices 17 

representing short- and long-term drought, to determine which had the strongest relationships 18 

with large fire occurrence at the scale of the western United States during the years 1984-2008. 19 

We combined 4-8 km gridded drought and fire-danger-rating indices with information on fires 20 

greater than 404.7 hectares (1000 acres) from the Monitoring Trends in Burn Severity project. 21 

Drought and fire danger indices analyzed were: monthly precipitation (PPT), Energy Release 22 
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Component for fuel model G (ERC(G)), Palmer Drought Severity Index (PDSI), and 1 

Standardized Precipitation Index at 3, 6, 9, 12, and 24-month timescales (SPI3, SPI6 , SPI9, 2 

SPI12, and SPI24). To account for differences in indices across climate and vegetation 3 

assemblages, indices were converted to percentile conditions for each pixel, to indicate the 4 

relative anomaly in conditions during large fires. Across the western US, correlations between 5 

area burned and short-term indices ERC(G) and PPT percentile were strong (R
2 
= 0.92 and 0.89 6 

respectively), as were correlations between number of fires and these indices (R
2
=0.94 and 0.93 7 

respectively). As the period of time tabulated by the index lengthened, correlations between fire 8 

occurrence and indices weakened:  PDSI and 24-month SPI percentile showed weak or 9 

negligible correlations with area burned (R
2
 = 0.25 and -0.01 respectively) and number of large 10 

fires (R
2
 = 0.3 and 0.01 respectively). This result suggests the utility of shorter-term rather than 11 

longer-term indices in fire danger applications. We attribute strong correlations between shorter-12 

term indices and fire occurrence to strong associations between these indices and moisture 13 

content of dead fuels, which are the primary carriers of surface fire.  14 

 15 

Brief summary for table of contents 16 

Shorter-term drought and fire-danger-rating indices, in particular Energy Release 17 

Component and monthly precipitation totals, were strongly correlated with area burned and 18 

number of large fires in the western US during the period 1984-2008, likely due to strong 19 

associations of these indices with dead fuel moistures. Longer-term indices (Palmer Drought 20 

Severity Index and 24-month Standardized Precipitation Index) showed weak or negligible 21 

correlations with area burned and number of large fires. 22 

 23 
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 3 

Introduction 4 

Estimation of burn probability and wildland fire risk to highly valued resources 5 

influences land management planning, budgeting for firefighting and fuels reduction work, and 6 

positioning of suppression resources in the United States (Ager et al. 2010; Calkin et al. 2011; 7 

Finney et al. 2011b). Current modeling efforts have produced burn probability maps for the 8 

continental US which are statistically similar to recent fire activity (Finney et al. 2011b), and 9 

statistical models that incorporate climate data have exhibited better-than-random prediction of 10 

area burned (Preisler et al. 2009; Preisler and Westerling 2007; Westerling et al. 2002), but a 11 

number of challenges in fire prediction remain. Large fires occur stochastically, in response to 12 

lightning produced by localized convective storms and human ignitions, making prediction of the 13 

location and timing of fires difficult. As the climate changes, temperature and precipitation 14 

regimes fluctuate, which may affect the occurrence of large fires. Given these uncertainties, it is 15 

important to understand the mechanisms by which various drought and fire danger indices 16 

(which capture different timescales of drought) are empirically related to large fire occurrence, 17 

and the strength of these relationships.  18 

Another challenge in studies of wildland fire and climate is that large fires are rare 19 

events. Accordingly, much previous work on fire and climate has taken place at large spatial 20 

scales at annual timesteps, or over timeframes of multiple centuries, in order to encompass a 21 

large enough sample size of fires for statistical analysis to be possible. In the case of fire history 22 

work, most studies take place over several hundred years at an annual timestep which chronicles 23 
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both drought (inferred from tree ring width) and fire occurrence (based on positioning of fire 1 

scars relative to tree rings) (e.g. Baisan and Swetnam 1990; Hessl et al. 2004; Heyerdahl et al. 2 

2008b; Morgan et al. 2008; Swetnam and Betancourt 1998). Previous studies have linked some 3 

of the variability in fire occurrence and area burned with synoptic weather patterns such as 4 

persistent high pressure blocking ridges and coupled atmosphere-ocean teleconnections (e.g. El 5 

Niño-Southern Oscillation) that correlate with droughts (Abatzoglou and Kolden 2011; Gedalof 6 

et al. 2005). Due to limitations in fire reporting prior to 1970, when statistics were aggregated 7 

annually by National Forest or state, studies associating fire and climate often utilized annual 8 

timesteps (Gedalof et al. 2005, Karen Short, personal communication). However, daily and 9 

monthly fluctuations in weather are strong determinants of fire ignition and spread. Recently, 10 

finer-scale weather data and a comprehensive database of large fires have become available, 11 

enabling analysis of the relationship between drought and fire at a more detailed spatial and 12 

temporal scale. An improved understanding of the time-scales and means through which climate 13 

and weather influence fire occurrence would be beneficial to fire prediction efforts as well as 14 

operational fire management, and provide a way for researchers to link predictions of climate 15 

change with their potential effect on future fire occurrence. 16 

Precipitation is related to fire occurrence via several mechanisms.  1) In dead fuels such 17 

as litter and downed woody debris, fuel moisture is controlled by environmental conditions 18 

including precipitation, relative humidity, solar radiation, and temperature. In the absence of 19 

precipitation, dead vegetation (fuels) will dry out, converging toward ambient relative humidity 20 

over a period of days or weeks, the period increasing with fuel diameter (Fosberg 1971).  2) 21 

During prolonged dry periods (which occur seasonally in some areas), live herbaceous and 22 

woody shrub vegetation may enter dormancy or die, contributing to the loading of fine dead 23 
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surface fuels (<0.25” diameter), which are the primary carriers of surface fire (Scott and Burgan 1 

2005).  3) Live fuels decrease in moisture content during dry periods, and the proportion of 2 

flammable compounds may increase (Matt Jolly, personal communication).  4) Ignition and 3 

propagation of fire is more likely when fuels are dry, and fire rates of spread are higher 4 

(Andrews et al. 2003; Rothermel 1972; Scott and Burgan 2005).  5 

Live and dead fuel moistures thus fluctuate across a range of timescales, from daily (due 6 

to rain events), to seasonally (in much of the western US, new live vegetation typically grows 7 

during spring and matures and/or cures during dry summers), to decadally (in response to 8 

extended droughts). Various fire danger and drought metrics utilize different temporal scales, 9 

which are implicitly related to these fuel moisture dynamics, but more work is needed to relate 10 

these metrics to fire occurrence in the western US, both empirically and physically. Use of 11 

indices based on fuel moisture values derived from recent weather could strengthen fire 12 

modeling efforts, since some frequently used metrics may not be directly related to fire ignition 13 

and behavior. 14 

We quantified the correlation of eight drought and fire danger metrics with large (>404.7 15 

ha, or 1000 acres) fire occurrence, defined using two criteria:  area burned and number of fires. 16 

The drought and fire danger indices included in this study were: Standardized Precipitation Index 17 

(SPI) calculated for 3, 6, 9, 12, and 24-month intervals, Palmer Drought Severity Index (PDSI), 18 

monthly precipitation totals (PPT), and Energy Release Component (ERC). These indices were 19 

selected based on their common usage in the literature regarding drought and fire in the western 20 

US, and/or our assessment of their potential for capturing the relationship between drought and 21 

fire occurrence. The goals of this study were to:  1) examine which, if any, of these metrics were 22 

strongly related to fire occurrence across the western US, independent of ecoregion, climatic 23 
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zone, and vegetation type, and 2) investigate whether the timescale of the indices affected the 1 

strength of their correlations with fire occurrence. A metric that is strongly correlated with fire 2 

occurrence across this region could be utilized with high confidence in fire prediction work at 3 

this scale. In addition, examining which metrics are strongly correlated with fire occurrence 4 

suggests physical mechanisms linking drought and fire. 5 

 6 

Methods  7 

Study area 8 

The western US was chosen for this study because it spans a number of diverse fire-9 

adapted ecoregions. In order to delineate the study area (Figure 1) from the grasslands of the 10 

Great Plains, we used Omernik ecoregions (Omernik 1987). 11 

Data sources: addressing challenges in reporting 12 

Fire records 13 

Fire records were obtained from the Monitoring Trends in Burn Severity (MTBS) project, 14 

conducted jointly by the US Forest Service and US Geological Survey, which maps the extent of 15 

large fires since 1984 based on Landsat imagery (Eidenshink et al. 2007). Fires included in our 16 

study (n = 5976) were limited to those that had centroids within our study area boundary, 17 

occurred between 1 January 1984 and 31 December 2008, and were larger than 404.7 ha (1000 18 

acres), since large fires burn the vast majority of the area in this region (Strauss et al. 1989). We 19 

used data on fire perimeters, areas, locations, and discovery dates provided by MTBS. 20 

The MTBS dataset addresses some issues that previously existed in fire records due to 21 

inconsistent and incomplete reporting of wildland fires (Brown et al. 2002; Schmidt et al. 2002).. 22 
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No single comprehensive database tracks all fires in the US, so a complete record of fires must 1 

be compiled from records of multiple federal agencies (US Department of Agriculture Forest 2 

Service uses one system, a second system is employed by the US Department of Interior 3 

(USDOI) Fish and Wildlife Service, and a third system is used by USDOI’s Bureau of Land 4 

Management, Bureau of Indian Affairs, and National Park Service) as well as non-federal 5 

records (state databases, National Association of State Foresters records, and the US Fire 6 

Administration’s National Fire Incident Reporting System). Compiled records are subject to 7 

several issues, including incongruent reporting standards. For example, more than half of non-8 

federal fire records lack information on date, location, or size, meaning that they cannot be used 9 

for analyses with spatial or temporal questions (Karen Short, personal communication). The 10 

MTBS project has determined the spatial locations and discovery dates of all fires in its dataset 11 

through geolocated burn scars, an advantage of this dataset. A second issue in compilations is 12 

duplicate records, which can cause overestimates of area burned on the order of 40% (Karen 13 

Short, personal communication). Duplicate records occur most frequently where large fires cross 14 

land ownership boundaries, causing records to appear in multiple land agency reporting systems. 15 

Since the MTBS dataset is based on changes in spectral signatures in Landsat imagery, duplicate 16 

records are eliminated and some previously unreported fires are detected. Compilations of fire 17 

records may also suffer from omissions, especially of smaller fires, which can cause 18 

underestimates of fire numbers. Because the MTBS dataset includes only fires larger than 404.7 19 

ha (1000 acres) in the western United States, this problem is minimized, but analysis is confined 20 

to large fire events. 21 

The intention of MTBS is to track wildland fires, but some prescribed fires have been 22 

included in the database through detection of changes in spectral signatures. At the time of this 23 
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study, MTBS did not state whether each fire was prescribed or wildland, so we were unable to 1 

separate them. Data on daily fire progression is lacking or not readily available from MTBS or 2 

other sources, meaning the contribution of daily winds (an important factor in fire growth) could 3 

not be quantified for this study. 4 

 5 

Drought and fire danger indices 6 

The eight drought and fire danger indices analyzed in this study provide a means for 7 

assessing relative wetness or dryness of the fire environment, and may serve as predictors of 8 

water availability, vegetation health, and fire danger. We utilized spatially and temporally 9 

complete high-resolution gridded climate and meteorological datasets (Figure 2). Monthly 10 

climate data from Parameter-elevation Regressions on Independent Slopes Model (PRISM; Daly 11 

et al. 1994a) at 4-km horizontal resolution were used to derive the PPT, PDSI and SPI indices 12 

following Kangas and Brown (2007). The drought indices were calibrated to the 1895-2009 13 

period of record, making them more robust than monthly drought indices calculated over shorter 14 

time periods.  A complementary dataset developed by Abatzoglou (2013) provided a spatially 15 

and temporally complete daily meteorological dataset from 1979-2010 upsampled to 8-km 16 

resolution by employing high-frequency meteorological conditions from the North American 17 

Land Data Assimilation System (NLDAS) that is then bias-corrected using PRISM. The resultant 18 

dataset provided daily maximum and minimum temperatures, relative humidity, daily 19 

precipitation amount and duration, temperature, and state-of-the-weather code for 1300 local 20 

time, all components necessary for calculations of ERC. This study utilized the products of these 21 

efforts: PPT, PDSI, and SPI at 3, 6, 9, 12, and 24-month timescales at a 4-km scale and monthly 22 

timestep, and ERC(G) at an 8-km scale on a daily timestep. 23 
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Previous work on fire and climate faced challenges in obtaining consistent and complete 1 

weather records; these gridded datasets address some of these challenges. For example, Remote 2 

Automated Weather Stations (RAWS) used for fire danger calculations are subject to quality 3 

control problems and are often switched off when fire season ends, meaning that weather records 4 

are temporally incomplete. Until recently, weather data has typically been available only at 5 

sparse point locations with weather stations or summarized at coarse resolution. Researchers 6 

were presented with the choice of using weather data from a single station as a proxy for a large 7 

area, or using a dataset such as the National Climatic Data Center climate division data, which 8 

averages conditions from weather stations over large areas that do not necessarily correspond to 9 

ecoregion boundaries (e.g. Balling et al. 1992; Littell et al. 2009). Microclimates can vary 10 

widely within a few square kilometers, especially in the mountainous terrain that characterizes 11 

much of the western US (Holden et al. 2011; Sellers 1965; Thornthwaite 1953), suggesting that 12 

coarse-resolution climate division data may not be representative of conditions at remote wildfire 13 

locations, as was noted by Westerling et al. (2002). 14 

Recent efforts have produced gridded weather datasets with a resolution of several 15 

kilometers, such as the ones used in this study, by applying physically- and statistically-based 16 

algorithms to weather station records (Abatzoglou 2013; Daly et al. 1994b; Thornton et al. 17 

2012). Such datasets have made more detailed analysis possible by avoiding the spatial 18 

limitations of climate division datasets and the often temporally sporadic and spatially non-19 

uniform data from weather stations. Gridded datasets at 4-8 km resolution cannot account for all 20 

microclimate variability, but represent an advance in this effort. 21 
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Below, we briefly describe the calculation of each index and previous work relating this 1 

index to fire occurrence. Throughout this manuscript, we qualitatively define the strength of 2 

correlations as follows: weak (R
2
 < 0.45), moderate (0.45 < R

2
 < 0.8), or strong (0.8 <= R

2
 <= 1). 3 

 4 

Palmer Drought Severity Index (PDSI) 5 

Palmer (1965) outlined calculation of his drought metric as “a first step toward 6 

understanding drought,” but the metric has since become widely institutionalized, especially for 7 

estimating agricultural drought. Positive values of PDSI suggest wetter-than-normal conditions, 8 

and negative values suggest drought (-1 = mild drought, -2 = moderate drought, -3 = severe 9 

drought, and -4 = extreme drought) (Palmer 1965). The PDSI uses a water balance method which 10 

adds precipitation to soil moisture in the top two layers of soil, while a simple temperature-11 

driven evapotranspiration algorithm (Thornthwaite 1948) removes it. The calculation of PDSI is 12 

autoregressive, based on a portion of the current month’s value and the preceding value 13 

(Guttman 1998). Thus, PDSI has no inherent time scale, with PDSI values having different 14 

“memories” varying from 2 to more than 9 months depending on the location (Guttman 1998). 15 

The spatial scale of PDSI also varies, since the index can be calculated for a single weather 16 

station or a number of stations may be averaged, as in the case of climate division data. 17 

Criticisms of the PDSI are numerous. The algorithm lacks information on important 18 

drivers of evapotranspiration, vegetation curing, and dead fuel moisture, including relative 19 

humidity, solar radiation, and wind speed (Sheffield et al. 2012). All precipitation is assumed to 20 

be rain, meaning the algorithm is potentially ill-suited for areas where a significant proportion of 21 

the precipitation is snowfall. Hence, PDSI has been found to be only weakly to moderately 22 

correlated with soil moisture (r = 0.5-0.7, equivalent to R
2 
= 0.25 – 0.49), with the strongest 23 
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correlation in late summer and autumn, corresponding with fire season in much of the western 1 

US (Dai et al. 2004). Due to data and processing limitations, Palmer developed the index for 2 

nine climate divisions in the Midwest, resulting in empirically derived constants that are not 3 

locally calibrated for other locations (Palmer 1965). Consequently, the PDSI’s value has been 4 

found to vary across precipitation regimes, with a single value having different meanings in 5 

different areas (Guttman 1998; Guttman et al. 1992). In addition, PDSI values are sensitive to the 6 

time period used to calibrate the metric (Karl 1986).  7 

Despite these shortcomings and lack of a clear mechanism relating PDSI to fire 8 

occurrence, the PDSI is the index most commonly used to assess drought in the fire literature 9 

(Table 1; Baisan and Swetnam 1990; Hessl et al. 2004; Heyerdahl et al. 2008b; Swetnam and 10 

Betancourt 1998). For fire history studies, PDSI is often the best available metric due to finer-11 

scale reconstructions (1-degree) than those available for precipitation and temperature (generally 12 

2.5-degree). Current-season PDSI values have also been related to contemporary fire occurrence 13 

in some ecosystems of the western US, although correlations are rarely strong (Table 1). 14 

 15 

Monthly precipitation totals (PPT) 16 

Several studies have used measured monthly precipitation amount to relate drought to fire 17 

occurrence. This metric is simple to measure and calculate; however, because precipitation 18 

regimes vary across climatic regions, amounts must be normalized to local records in order to 19 

indicate departure from normal conditions. Littell et al. (2009) found seasonal precipitation to be 20 

a significant factor in multivariate models predicting area burned for some but not all ecoregions 21 

in the western US, with negative summer precipitation included in models for 7 of 16 22 

ecoregions. Balling et al. (1992) found total annual precipitation had a Spearman’s rank 23 
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correlation of -0.52 to -0.54 with area burned in Yellowstone National Park, a stronger 1 

correlation than they found with PDSI (Table 1).  2 

 3 

Standardized Precipitation Index (SPI) 4 

The SPI is calculated as “the difference of precipitation from the mean for a specified 5 

time period divided by the standard deviation” (McKee et al. 1993); where precipitation amounts 6 

are not normally distributed, they must be first converted to a normal distribution (Lloyd-Hughes 7 

and Saunders 2002). Benefits of the SPI include: 1) it can be used to derive probability of 8 

precipitation deviation, 2) it is normalized, so wet and dry climates are represented in similar 9 

fashions (McKee et al. 1993), 3) SPI spectra exhibit similar patterns at all locations, meaning the 10 

values are comparable across regions (Guttman 1998), and 4) the index can be calculated for any 11 

time length in order to capture short- or long-term drought. Despite the advantages of the SPI, we 12 

found only one study relating SPI to fire occurrence:  Fernandes et al. (2005) found strong 13 

correlations between summer 3-month SPI (SPI3) and anomalies in fire incidence in the Western 14 

Amazon. 15 

 16 

Energy Release Component (ERC) 17 

The Energy Release Component (ERC), an index in the US National Fire Danger Rating 18 

System (NFDRS), provides an approximation of dryness based on estimates of fuel moisture 19 

(Andrews et al. 2003). ERC is a continuous variable calculated from a suite of meteorological 20 

and site variables, including relative humidity, temperature, precipitation duration, latitude, and 21 

day of year (Cohen and Deeming 1985). ERC is calculated daily and is thus more dynamic than 22 

current implementations of PDSI and SPI, since it is sensitive to daily relative humidity and 23 
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precipitation timing and duration (i.e., large rain events cause a significant reduction in ERC). 1 

ERC calculation is also affected by fuel loadings in different size classes. For example, in this 2 

study, ERC was calculated for fuel model G, which includes a substantial loading of large dead 3 

fuels as well as fine fuels (Andrews et al. 2003; Bradshaw et al. 1983). Due to the heavy 4 

weighting of large dead fuels, ERC(G) is mainly driven by weather conditions during the 5 

previous month and a half, which is the time it takes for dead woody debris 7.6-20.3 cm (3-8 6 

inches) in diameter (also called 1000-hour fuels) to mostly equilibrate to constant ambient 7 

conditions (Fosberg et al. 1981).  8 

ERC(G) has been shown to have a strong relationship with fire occurrence in Arizona:  9 

the probability of fire increases with ERC(G), and can be quantified with logistic regression 10 

(Andrews and Bevins 2003; Andrews et al. 2003). Therefore, the ERC(G) is used by US federal 11 

land agencies both operationally (Predictive Services) and in simulation models that predict fire 12 

size and probability, including FSPro and FSim (Finney et al. 2011a; Finney et al. 2011b). 13 

However, the parameters of the logistic regression relating ERC(G) and fire occurrence vary 14 

with location, suggesting that fires are likely to ignite at different ERC(G) values in different 15 

areas due to variations in climate and fuels. For example, fuels tend to burn at a much lower 16 

(moister) ERC(G) on Washington’s Olympic Peninsula, where relative humidity is higher and 17 

temperatures are lower during fire season, than in the Great Basin, where relative humidity is 18 

lower and temperatures are higher. Thus, ERC(G) should be regarded as a relative index; current 19 

ERC(G) values must be compared to historic values in the same location, as well as local fire 20 

occurrence information, in order to interpret them correctly (Schlobohm and Brain 2002). 21 
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Associating fire occurrence and weather data 1 

Each fire’s location was assigned to the latitude/longitude of the centroid of its perimeter, 2 

and the discovery date was used as a proxy for ignition date. For each fire, we identified the 3 

closest pixel of weather data, in both space and time. For monthly indices (PPT, PDSI, and all 4 

SPIs), we queried the spatially closest pixel during the month of the fire’s discovery. Values of 5 

monthly indices are based on conditions at the end of each month. We queried the daily ERC(G) 6 

data to identify the ERC(G) of the closest pixel on the fire’s discovery date, as well as the six 7 

following days, and averaged these seven daily ERC(G) values. In the absence of data on 8 

containment dates and daily fire progression, we assumed that these first seven days were critical 9 

to fire spread. This assumption may not always hold true, since some large fires, especially those 10 

ignited by lightning under moderate conditions, may grow slowly for a period of weeks until a 11 

weather event spurs their growth. However, we were hesitant to use an analysis window longer 12 

than seven days for ERC(G) since this would increase the chance of erroneously incorporating 13 

low ERC(G) values associated with weather events that curtailed fire growth.  14 

 15 

Statistical analyses 16 

Empirical distributions of indices for fire vs. all conditions 17 

The empirical frequency distributions of indices vary. For example, the SPI is normally 18 

distributed and centered at zero, with more than two-thirds of values between -1 and 1, indicating 19 

relatively normal conditions. Therefore, if fires occurred at random with respect to this index, 20 

from a purely probabilistic standpoint, fires would be more likely to occur at values close to zero 21 

than at extreme values of the index, simply because mild values occur more often by an order of 22 

magnitude. The same is true for PDSI: PDSI values signifying mild drought also occur much 23 
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more frequently than extreme values. This property of PDSI may be why some studies have 1 

found that synchronous fires tend to occur at PDSI values signifying mild (frequently occurring) 2 

rather than extreme (rarely occurring) drought (e.g., Baisan and Swetnam 1990; Hessl et al. 3 

2004). 4 

To remove the confounding effect of different empirical distributions in relation to fire 5 

occurrence, we tested whether the distribution of each index was significantly different during 6 

conditions under which large fires occurred than under all conditions, using two tests based on 7 

the empirical frequency distribution (EFD) and the empirical cumulative distribution function 8 

(ECDF). To determine the empirical frequency distribution (EFD) of each index’s values, we 9 

queried the gridded index data and created a histogram of all pixel values occurring during the 10 

study period from 1 January 1984 through 31 December 2008. We used all days of the year 11 

rather than attempt to delineate a fire season, since the length of fire season varies spatially 12 

across the western US and temporally from year to year. We then created histograms of index 13 

values associated with large fire events. For each index, to test whether the means of the two 14 

EFDs (“fire” vs. “all”) were different, we compared the bootstrapped means of the two EFDs, 15 

using 500 random samples of n=1000 with replacement, and then constructed a 90% confidence 16 

interval around the means. Because many of the empirical distributions are non-normal, this 17 

bootstrapping approach was needed to create a confidence interval around the mean. We chose a 18 

sample size of 1000 in order to rectify bias introduced by extremely large (n>1,000,000 for “all” 19 

conditions) and unequal (n=5976 for “fire” conditions) population sizes.  20 

Second, we plotted the empirical cumulative distribution function (ECDF) of each index 21 

for all values and statistically compared it to values associated with large fires. The null 22 

hypothesis was that the two distributions were the same. Because smaller values of PPT, PDSI, 23 
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and SPI indicate drier conditions, the alternative hypothesis we tested was that the ECDF of the 1 

metric associated with large fires was greater than that of all values of the metric (if the ECDF is 2 

greater, the distribution is shifted to the left, suggesting lower index values). Conversely, higher 3 

values of ERC(G) indicate drier conditions, so the alternative hypothesis is that the ECDF of the 4 

“fire” distribution is less than that of “all” conditions (in this case, if the ECDF is less, the 5 

distribution is shifted to the right, signifying higher index values). The non-parametric test 6 

statistic D measures the maximum separation distance between the two distributions. As D 7 

increases, so does the likelihood that the two distributions are from different populations. The 8 

Kolmogorov-Smirnov (KS) test was applied to determine the probability that D occurred by 9 

chance. Due again to large and unequal sample sizes, we ran the KS test for 500 samples of n = 10 

1000 for each index. We then calculated how many times the null hypothesis would have been 11 

rejected at alpha = 0.1 in order to determine whether the “fire” and “all” ECDFs were different. 12 

This methodology removes the confounding effect of the different frequency distributions of the 13 

indices, and determines whether each metric has power in detecting conditions conducive to 14 

large fire events. 15 

 16 

Correlations of metrics with large fire occurrence 17 

In order to remove confounding effects introduced by the distribution of the metric and 18 

by variations in microclimate, we converted weather and climate data to percentile-based 19 

measures that convey the relative rarity of a given index value for each pixel that experienced a 20 

fire. Thus, we focused on departure from median precipitation conditions as a metric for severity 21 

of dry or wet conditions, as measured by a suite of drought and fire-danger indices, rather than 22 

attempting to find a definition of drought that applies to all climates in the western US. 23 
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For each pixel where a fire occurred, we queried all values that occurred during the 1 

period of study. These values were then sorted, in order to establish the rank of the index’s value 2 

during each fire. Ranks were calculated based on the index values as a single pool for all 3 

seasons, all months, and all years. Ranks were then converted to percentiles. For PDSI, SPIs, and 4 

PPT, low percentiles (near zero) indicate extremely dry conditions, while high percentiles (near 5 

100) indicate wet conditions. For ERC(G), the reverse is true: low percentiles (near zero) 6 

indicate fuels with high moisture content, while high percentiles (near 100) indicate dry fuels. 7 

Each fire was thus assigned a percentile for each index. For example, if the value of PPT for 8 

March 1997 ranked 100
th
 of 200 values, signifying average conditions, the PPT percentile would 9 

be 50. Because each pixel has a different distribution of weather data, we found index percentiles 10 

for each individual pixel (therefore, an ERC(G) value of 57 may indicate 95
th
 percentile 11 

conditions in one cell, while in another cell the 95
th
 percentile ERC(G) value may be 89 – but in 12 

both cases the 95
th
 percentile value indicates a comparable level of aridity for that microclimate). 13 

This methodology is similar to that of Alley (1984), who recommended a similar rank-based 14 

approach. 15 

For each metric separately, we summed area burned and number of fires across the 16 

western US, binning fires by percentile class (e.g. 1
st
 percentile, 2

nd
 percentile). For example, if 17 

there were three fires that occurred during 100
th
 percentile ERC(G) conditions (a 1000-ha fire 18 

that occurred in June 2000 in Arizona, a 1200-ha fire during August 2003 in Montana, and a 19 

1500-ha fire in southern California in November 2008) then the total area burned during 100
th
 20 

percentile ERC(G) conditions would be 3700 ha. Essentially, the output is a histogram of area 21 

burned with 100 bins where each drought/precipitation percentile corresponds to a bin. The 22 

relationship of index percentiles to total area burned was then quantified using linear regression, 23 
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and evaluated by means of regression analysis (R
2
) and tests of significance (p-values). Note that 1 

these correlations are based on index values during time periods when a fire occurred. The same 2 

methodology was repeated to produce linear models relating number of fires to index percentiles. 3 

 4 

Results  5 

Empirical distributions of indices for “fire” vs. “all” conditions 6 

Empirical frequency distributions (EFDs) of drought indices are varied, and include 7 

bimodal, normal, and right-skewed (Figure 3). The EFD of PDSI is bimodal, due to the fact that 8 

the index value is reset at the end of a drought or pluvial episode, resulting in a dip in the 9 

frequency of the metric at values near zero (Palmer 1965). Mild to moderate PDSI values (-2 to 10 

+2) occur most frequently in our dataset, with extreme values (e.g. -5 or +5) occurring very 11 

rarely, indicating the rarity of extreme drought and wet conditions as recorded by this index 12 

(Figure 3). Based on visual inspection of the graph, the distribution of PDSIs associated with 13 

large fire occurrence is shifted slightly to the left of the distribution of all PDSIs, indicating that 14 

fires tend to occur during lower PDSIs. The PDSI values most commonly associated with large 15 

fires are -0.5 to -2, indicating mild drought. The fact that most fires occur at values of PDSI 16 

indicating mild drought does not necessarily imply that mild drought is more conducive to large 17 

fire than extreme drought; rather, values of the index near zero occur much more frequently, with 18 

a relatively small number of months during which fires could potentially occur at rare extreme 19 

values of the index. This result also illustrates that extreme drought that cumulates over 20 

prolonged period of moisture deficit is not a prerequisite for fire occurrence. Instead, the 21 

proclivity for fire occurrence during mild drought conditions as assessed by the PDSI, may 22 

explain why years of fire synchrony tend to occur during years of mild-moderate rather than 23 
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extreme drought simply because mild droughts occur much more frequently (Baisan and 1 

Swetnam 1990; Balling et al. 1992; Hessl et al. 2004; Heyerdahl et al. 2008a; Swetnam and 2 

Betancourt 1998; Westerling et al. 2003).  3 

The EFD of ERC(G) is characterized by frequent occurrence of moderate ERC(G) 4 

values, while high values indicating extremely dry conditions are rare (Figure 3). Zero values 5 

occur most frequently (zero is assigned to indicate snow or high fuel moistures that preclude 6 

burning). The distribution of ERC(G) values associated with large fire events is markedly 7 

different from that of ERC(G)s as a whole, being skewed toward the higher ERC(G) values 8 

typically associated with dry fuels. 9 

In contrast to PDSI and ERC(G), the EFD of monthly precipitation values (PPT), in 10 

millimeters, is heavily right-skewed, with the lowest precipitation values being most common 11 

(Figure 3). The distribution of PPT during large fires events is more heavily skewed toward low 12 

PPTs than the distribution of PPT during the entire period of study, indicating fire events take 13 

place preferentially at lower PPTs. 14 

The EFD of the Standard Precipitation Index is by definition normal due to its 15 

calculation, as discussed previously (Figure 3). The distribution of SPI3 values under which 16 

large fires ignite is shifted toward more negative (drier) values of SPI3 than that of the 17 

distribution of the metric as a whole, indicating that large fires tend to burn more frequently 18 

under values of SPI3 that indicate drought. However, visual inspection of these figures indicates 19 

that this shift weakens as the period tabulated by the metric lengthens, until it is not visible for 20 

SPI24 (Figure 3). 21 

We also performed quantitative testing of the means of the EFDs. Testing of the means 22 

indicated that the mean values of ERC(G), PPT, and SPI3 associated with large fires are 23 
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significantly drier than the mean of all values at the 90% confidence level (Figure 4, Table 2). 1 

Confidence intervals around the means of the “fire” and “all” values distributions for PDSI, 2 

SPI6, SPI9, SPI12, and SPI24 overlapped, indicating that the means are not significantly 3 

different. 4 

A second method for testing whether the distributions of fire and all conditions are 5 

different used the Kolmogorov-Smirnov test of the D statistic of the empirical cumulative 6 

distribution functions (ECDFs; Table 2). These Kolmogorov-Smirnov tests indicated that the 7 

“fire” distributions of ERC(G) and PPT are significantly different than the distributions of these 8 

metrics under all conditions, and strong evidence existed for SPI3 as well (Figure 5; Table 2).  9 

Evidence that the “fire” distributions of SPI6, SPI9, SPI12, and SPI24 are different from “all” 10 

conditions weakened as the time period tabulated by the metric increased (Table 2; Figure 5). For 11 

PDSI, relatively weak evidence exists that the two distributions are different, and this hypothesis 12 

would be rejected by both testing of the means (Figure 4) and approximately one-third of 13 

Kolmogorov-Smirnov statistic tests at alpha=0.1 (Figure 5; Table 2). Thus, PDSI is not strongly 14 

related to large fire occurrence. 15 

Taken as a whole, these results suggest that shorter-term indices (ERC(G), PPT, and 16 

SPI3) are more strongly associated with large fire occurrence than longer-term metrics (PDSI, 17 

SPI6, SPI9, SPI12, and SPI24). 18 

 19 

Correlations of metrics with large fire occurrence 20 

The area burned by individual fires was not strongly related to raw index values. Results 21 

are shown for ERC(G) and PDSI, with the pattern being similar for the other metrics (Figure 6). 22 

The largest fires occur at frequent values of indices (moderate ERC(G), low PPT, moderate 23 

Page 20 of 50

www.publish.csiro.au/journals/wf

International Journal of Wildland Fire



For Review
 O

nly

21 

 

PDSI, and moderate SPI), rather than the most extreme values. For example, the largest fires did 1 

not occur at the highest ERC(G)s, which are rare in the record. Large fires occurred more often 2 

during the drier phase of the metrics (higher ERC(G)s, negative PDSI, and negative SPI); this 3 

relationship with SPI is stronger in the shorter phase of this metric (SPI3), and weakens 4 

progressively as the duration of the metric becomes longer. In the case of ERC(G), PPT, and 5 

PDSI, the relationship with fire area is further obscured by the fact that these metrics vary 6 

regionally (e.g. a precipitation value of 20 mm in a month may signify wet conditions in the 7 

Great Basin and dry conditions on the Washington Coast). However, by transforming indices to 8 

percentile values for each fire, the relationships become more apparent. For example, a 9 

scatterplot of ERC(G) percentile versus fire size illustrates that large fires tend to occur when 10 

ERC(G) is above the 80
th
 percentile (Figure 7). 11 

We parameterized linear models relating index percentile to number of large fires (Table 12 

3, Figure 8) and area burned (Table 4, Figure 9). Correlations between index percentile and 13 

number of large fires were stronger than those between index percentile and area burned for all 14 

metrics. Of all metrics, ERC(G) percentile demonstrated the strongest relationship with area 15 

burned (adjusted R
2 
=0.92; Table 4; Figure 9) as well as number of fires (adjusted R

2
 = 0.94; 16 

Figure 8; Table 3). Number of fires and area burned increased exponentially with ERC(G) 17 

percentile. PPT percentile (Figure 8 and 9, Table 3 and 4) demonstrated almost as strong a 18 

relationship with number of fires and area burned as ERC(G) (for number of fires, adjusted R
2
 = 19 

0.93; for area burned, adjusted R
2 
=0.89).  SPI3 percentile (Figure 8 and 9, Table 3 and 4) had a 20 

strong correlation with number of fires (adjusted R
2
 = 0.83) and moderate correlation with area 21 

burned (adjusted R
2
 = 0.70). For SPI6, 9, 12, and 24 percentile (Figure 9, Table 4), the models 22 

explained less than half of the variability in area burned, indicating a weak relationship between 23 
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area burned and these indices. Correlations with number of fires were somewhat stronger, with 1 

models explaining more than half the variability in the data for SPI6, 9, and 12 percentile, 2 

declining with the time period measured by the index. PDSI percentile also showed a weak 3 

relationship with area burned (adjusted R
2
=0.34, Figure 9, Table 4), except perhaps at extremely 4 

low PDSI values (0-20
th
 percentile), where area burned increases with drought severity. In 5 

addition, PDSI percentile had a weak relationship with number of large fires (adjusted R
2
 = 0.30, 6 

Figure 8, Table 3). Based on these results, we concluded that ERC(G) percentile is the index 7 

with the most power in predicting large fire occurrence across the western US, followed closely 8 

by PPT percentile. 9 

 10 

Discussion 11 

We found strong correlations between fire occurrence (defined as total area burned and 12 

total number of fires) and certain drought/fire danger indices across the western US, indicating 13 

that models based on a single metric can account for over 90% of the variability in area burned 14 

across a large region, once metrics have been normalized to account for local climate. We 15 

therefore concluded that our methodology was successful in reducing the effect of confounding 16 

factors discussed in the Introduction and Methods sections, by: 1) accounting for the empirical 17 

distribution of indices by normalizing metrics to percentile, 2) removing the relative meanings of 18 

some indices by normalizing them to local climate, 3) using a consistent georeferenced dataset 19 

for fire occurrence provided by MTBS, which reduced problematic fire records, and 4) utilizing 20 

gridded index data to more closely represent weather and climate conditions near remote fire 21 

locations than datasets with coarser resolutions. 22 
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Once metrics were normalized to percentile, we found that metrics based on the previous 1 

1-3 months of weather data had strong correlations with both total area burned and number of 2 

large fires, indicating that this time period is critical to producing the conditions conducive to 3 

large fires. As the time period tabulated by the metric lengthened, the relationship weakened. 4 

This result indicates the importance of dead fuel moisture in promoting or retarding the spread of 5 

large fires. Dead surface fuels (grass, litter, duff, and woody debris) are the primary carrier of 6 

surface fires, and provide the intensity necessary for surface fires to transition to crown fires 7 

(Van Wagner 1977). Fine fuels such as grass are frequently referred to as 1-hour fuels, because 8 

they mostly equilibrate to constant ambient conditions within a few hours, while woody debris 9 

7.6-20.3 cm (3-8 inches) in diameter falls into the 1000-hr category, meaning it takes 10 

approximately 40 days to mostly equilibrate with constant environmental conditions (Fosberg et 11 

al. 1981). Dead fuel moistures therefore largely depend on weather conditions within the 12 

previous month and a half. It follows, therefore, that monthly precipitation totals (PPT), which 13 

were strongly related to area burned and number of fires in the western US, are a major driver of 14 

dead fuel moisture values. Because ERC(G) contains fuels of all size classes, including a heavy 15 

weighting of 1000-hour fuels (Andrews et al. 2003; Bradshaw et al. 1983), this index also 16 

captures trends in fuel moistures largely based on weather during the previous month and a half. 17 

ERC(G) has two other properties which likely caused it to have a stronger relationship with fire 18 

occurrence than other indices in this study. First, ERC(G) calculation includes relative humidity 19 

and solar radiation terms, which are important determinants of fuel moisture and vegetation 20 

curing. As vegetation cures, it becomes more readily available to burn and thus contribute to 21 

increased fire intensity and rate of spread (Scott and Burgan 2005).  Second, ERC(G) is 22 

calculated on a daily timestep and can capture timing of precipitation events, which affect the 23 
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potential for fires to grow. Of the indices analyzed, only ERC(G) captures daily weather, since 1 

other indices are summed over monthly intervals. However, ERC(G) calculation is more 2 

complex than that of PPT, which performed nearly as well, indicating that PPT could be used in 3 

situations where time, processing power, or data inputs are limited. SPI3 did not perform as well 4 

as ERC(G) or PPT, but was strongly correlated with number of large fires and moderately 5 

correlated with area burned in the western US. Given that SPI3 is based on precipitation during a 6 

3-month period, we expect that it would have a moderately strong relationship with fuel 7 

moistures. 8 

Indices based on longer timeframes had weaker or no relationship with fire occurrence. 9 

This result was likely due to the fact that longer-term indices do not strongly reflect recent 10 

precipitation and thus have weaker relationships with dead fuel moistures. For example, because 11 

PDSI is autoregressive, summer PDSI values will reflect antecedent conditions and are affected 12 

by winter/spring precipitation. Similarly, SPI9 for October-June could have an equivalent value 13 

for a 9-month period encompassing a dry October-March followed by a wet April-June, as it 14 

would for a wet October-March followed by a dry April-June. However, the effect on dead fuel 15 

moistures as well as the amount of vegetation that has cured would be extremely different.  16 

The weather conditions surrounding the extensive 1910 fires in Montana and Idaho 17 

demonstrate a case where shorter-term metrics would have likely been more strongly correlated 18 

with fire occurrence than longer-term metrics. In a 1931 study, the year 1910 was not listed as 19 

being among the 10 driest years for either state during the period of record (for Montana, 1895-20 

1930, and for Idaho, 1898-1930) (Henry 1931). Henry (1931) notes that, “The dry year 1910 is 21 

seemingly in a class by itself,” with the onset of the drought being “quite sudden as compared 22 

with the others.” Work by Brown and Abatzoglou (2010) and Diaz and Swetnam (2013) using 23 
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gridded weather data reinforces these conclusions: an anomalously wet and cool winter was 1 

followed by an anomalously dry and warm spring and summer. In the case of 1910, an infamous 2 

year of synchronous fires, longer-term metrics such as PDSI, SPI9, 12, or 24 would likely not 3 

have captured the conditions that promoted fire, while shorter-term metrics such as ERC(G) or 4 

PPT likely would have (Chuck McHugh, personal communication). 5 

While shorter-term fluctuations in precipitation strongly affect dead fuel moistures, 6 

longer-term periods of dry weather affect live fuels. As noted above, long periods of dry weather 7 

may result in mortality and/or curing of some live fuels, increasing rates of spread and fire 8 

intensity (Scott and Burgan 2005). This dynamic occurs seasonally in many ecosystems, but 9 

longer-than-average dry periods contribute to additional mortality. In addition, long droughts 10 

may reduce live fuel moisture of trees, which likely contributes to crown fire potential. However, 11 

live fuel flammability is still not well understood, with current research focusing on differences 12 

between new and old foliage and the abundance of flammable compounds, which fluctuate in 13 

response to seasonal drivers (Matt Jolly, personal communication). Metrics capturing longer time 14 

periods may relate in some way to these factors, but further research is needed to measure 15 

seasonal fluctuations in live fuel moistures and link them to index values. 16 

Fire suppression has likely affected the relationship of fire occurrence with fuel 17 

conditions. Some evidence indicates that the relationship of PDSI and fire occurrence was 18 

stronger during the pre-suppression era (Miller et al. 2012), when fires may have burned under 19 

more moderate conditions. Prior to European colonization, Native American burning was 20 

common in the US, with many tribes choosing to ignite burns during mild weather conditions in 21 

the spring (Lewis 1973). Current fire management policies in the western US tend to eliminate 22 

fires that can be suppressed, with suppression more effective under mild and moderate conditions 23 
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(Finney et al. 2009), leaving fires that escape suppression under the most extreme weather 1 

conditions to burn most of the acreage. There are exceptions, including fires that are allowed to 2 

burn in remote areas under mild or moderate conditions. Suppression forces can often take 3 

advantage of small precipitation events to control or contain fires, with such precipitation events 4 

being captured by ERC(G) calculation. In the pre-suppression era, fires might have continued to 5 

grow once these precipitation events ended. MTBS data do not contain information on 6 

suppression efforts, therefore, this factor could not be included in our analysis. 7 

We found stronger correlations between index percentiles and number of large fires than 8 

with area burned. We conclude short-term drought is a stronger driver of number of large fires 9 

than of total area burned, since probability of ignition increases with drier fuel moistures, while 10 

the area burned by large fires is also affected by other factors responsible for fire growth, 11 

including wind, temperature, topography, barriers to spread, fuel type, availability of fine fuels in 12 

some ecoregions, suppression tactics, and maturity of forest in stand-replacing regimes. We note 13 

that individual fire sizes were not strongly related to drought and fire danger indices, likely due 14 

to the effect of these factors. It is noteworthy, however, that precipitation indices showed a 15 

strong correlation with fire occurrence without including these other factors in statistical models.  16 

 17 

Conclusions 18 

The primary goals of this study were to: 1) investigate how shorter- and longer-term 19 

drought are related to fire occurrence in the western US by evaluating the strength of the 20 

correlation of various drought and fire danger indices with area burned and number of large fires, 21 

and 2) determine whether a single drought/fire danger index is strongly related to fire occurrence 22 

across the western US, since such a metric could be used in predictive modeling of large fires in 23 
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current fire danger applications, fire history studies, and studies predicting future fire occurrence 1 

under changing climatic conditions. When converted to a percentile-based measure indicating 2 

departure from local median conditions, short-term metrics ERC(G) and monthly precipitation 3 

(PPT) had strong correlations with area burned (R
2 
= 0.92 and 0.89 respectively) and number of 4 

large fires (R
2 
= 0.94 and 0.93 respectively) in the western US over the study period (1984-5 

2008). As the temporal scale of indices increased, the strength of their relationship with fire 6 

occurrence decreased. A likely reason for this result is that shorter-term metrics are more 7 

strongly related to dead fuel moistures, which are largely dependent on weather during the past 8 

1-3 months. Longer-term metrics are not as sensitive to recent precipitation events that affect 9 

fuel moistures and thus fire occurrence. Although PDSI is the most commonly used drought 10 

metric in fire history studies and in efforts to predict area burned, we found that it is not strongly 11 

correlated with area burned (R
2  
= 0.34 for PDSI percentile) or number of large fires (R

2
 = 0.30), 12 

likely due to the fact that it is not strongly related to dead fuel moistures. We therefore 13 

recommend the use of ERC(G) or the more easily calculated PPT for use in applications that 14 

associate precipitation and fire occurrence.  15 

Because ERC(G) and PPT are largely based on weather conditions during the previous 16 

month, they cannot be used for long-lead forecasting of fire occurrence, nor can we see a way 17 

that they could be calculated for use in fire history studies, which necessarily rely on annual tree-18 

ring data. Little is currently known about the mechanisms that drive drought, especially during 19 

fire seasons, with precipitation anomalies associated with El Niño-Southern Oscillation (ENSO) 20 

being more strongly linked to winter than summer precipitation across much of the western US 21 

(McCabe and Dettinger 1999; Ropelewski and Halpert 1986). Hence, long-lead forecasting of 22 

fire danger is currently challenging, given our result that fire season precipitation is the strongest 23 
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predictor of fire occurrence. However, if it were possible to predict synoptic patterns that cause 1 

negative precipitation anomalies that endure for more than a month, areas of high fire danger 2 

could in turn be predicted using forecast ERC(G) and PPT values.  3 
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List of Figures 16 

Figure 1. The study area was the western US, west of the grasslands of the Great Plains region, 17 

as delineated by Omernik ecoregion boundaries. This figure shows all fires included in the 18 

analysis, selected from the Monitoring Trends in Burn Severity database based on the following 19 

criteria: 1)  fires with centroid inside the study area, and 2) greater than or equal to 404.7 ha 20 

(1000 ac) in size. Map projection: Albers. 21 

 22 
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Figure 2. Gridded 3-month Standardized Precipitation Index (SPI3) data for June 2008, with US 1 

Climate Division boundaries, illustrating fine-scale variability in SPI3. Map projection: Albers. 2 

 3 

Figure 3. Empirical frequency distribution (EFD) of index values 1/1/1984 – 12/31/2008 in the 4 

study area (shown in black), plotted with EFD of index values associated with large fire events 5 

(shown in gray). Empirical frequency distribution of some indices is markedly different for fire 6 

events than as a whole, suggesting that these indices are related to fire occurrence. Units of PPT 7 

are given in millimeters. 8 

 9 

Figure 4. The 90% confidence interval around the mean value of indices, for all index values 10 

during 1/1/1984 – 12/31/2008 and for index values associated with large fires events. 11 

Bootstrapped mean was calculated on a sample with replacement, with sample size = 1000, and 12 

sample conducted 500 times. Pairs of confidence intervals overlapped for PDSI, SPI6, SPI9, 13 

SPI12, and SPI24, meaning there is not statistical evidence that the means are different under 14 

conditions when large fires occurred. 15 

 16 

Figure 5. Empirical cumulative distribution functions of indices, for all conditions and those 17 

associated with fires. For fires, n=5976 (shown in gray). Due to processing limitations, 1,000,000 18 

values were randomly sampled from the index values to create the ECDF of “all” values (shown 19 

in black). a) ERC(G) (7-day average), b) PPT, c) PDSI, d) SPI3, e) SPI6, f) SPI9, g) SPI12, h) 20 

SPI24. 21 

 22 

Figure 6. Fire area versus ERC(G) (left), and fire area versus PDSI (right). 23 
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 1 

Figure 7. Fire area versus ERC(G) percentile. 2 

 3 

Figure 8. Total number of fires, summed by index percentile. Each point represents the total area 4 

burned in that percentile, with 100 percentile bins. a) ERC(G), b) PPT, c) PDSI, d) SPI3, e) SPI6, 5 

f) SPI9, g) SPI12, h) SPI24. 6 

 7 

Figure 9. Sum of area burned, by index percentile. Each point represents the total area burned in 8 

that percentile, with 100 percentile bins. a) ERC(G), b) PPT, c) PDSI, d) SPI3, e) SPI6, f) SPI9, 9 

g) SPI12, h) SPI24. 10 

 11 

 12 

List of Tables 13 

 14 

Table 1. Review of literature relating drought and precipitation indices calculated from weather 15 

records to area burned in the western US during the modern era. Studies utilize fire records kept 16 

by US Department of Interior National Park Service, Bureau of Land Management, Bureau of 17 

Indian Affairs, US Department of Agriculture Forest Service, states, and/or private landowners. 18 

 19 

Table 2. Statistics comparing empirical distributions of indices during large fire events with 20 

those during all conditions. The null hypothesis (Ho) was that the two distributions were the 21 

same. The alternative hypothesis (Ha) for PDSI, SPIs, and PPT was that the ECDFs of the index 22 

during fires is greater than that of all values; for ERC(G), Ha was that the ECDF of ERC(G) 23 
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associated with fire events is less than that of all ERC(G)s. Ho was rejected a higher percentage 1 

of the time for shorter-term metrics (at alpha=0.1), constituting evidence that large fire 2 

occurrence is more strongly related to shorter-term metrics. 3 

 4 

Table 3. Linear models relating drought indices to area burned. 5 

 6 

Table 4. Linear models relating index percentiles to number of large fires. 7 

 8 
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Figure 1. The study area was the western US, west of the grasslands of the Great Plains region, as 
delineated by Omernik ecoregion boundaries. This figure shows all fires included in the analysis, selected 
from the Monitoring Trends in Burn Severity database based on the following criteria: 1)  fires with centroid 

inside the study area, and 2) greater than or equal to 404.7 ha (1000 ac) in size. Map projection: Albers.  
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Figure 2. Gridded 3-month Standardized Precipitation Index (SPI3) data for June 2008, with US Climate 
Division boundaries, illustrating fine-scale variability in SPI3. Map projection: Albers.  
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Figure 3. Empirical frequency distribution (EFD) of index values 1/1/1984 – 12/31/2008 in the study area 
(shown in black), plotted with EFD of index values associated with large fire events (shown in gray). 
Empirical frequency distribution of some indices is markedly different for fire events than as a whole, 

suggesting that these indices are related to fire occurrence. Units of PPT are given in millimeters.  
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Figure 4. The 90% confidence interval around the mean value of indices, for all index values during 
1/1/1984 – 12/31/2008 and for index values associated with large fires events. Bootstrapped mean was 

calculated on a sample with replacement, with sample size = 1000, and sample conducted 500 times. Pairs 

of confidence intervals overlapped for PDSI, SPI6, SPI9, SPI12, and SPI24, meaning there is not statistical 
evidence that the means are different under conditions when large fires occurred.  
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Figure 5. Empirical cumulative distribution functions of indices, for all conditions and those associated with 
fires. For fires, n=5976 (shown in gray). Due to processing limitations, 1,000,000 values were randomly 
sampled from the index values to create the ECDF of “all” values (shown in black). a) ERC(G) (7-day 

average), b) PPT, c) PDSI, d) SPI3, e) SPI6, f) SPI9, g) SPI12, h) SPI24.  
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Figure 6. Fire area versus ERC(G) (left), and fire area versus PDSI (right).  
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Figure 7. Fire area versus ERC(G) percentile.  
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Figure 8. Total number of fires, summed by index percentile. Each point represents the total area burned in 
that percentile, with 100 percentile bins. a) ERC(G), b) PPT, c) PDSI, d) SPI3, e) SPI6, f) SPI9, g) SPI12, h) 

SPI24.  
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Figure 9. Sum of area burned, by index percentile. Each point represents the total area burned in that 
percentile, with 100 percentile bins. a) ERC(G), b) PPT, c) PDSI, d) SPI3, e) SPI6, f) SPI9, g) SPI12, h) 

SPI24.  
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Table 1. Review of literature relating drought and precipitation indices calculated from 

weather records to area burned in the western US during the modern era. Studies utilize 

fire records kept by US Department of Interior National Park Service, Bureau of Land 

Management, Bureau of Indian Affairs, US Department of Agriculture Forest Service, 

states, and/or private landowners. 

Region Authors Years Statistic relating drought index to area 

burned 

Yellowstone 

National Park 

Balling et al. 

(1992) 

1895-1990 PDSI for two adjacent climate divisions. 

Pearson product-moment correlation (r), for 

summer PDSI = -0.04 to -0.33, for 

antecedent winter PDSI = -0.14 to -0.35, for 

antecedent year PDSI = -0.12 to -0.36, for 

antecedent 2 years PDSI = -0.12 to -0.38. 

Spearman’s Rank for summer PDSI = -0.55 

to -0.6, for antecedent winter PDSI = -0.23 to 

-0.27, for antecedent year PDSI = -0.2, for 

antecedent 2 years PDSI = -0.18. 

Interior 

Western US 

Collins et al. 

(2006) 

1926-2002 Average PDSI calculated for 3 regions 

(1=MT, ID, WY; 2=NV, UT; 3=AZ, NM) 

based on averaging PDSI value for each 

state.  

R
2 
= 0.27 – 0.43 for current year; 

R
2 
= 0.44 – 0.67 for model including current 

year and two previous years 

Western US Littell et al. 

(2009) 

1916-2003 

and 

1980-2003 

Forward selection regression used to 

parameterize generalized linear models based 

on seasonal precipitation, temperature, and 

PDSI for current and previous year; 

dependent variable was annual area burned 

by ecoprovince,  

R
2
 = 0.33 – 0.87 

National 

Forests in 

northwestern 

California 

Miller et al. 

(2012) 

1910-1959 

and 

1987-2008 

Regression models predicted number of fires 

based on summer PDSI (June, July, and 

August) (R
2
 = 0.37) and total annual area 

burned (R
2
 = 0.37) for the first time period. 

For the later time period, total precipitation 

in June, July, and August was correlated with 

number of fires (R
2
 = 0.60) and total annual 

area burned (R
2
 = 0.54). 

Idaho and 

western 

Montana, US 

Morgan et al.  

(2008) 

1900-2003 Spearman’s rank correlation between annual 

area burned and climate-division temperature 

and precipitation. 

Summer precipitation: r = -0.49 

Summer temperature (normalized): r = 0.59 

Two National Trouet et al. 1973-2005 National Forests clustered into 2 groups with 
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Forest groups 

in southern 

Oregon and 

northern 

California 

(2009) similar temporal sequences of area burned. 

Daily ERC(G) was averaged to produce a 

seasonal value for July-August-September. 

Correlation (r) between annual area burned 

and seasonal ERC(G) = 0.32 – 0.4 

US West Westerling et 

al. (2003) 

1980-2000 Monthly PDSI values are “the average of 

values interpolated from US climate 

divisions” onto a 1x1 degree grid.   

Pearson’s correlation (r)  ~ -0.7 – 0.8.  

(note: lagged positive correlations in arid 

regions may indicate abundant moisture for 

fine fuel growth) 
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Table 2. Statistics comparing empirical distributions of indices during large fire events with 

those during all conditions. The null hypothesis (Ho) was that the two distributions were the 

same. The alternative hypothesis (Ha) for PDSI, SPIs, and PPT was that the ECDFs of the index 

during fires is greater than that of all values; for ERC(G), Ha was that the ECDF of ERC(G) 

associated with fire events is less than that of all ERC(G)s. Ho was rejected a higher percentage 

of the time for shorter-term metrics (at alpha=0.1), constituting evidence that large fire 

occurrence is more strongly related to shorter-term metrics. The D statistic measures the 

maximum separation distance between the two distributions, with higher values suggesting 

higher likelihood that the two distributions are different. 

Index 

Median of 

means 

(fire) 

Median 

of 

means 

(all) 

Means 

different 

based 

on 90% 

CI? 
D 

(median) 

Percent of  

tests in 

which Ho 

rejected 

ERC(G) 79.8 52.1 yes 0.52 100 

PPT 15.1 42.6 yes 0.36 100 

SPI3 -0.3 0.1 yes 0.26 95.5 

SPI6 -0.2 0.1 no 0.2 78.6 

SPI9 -0.1 0.2 no 0.2 77.8 

SPI12 -0.05 0.2 no 0.19 72.6 

PDSI -0.7 -0.1 no 0.19 70 

SPI24 0.23 0.26 no 0.11 18.6 
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Table 3. Linear models relating index percentiles to number of large fires. 

 

Index Model R
2 

ERC(G) 2333.0)(*02768.010 −= pctERCNLog  0.94 

PPT 303.2)(*01389.010 +−= pctPPTNLog  0.93 

PDSI 878.1)(*002438.010 +−= pctPDSINLog  0.30 

SPI3 058.2)3(*006487.010 +−= pctSPINLog  0.83 

SPI6 944.1)6(*003710.010 +−= pctSPINLog  0.68 

SPI9 910.1)9(*002978.010 +−= pctSPINLog  0.52 

SPI12 903.1)12(*002813.010 +−= pctSPINLog  0.52 

SPI24 743.1)24(*000473.010 +−= pctSPINLog  0.012 

 
Key to table: 

A = area burned 

N = number of large fires 

ERC_pct = ERC(G) percentile 

PPT_pct = PPT percentile 

PDSI_pct = PDSI percentile 

SPI3_pct = SPI3 percentile 

SPI6_pct = SPI6 percentile 

SPI9_pct = SPI9 percentile 

SPI12_pct = SPI12 percentile 

SPI24_pct = SPI24 percentile 

R
2 
= adjusted R

2 
of model 
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Table 4. Linear models relating drought indices to area burned. 

Index Model R
2 

ERC(G) 592.2)(*03551.010 += pctERCALog  0.92 

PPT 984.5)(*01862.010 +−= pctPPTALog  0.89 

PDSI 4875.5)(*003780.010 +−= pctPDSIALog  0.25 

SPI3 738.5)3(*009755.010 +−= pctSPIALog  0.70 

SPI6 595.5)6(*005972.010 +−= pctSPIALog  0.46 

SPI9 502.5)9(*003784.010 +−= pctSPIALog   0.28 

SPI12 492.5)12(*003366.010 +−= pctSPIALog  0.23 

SPI24 317.5)24(*000007998.010 += pctSPIALog  -0.010 

 

Key to table: 

A = area burned 

N = number of large fires 

ERC_pct = ERC(G) percentile 

PPT_pct = PPT percentile 

PDSI_pct = PDSI percentile 

SPI3_pct = SPI3 percentile 

SPI6_pct = SPI6 percentile 

SPI9_pct = SPI9 percentile 

SPI12_pct = SPI12 percentile 

SPI24_pct = SPI24 percentile 

R
2 
= adjusted R

2 
of model 
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