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[1] This study investigates the frequency of heavy rainfall events in Hawaii during the wet
season (October‐April) 1958–2005 and their conditional dependence on the Pacific‐North
American (PNA) pattern and El Niño‐Southern Oscillation (ENSO). Heavy rain
events are defined by the 95% quantile in the rainfall distribution of the wet seasons.
Twelve stations with daily reports of rainfall amounts were used to count the number of
heavy rain days during wet seasons. Multiple linear regression (MLR) indicated that the
PNA index (PNAI) and the Southern Oscillation Index (SOI) can explain a significant
amount of the interannual to interdecadal variability for 9 out of 12 stations. Cross
validation showed that PNAI and SOI together explain about 18–44% of the
variability in the number of heavy rain events. Furthermore, the MLR model
reproduces the trend toward fewer heavy rain events in the years after the Pacific
climate shift in the mid‐1970s. The MLR model was applied to the projected PNAI
and SOI indices that were obtained from six IPCC AR4 climate models. The current
suite of AR4 simulations based on the A1B and A2 emissions scenarios projects
small and equivocal changes in the mean state of the SOI and PNAI during the 21st
century. The covariance between PNAI and SOI in these simulations appears to be
stable. To the extent that variations in the frequency and magnitude of ENSO and the PNA
mode are responsible for modulating extreme rainfall occurrence in Hawaii, our results
indicate small changes in the projected number of heavy rainfall days with large uncertainties
resulting from disparities among the climate models.

Citation: Elison Timm, O., H. F. Diaz, T. W. Giambelluca, and M. Takahashi (2011), Projection of changes in the frequency of
heavy rain events over Hawaii based on leading Pacific climate modes, J. Geophys. Res., 116, D04109,
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1. Introduction

[2] Current trends in temperature and rainfall have been
identified as major stress factors for many endemic species
in Hawaii’s unique ecosystem. Facing the potential threat of
future climate change, conservation management and water
resource management will require new adaptive approaches.
Previous studies have screened the 20th century climate for
trends in temperature and precipitation. A general warming
trend that increases with altitude was detected [Giambelluca
et al., 2008]. Rainfall data and stream discharge data show a
trend toward lower annual mean precipitation [Diaz et al.,
2005; Oki, 2004], and a reduction in the number and inten-
sity of extreme rainfall events [Chu et al., 2009; Chu et al.,
2010]. The regional changes in climate variables such as
temperature and precipitation have been observed on decadal

andmultidecadal time scales, but a formal attribution to either
natural intrinsic variability of the ocean‐atmosphere system,
natural external climate forcing, or man‐made greenhouse
gas forcing cannot be achieved with the available observa-
tional data. It is one of the major efforts behind the formal
detection and attribution of regional climate change which
attempts to combine local observations with climate model-
ing studies to optimize the fingerprint of anthropogenic cli-
mate change [Zwiers and Zhang, 2003; Hegerl et al., 2004;
Zhang et al., 2007; Stott et al., 2010]. Without understand-
ing the ultimate cause of trend‐like features, extrapolation
into the mid and late 21st century must be considered with
caution.
[3] Very few studies have been devoted to future pro-

jections of regional climate change for Hawaii. Two ap-
proaches can be applied to refine the coarse‐resolution
global climate change scenarios: dynamical and statistical
downscaling. Whereas the former makes use of a compu-
tationally expensive regional climate model, the latter
approach deploys various types of statistical methods to
quantify some characteristics of the underlying joint prob-
ability distribution between regional climate variables and
the large‐scale climate variability [Christensen et al., 2007].
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Although the statistical problem may be considered well‐
defined in the framework of statistical theories, the practical
limitations for applying statistical downscaling techniques
vary from case to case [Wilby and Wigley, 1997]. In Hawaii,
for example, it is the interaction between the topography and
the general circulation that produces a spatially heteroge-
neous climate pattern. Steep topographic gradients are
responsible for the complex pattern in rainfall and vegeta-
tion zones which are characterized by very short horizontal
and vertical scales. Despite the rather dense network of rain
gauges in the major islands of Hawaii, it is clear that only a
fraction of the full spatial covariance structure in the rainfall
is represented in the observational records, which imposes a
major challenge not only to statistical downscaling methods
but also to any regional climate model verification. Timm and
Diaz [2009] were the first to attempt a synoptic‐statistical
downscaling procedure to estimate future changes in the
seasonal mean rainfall at individual stations. They found
that the ensemble mean scenario for the AR4 scenario A1B
simulations suggests slightly reduced rainfall (5%) during
the wet season and a weak increase during the dry season
(5–10%) on average over Hawaii. In many environmental
impact studies, changes in the mean are of less concern
than extreme events. Heavy rainfall can cause severe flash
floods, erosion and riverine influx of debris with severe
effects on coral ecosystems, riparian zones, and increased
threat to life and property.
[4] An essential component of statistical downscaling is

the diagnostic analysis of the past, instrumentally observed
climate variability. Hawaii is located in the latitude belt of
the descending branch of the Hadley circulation with pre-
vailing northeasterly trade winds in the lower atmosphere,
frequently accompanied by a pronounced trade wind
inversion layer [Cao et al., 2007]. However, during the wet
season months October– April, extratropical cyclonic dis-
turbances and their frontal systems contribute significantly
to the annual rainfall in Hawaii [Lyons, 1982; Schroeder,
1993]. Strong influences from tropical ENSO climate vari-
ability and extratropical variability associated with the
Pacific Decadal Oscillation (PDO) [Mantua and Hare,
2002] have been observed in the past decades [Chu, 1989;
Chu and Chen, 2005].

[5] Despite a multitude of studies that have investigated
future changes in ENSO variability and mean shifts in the
tropical climate [Collins, 2005; Latif and Keenlyside, 2009;
Vecchi and Wittenberg, 2010; Collins et al., 2010], current
projections of warming‐induced changes are still uncertain.
A large spread exists among the IPCC AR4 models, how-
ever, the latest studies indicate that more models tend
toward a climate mean state that resembles an El Niño‐like
pattern [Vecchi and Wittenberg, 2010]. The tendency in
terms of ENSO variance is also uncertain, and current pro-
jections from the AR4 models range from reduced to
increased ENSO variability. Furthermore, it is unclear how
the covariance between tropical and extratropical climate
modes such as ENSO and PNA will be affected in future
climate change scenarios.
[6] In this study, we estimate (1) how the frequency of

heavy rainfall events has varied in the last 50 years and (2)
how these changes are correlated with the large‐scale cli-
mate modes of the Pacific, namely the PNA and SOI.
Multiple linear regression (MLR) is used to derive the linear
relationship between the frequency of heavy rain days and
the state of ENSO and PNA. Finally, we study the projected
future changes in the heavy rain events statistics in relation
to projected changes in the joint state of ENSO and PNA
modes. For this purpose the emissions scenarios A1B and
A2 were analyzed for the mid and late 21st century.

2. Data and Methods

2.1. Daily Rainfall Data

[7] In order to derive the statistical relations between the
rainfall event counts and SOI and PNAI, an overlapping
observation period is required. From the network of
Hawaiian rain gauge stations, we selected 12 stations with
daily reported precipitation amounts between 1958–2005
(see Table 1). This period was found to be most suitable for
this research based on data availability and homogeneity.
The selected stations have the highest ratio of observed to
missing reports during the entire time period (80–99%
complete). Heavy rainfall events are identified based on the
95% quantiles (p95) in the estimated cumulative frequency
distribution of daily precipitation amounts. For each station,

Table 1. Rain Gauge Stations Used in the Analysisa

Number
Station

Identification Name
Lon.
(°E)

Lat.
(°N)

Elev.
(m)

Missing Obs. (%)
1958–1976 (1977–2005)

Prob. Rain (%)
1958–1976 (1977–2005)

p95 (mm)
1958–1976

1 511004 HALEAKALA R S 338 −156.224 20.758 2121 0.7 (1.0) 42.9 (39.4) 50.8
2 511303 HAWAII VOLCNS NP HQ 54 −155.244 19.426 1210 1.5 (4.8) 79.5 (77.4) 47.5
3 511492 HILO INTERNATIONAL AP −155.047 19.720 12 0.0 (0.5) 71.5 (68.7) 55.4
4 511919 HONOLULU INTL AP 703 −157.911 21.320 2 0.8 (0.0) 31.8 (27.8) 36.3
5 512572 KAHULUI WSO AP 398 −156.410 20.893 16 0.0 (0.1) 32.6 (31.7) 27.2
6 512679 KAILUA 446 −156.191 20.889 213 7.7 (31.4) 74.6 (68.7) 51.8
7 512751 KAINALIU 73.2 −155.909 19.535 457 4.9 (28.1) 43.8 (30.1) 35.1
8 512286 LANAI CITY 672 −156.915 20.824 494 12.3 (32.2) 37.9 (26.6) 37.8
9 515580 LIHUE WSO AP 1020.1 −159.329 21.984 30 0.0 (0.0) 54.5 (52.6) 33.3
10 516198 MAUNA LOA SLOPE OBS −155.559 19.537 3399 1.4 (15.0) 22.8 (10.8) 24.4
11 516588 NAALEHU 14 −155.578 19.067 244 24.4 (9.5) 40.7 (34.5) 46.2
12 517166 OPIHIHALE 2 24.1 −155.860 19.271 415 1.7 (<0.1) 46.3 (35.6) 26.7

aData were extracted from the “summary of the day” data set available from the National Climatic Data Center, NOAA, in Asheville, North Carolina.
Missing observations and the chance of rain are presented for the two subperiods 1958–1976 and 1977–2005. The probability of rain is defined as the ratio
between the number of days with measurable rainfall (>0.254 mm/d) and the number of rain and dry days. Column p95 shows the 95% quantile of the
cumulative rainfall distribution obtained from all rain days during 1958–1976 wet seasons (October‐April). Lon., longitude; Lat., latitude; Elev.,
elevation; Missing Obs., missing observation; Prob. Rain, probability of rain.
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p95 was determined by sorting all rain days (days with
precipitation amounts greater or equal 0.01 inch/d) in a
“calibration” period 1958–1976. As will be explained later,
this period was selected from the available time range 1958–
2005 in order to test if the frequency of events changed after
the major climate shift in the mid‐1970s [Trenberth, 1990;
Diaz et al., 2001; Mantua and Hare, 2002]. Note that only
the wet season (October‐April) was considered. The 95%
quantile was found to provide a good trade‐off between the

sample size (i.e., event numbers) and the severity of such
events (see Table 1). Zhang et al. [2005] found that the
estimated exceedance rate can be biased in the case of small
sample sizes or high threshold percentiles. They suggested
to estimate the exceedance rate within the “in‐base period”
with Jackknife resampling methods to correct for the bias. In
our application we tested to what extend biases could affect
the event counts. It was found that the threshold levels for
heavy rain events differ only by the order of 0.01 inch/d,
which is at the precision limit of the rain gauges. Hence, in
this application we do not further apply the bias correction
approach.
[8] Since the stations have considerable gaps in the ob-

servations during some years, the numbers of events were
adjusted in the following way. Assuming the probability of
extreme events is independent of the occurrence of missing
observations one can correct the number of counted events
~ne(t) by:

ne tð Þ ¼ ~ne tð Þpobs tð Þ�1; ð1Þ

where ne(t) is the estimated number of heavy rain events in a
wet season year t, ~ne(t) is the number of observed events and
pobs(t) is the proportion of reported observations during the
given wet season. The rationale behind this correction is that
the chances of missing an observation is not dependent on
the occurrence of heavy rain events. As far as we were able
to assess the information on the data recording, archiving
and digitization process, this assumption is justified. To
illustrate the data processing, Figures 1a and 1b show the
daily rainfall amounts and the obtained frequency counts of
heavy rain events for one particular station near the southern
tip of Big Island. These resulting time series with the
number of heavy rain events per wet season (Figure 2) are
the target variables in the statistical downscaling (SD) pro-
cedure described below.

2.2. Statistical Downscaling Method

[9] In this study, SD is based on multiple linear regression
(MLR), in which the number of heavy rain events are
assumed to be conditionally dependent on the major modes
of climate variability in the North Pacific sector. Initial
testing of various combinations of predictors (SOI, Niño 3.4,
PDO index, PNA index) indicated that the most robust val-
idation results were obtained with the PNA index and either
SOI or Niño 3.4 index. We selected the normalized PNAI
and SOI (available at NOAA’s Climate Prediction Center
(http://www.cpc.noaa.gov/data/indices/soi; http://www.cpc.
ncep.noaa.gov/products/precip/CWlink/pna/pna.shtml))
(Figure 1c). The regression patterns [von Storch and Zwiers,
1999, p. 380] associated with the SOI and PNAI were
obtained from the National Centers for Environmental
Prediction‐ National Center for Atmospheric Research
(NCEP‐NCAR) reanalysis [Kalnay et al., 1996;Kistler et al.,
2001] (seasonally averaged October‐April for the years
1961–1990) by using the 1000 hPa and 500 hPa geopotential
height fields, respectively. For the SOI regression pattern, we
selected the tropical and subtropical region of 30°S–30°N/
90°E–280°E. For the PNA pattern the domain extends from
the central tropical Pacific to the North American continent
(0°S–70°N/120°E–300°E). The regression patterns show the
1000 hPa geopotential height anomalies associated with a

Figure 1. (a) Time series of daily rainfall amounts (black
dots; inch/d) at Naalehu (station 11). Heavy rain events are
marked in red. Missing days are indicated as gray dots in
the upper portion of the graph (above the 14 inch/d level).
Note that we randomly shifted the gray dots in the vertical
by a small random offset to account for the high data density.
(b) Frequency of heavy rain events during the wet season
(October‐April) 1958–2005. Gray bars are the number of
observed events, and black bars denote the corrected number
of events accounting for missing observations. Green line
with circles is theMLR estimated number of corrected events.
The mean of the corrected (black solid line) and MLR esti-
mated (green dashed line) frequency counts is shown for
1958–1976 and 1977–2005 (see also Table 4). (c) Time
series of the SOI (red lines) and PNAI (blue lines) seasonally
averaged (October‐April) based on the data from NOAA’s
Climate Prediction Center (http://www.cpc.noaa.gov/data/
indices/soi; http://www.cpc.ncep.noaa.gov/products/precip/
CWlink/pna/pna.shtml). Thick lines in Figures 1b and 1c are
the low‐pass filtered time series (10 year cutoff period)
[Duchon, 1979].
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Figure 2. Time series with the number of heavy rain events per wet season during 1958–2005 (a‐l) for
the 12 stations given in Table 1 and (m) the average of all 12 stations. The 10 year low‐pass filtered time
series [Duchon, 1979] are shown as black lines, and the 1958–1976 (1977–2005) mean number of events
are shown as blue (red) lines. Note that the two mean values and their bootstrapped 90% confidence
intervals are shown next to the vertical axis for better comparison.
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1 standard deviation anomaly in the SOI and the 500 hPa
geopotential height anomalies for a 1 standard deviation in
the PNAI (Figure 3).
[10] The regression model for a single station can be

stated as

ne tð Þ ¼ a0 þ a1SOI tð Þ þ a2PNAI tð Þ þ e tð Þ: ð2Þ

[11] In this equation the, number of heavy rain events in a
given year t is given by the states of SOI(t) and PNAI(t) and
an independent noise component e(t). In the standard max-
imum likelihood estimation procedure for the MLR it is
assumed that predictors and predictands are continuous
variables (not discrete count data) and the error terms follow
a Gaussian distribution and errors are independent and
identically distributed in time. These assumptions are cer-
tainly not fulfilled in our case and it should be kept in mind
that the regression parameter estimates are not the best linear
unbiased estimators. Using resampling techniques for cross
validation [Michaelsen, 1987], however, we tested the
practical performance of the MLR estimates. The regression

parameters a0, a1, a2 were calibrated and validated with a
Monte Carlo (MC) techniques. The years 1958–2005 were
randomly divided (1000 times) into even subsamples (24
years for calibration and validation). Pearson and Spearman
correlation coefficients were calculated between the MLR‐
estimated number of events and the observed number of
events for calibration and validation periods during each
iteration. Spearman correlation measures the dependency
between the estimated and observed number of events by
comparing the ranks, where the ranks are determined from
the sorted samples (lowest to highest values). This non-
parametric measure is more suitable for the event counts
than the Pearson correlation. The average values are shown
in Table 2, together with the mean regression parameters
and their corresponding standard deviations estimated dur-
ing the cross validation. It must be noted that the estimated
significance levels can be affected by serial correlation in
the time series of predictors/predictands. We estimated the
effects of serial correlation to be small. In no case was the
lag‐1 autocorrelation significantly different from zero based
on a 5% significance test. The estimates for the equivalent

Figure 3. (a) Associated regression pattern of the NCEP reanalysis 1000 hPA geopotential height fields
[Kalnay et al., 1996; Kistler et al., 2001] regressed on the SOI calculated using October‐April seasonal
averages between years 1961 and 1990; (b) same but for the 500 hPa geopotential height fields and the
PNAI.
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sample size [von Storch and Zwiers, 1999, p. 115] deviate
less than 10% from the nominal sample size.
[12] Data for the AR4 twentieth century climate model

simulations and the twenty‐first‐century simulations for
CO2 emissions scenarios A1B and A2 were obtained from
the FTP server (ftp‐esg.ucllnl.org) maintained by the Earth
System Grid II (ESG) research project sponsored by the
U.S. Department of Energy Office of Science. We
selected six models for the current analysis (see Table 3)
that represent a wide range of projected mean precipitation
changes for Hawaii [Timm and Diaz, 2009]. Geopotential
height data from the models were interpolated onto the
NCEP grid (2.5° × 2.5°) using bicubic interpolation. SOI and
PNAI were obtained by projecting the 1000 hPa and 500 hPa
geopotential height fields onto their associated regression
patterns from the NCEP reanalysis. The time‐dependent
geopotential height fields were projected onto the regres-

sion patterns for the years 1961–1990, 2046–2065 and
2081–2100. The period 1961–1990 of the “20c3m” sce-
nario simulations were used to define present‐day refer-
ence climate statistics. For each model, we normalized the
projection indices to have zero mean and unit variance for
the the 20th century period. The same offset and scaling
factors are subsequently applied to the future climate
change scenarios in 2046–2065 and 2081–2100. Note that
the general warming trend in the 21st century leads to an
overall increase in the height of 500 hPa geopotential and
we removed this signal from the projected PNAI.

3. Results

[13] In this section we present the calibration and cross
validation of the multiple linear regression (MLR) model
which forms the core of the SD process, and the analysis of
the six‐member model ensemble with respect to their future

Table 2. Calibration and Validation Statistics of the Monte Carlo MLR Regression for Each Station and the Station Average (AVG)a

Station

Calibration

Validation MeanMean Standard Deviation Mean

â0 â1 â2 â0 â1 â2 rp
2 rs

2 rp
2 rs

2

1 5.0 0.62 −1.41 0.53 0.50 0.71 0.24 0.29** 0.18 0.23**
2 8.5 1.67 −1.37 0.64 0.58 0.76 0.30 0.33** 0.25 0.27**
3 7.1 0.79 −1.85 0.56 0.56 0.62 0.33 0.32** 0.27 0.27**
4 2.7 −0.15 −1.01 0.30 0.32 0.30 0.22 0.26** 0.16 0.19**
5 3.4 0.06 −1.41 0.38 0.42 0.45 0.27 0.27** 0.21 0.22**
6 7.7 0.15 −1.74 0.69 0.78 1.00 0.19 0.17* 0.10 0.10
7 3.4 0.10 −1.01 0.29 0.28 0.25 0.28 0.30** 0.24 0.25**
8 3.4 −0.10 −1.39 0.39 0.40 0.42 0.26 0.27* 0.20 0.21**
9 4.9 0.01 −1.98 0.33 0.40 0.36 0.47 0.45** 0.43 0.41**
10 1.9 0.29 −0.39 0.26 0.25 0.29 0.12 0.17* 0.08 0.11
11 3.9 0.63 −1.45 0.38 0.35 0.42 0.37 0.40** 0.33 0.36**
12 5.0 0.23 −0.83 0.38 0.39 0.46 0.17 0.22* 0.11 0.15
AVG 4.7 0.36 −1.32 0.27 0.27 0.34 0.45 0.48** 0.40 0.44**

aThe mean of the estimated regression coefficients in equation (2) and their standard deviation are given (â0,1,2). Mean values of the squared Pearson and
Spearman correlations (rp

2 and rs
2, respectively) are shown for the calibration and validation; 10% (5%) one‐sided significance (null hypothesis: zero

correlation) levels are indicated by *(**) for the Spearman correlations only. Tests were calculated using the statistical software package R (K. Hornik, The
R FAQ, 2010, http://www.ci.tuwien.ac.at/hornik/R/R‐FAQ.html).

Table 3. Simulated Changes in the Mean and Variance of SOI and PNAI in Six Models of the IPCC AR4 Reporta

Model

SOI
2046–2065 (2081–2100)

PNAI
2046–2065 (2081–2100)

Mean Variance Mean Variance

Emissions Scenario A1B
CCCMA_CGCM3_1 0.33 (0.61*) 1.70 (0.47) 0.94* (0.52*) 1.13 (1.12)
GFDL_CM2_0 0.16 (−0.06) 0.64 (0.85) −0.55 (0.19) 1.70 (1.27)
GFDL_CM2_1 0.24 (0.30) 0.14* (0.17*) 0.31 (0.16) 0.62 (1.03)
MPI_ECHAM5 −0.22 (−0.44) 1.80 (1.59) −0.15 (0.45) 1.30 (1.08)
MRI_CGCM2_3_2aa −0.62* (−0.45) 1.26 (1.11) 0.42 (0.47) 1.75 (1.84*)
UKMO_HADCM3 0.05 (−0.17) 1.27 (0.99) −0.07 (−0.51*) 3.41* (1.32)
Ensemble mean −0.01 (−0.04) 1.19 (0.98) 0.15 (0.21*) 1.79 (1.34)

Emissions Scenario A2
CCCMA_CGCM3_1 0.27 (1.07*) 0.91 (1.23) 0.66* (0.83*) 0.78 (0.48)
GFDL_CM2_0 −0.01(0.12) 0.80 (0.97) 0.12 (0.02) 0.98 (1.14)
GFDL_CM2_1 0.10 (0.36) 0.67 (0.38) 0.11 (−0.20) 0.89 (1.19)
MPI_ECHAM5 −0.45 (−0.20) 1.58 (1.32) 0.09 (0.38) 1.65 (1.65)
MRI_CGCM2_3_2aa −0.51 (−0.69*) 1.90 (1.98) 0.49* (0.83*) 1.21 (0.69)
UKMO_HADCM3 −0.03 (−0.09) 1.62 (1.54) −0.51 (−0.78*) 1.69 (3.24)
Ensemble mean −0.01 (−0.01) 1.27 (1.48) 0.16 (0.18) 1.28 (1.68)

aThe years 1961–1990 from the 20th century run 20C3M were used as a reference period: the mean of the SOI and PNAI during the 1961–1990 period
was subtracted, and the anomalies were scaled by the standard deviation 1961–1990. Differences passing the two‐sided 5% Bootstrap significance test
(null hypothesis: difference is zero) are marked with an asterisk.
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projection of changes in SOI and PNAI. The target vari-
ables (predictands) are the time series of the frequency of
heavy rain events per wet season (October‐April) shown
in Figure 2. The time series show variability on interan-
nual, decadal and multidecadal time scales. The long‐term
average of heavy rain events per season is highly variable
among the stations as a result of different number of dry
days. For example, Hilo (station 2) has on average 8–9
heavy rain events per season (212 days (213 for leap
years)) whereas the high‐elevation station on Mauna Loa
(10) has only 1–3 events in one season.

3.1. MLR Model Cross Validation and Application to
the Mid‐1970s Climate Shift

[14] We applied a MC cross‐validation technique by
randomly drawing 24 years (without repetition) from 1958–
2005 for the calibration of the MLR model and using the
remaining years for validation of the model. The results are
summarized in Table 2. Three stations did not pass the null
hypothesis test for zero correlation at the 10% significance
level for the Spearman rank correlation. For those stations,
cross‐validation analysis resulted in the null hypothesis
being rejected for more than 70% of the 1000 subsamples.
In case of stations “Kailua 446” and “Mauna Loa Slope
Obs” average p values were larger than 10% (station
“Opihipihi Hale 2 24” larger than 9%). For the significant
stations the average ranked Spearman correlations are
between 0.42 and 0.66 in the validation samples. Accord-
ingly, about 18–44% of the interannual to decadal vari-
ability in the number of heavy rain events can be explained
by SOI and PNAI variability.
[15] For the application to future climate change, it is

important that the statistical relationships can be applied to
changes in the long‐term mean. Here we test to what extent
the calibrated MLR model is capable of reproducing the
observed climate shift in the mid‐1970s that affected the
climate of the North Pacific [Trenberth, 1990; Graham,
1994; Mantua et al., 1997; Mantua and Hare, 2002;
Meehl et al., 2009]. We calculated the average frequency of
heavy rain events (wet season) for the years 1958–1976 and

1977–2005. Nine of the 12 stations indicate a negative
trend, five of them are significant (5% one‐sided test for null
hypothesis of equal means, see Table 4). Only one station
indicated an increase in heavy rain events (not significant).
The significance of the differences in the mean frequency
was tested with Bootstrap sampling techniques [Efron and
Tibshirani, 1993]. From the pooled sample (i.e., all years
1958–2005 combined), we randomly selected (with replace-
ment) 19 and 29 year subsamples, calculated the differences
and estimated confidence ranges.
[16] The MLR model in our application uses the infor-

mation from SOI and PNAI and accordingly a reduction in
the heavy rain events can be produced in various combi-
nations of SOI‐PNAI shifts. Between the periods 1958–
1976 and 1977–2005 the SOI and PNAI experienced a mean
shift from a weakly positive to negative mean state in the
SOI, and from negative to positive PNAI (Figure 4). Despite
the large year‐to‐year variability, the mean changes appear
significant (two‐sided 10% significance test based on
Bootstrap confidence estimates for the differences in the
mean). The variance of SOI has slightly increased in the
latter period, although this change is not significant ac-
cording to the MC test. The variance of the PNA and its
covariance with the SOI appear unaffected by the climate
shift (statistically not significantly different between the two
periods according to two‐sided 10% significance test with
Bootstrap method).
[17] Applying the MLR model with the SOI and PNAI

changes, the shift in the number of heavy rain events after

Table 4. Average Wet‐Season Frequency of Heavy Rain Events
During the Period 1958–1976 and 1977–2005a

Station

Observed MLR Estimates

1958–1976 1977–2005 1958–1976 1977–2005

1 4.6 5.2 5.9 4.4*
2 8.6 8.3 9.7 7.6*
3 7.8 6.7 8.3 6.4*
4 3.7 2.1* 3.1 2.4*
5 3.7 3.2 4.1 2.9*
6 8.3 7.2* 8.7 7.1*
7 4.5 2.5* 3.9 3.0*
8 4.0 2.9 4.0 2.9*
9 6.1 4.1* 5.9 4.3*
10 2.5 1.4* 2.1 1.6*
11 4.1 3.8 4.8 3.3*
12 5.1 4.9 5.5 4.7*
Average 5.2 4.5 5.5 4.2*

aObservations are taking the correction for missing observations into
account. Significant differences between the two periods were tested with
Monte Carlo techniques. Note that the MLR estimates are all significant
due to the simultaneous changes in SOI and PNAI. One‐sided 5%
significance for downward trends is marked with an asterisk.

Figure 4. Phase‐space presentation of the tropical and
North Pacific atmospheric circulation in the SOI and PNAI
subspace for the periods 1958–1976 and 1977–2005. Each
year is marked by small circles in black and red for the for-
mer and latter period, respectively. Mean states are shown as
crosses for the two subperiods. Ellipses mark the approxi-
mate 95% range for a two‐dimensional Gaussian distribu-
tion with mean and covariance estimates from the samples
(same color code applies). Dotted lines illustrate the MLR
estimates of the number of heavy rain events for the average
of all 12 stations.
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1976 can be reproduced (see Table 4). Since the SOI and
PNAI changes both result in a reduction of heavy rain
events, the MLR model gives statistically significant
decreasing number of events. Figure 5 highlights that the
negative trend is widespread across the islands. It is
important to recall that the mean changes in the observations
were calculated after correcting for missing observations.
The low biases between SD estimates and the observed
mean values demonstrate that the correction method works
even if the number of missing observations differs consid-
erably in the two time intervals (see Tables 1 and 4, stations

6, 7, 8, 10, and 11). In summary, the capabilities of the MLR
model in reproducing changes on interdecadal time scales
lends further credence to its application for future climate
change projections [e.g., Charles et al., 2004]. Further
support will have to come from dynamical downscaling
models [Vrac et al., 2007].

3.2. Future Changes in the SOI, PNA, and Number
of Heavy Rain Events

[18] We have analyzed six models from the AR4
database and projected the simulated geopotential height
fields onto the SOI and PNA regression pattern shown in

Figure 5. Map showing the local changes observed during the mid‐1970s climate shift: (a) average
number of heavy rain events in the observations corrected for missing data (see Table 4). For each station,
the mean of the 1958–1976 (1977–2005) period is indicated by the colors on left (right) side. (b) Same as
Figure 5a but the estimated means use the MLR model.
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Figure 3. Two different emissions scenarios and two
different time intervals of the 21st century were studied.
In general we find that the simulated changes in the SOI
and PNAI mean states, their variability, and covariance
are small. Below we concentrate on the most robust
changes that are statistically significant, and models that
show the same sign in the anomalies in both scenarios
and both time segments.

3.2.1. Changes in the Mean
[19] The mean changes relative to the models’ present‐

day climate simulations indicate relatively small changes in
the A1B and A2 scenario runs in the mid and late 21st
century (Table 3). The CCCMA model simulates positive
anomalies in the SOI in both scenarios that become signif-
icantly different from the null hypothesis of no mean change
(5% significance level). The same tendency is found in the

Figure 6. Modeled SOI and PNAI for the present‐day climate (1961–1990, green), and future climate
change scenarios in the mid (2046–2065, red) and late (2081–2100, purple) 21st century. (a) Phase‐space
representation of the six‐model ensemble for emissions scenario A1B. Ellipses mark the approximate
95% range for a two‐dimensional Gaussian distribution with mean and covariance estimates from the
samples (same color code applies). Dotted lines illustrate the MLR estimates of the number of heavy rain
events for the average of all 12 stations. (c) Same as Figure 6a but for the ensemble for emissions scenario
A2. (b) The simulated changes in the mean relative to present (green cross) are shown for the individual
models (red, mean of 2046–2065; purple, mean of 2081–2100) for emissions scenario A1B. (d) Same as
Figure 6b but for emissions scenario A2.
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GFDL_CM2_1 model; however, it is nonsignificant. Two
models indicate negative anomalies in theSOI mean state,
but only in case of the MRI model is statistical significance
reached. The remaining models do not indicate robust
changes in the SOI. Moreover, the ensemble mean does not
indicate any significant change.
[20] The PNA analysis shows that the CCCMA model has

a significant shift toward a more positive mean PNA state as
is the case for the MRI model (significant only for the A2
scenario, though). The UKMO model on the other hand
indicates a tendency toward a more negative PNA mean
state. Given the known negative correlation on interannual
and decadal time scales between SOI and PNA in the past, it
is interesting to note that the CCCMA model seems to
produce in‐phase mean anomalies in the future scenarios,
whereas the out‐of‐phase relationship is observed in the
MRI model. As for the SOI, mean changes in PNAI are
small in the ensemble mean and marginally significant. The
magnitude of the modeled future mean shifts in the SOI‐
PNAI phase state are small compared to the mid‐1970s
shift. The mean changes during the mid‐1970s climate shift
are about 0.6 for the SOI and 0.8 for the PNAI, and the
modeled mid to late 21st century changes are in the same
range as the differences between the pre‐ and post‐1970s
climate shift (see Figure 6 and Table 3).
3.2.2. Changes in the Variance and Covariance
[21] Due to the covariance between PNA and ENSO, it is

clear that future climate change and its consequences for the
frequency of heavy rain events in Hawaii are affected more
than just by changes in the mean climate states. Increases in
the interannual variability or in the covariance between
ENSO and PNA could change the variability in the number
of heavy rain events. The models reproduce the observed
20th century correlation between the normalized indices
quite well. Note that the variance of the modeled SOI and
PNAI were rescaled to have unit variance in the 20th cen-
tury interval 1961–1990 and the same scaling factor was
applied to the scenario simulations. The SOI variability does
not change significantly in the model ensemble of the A1B
scenario. A more systematic increase in SOI variability is
simulated in the A2 scenario, but statistical significance was
not detected (Table 3).
[22] No robust systematic changes in the PNA variability

are detected when comparing the individual models between
their A1B and A2 scenario simulations. However, the
ensemble mean seems to indicate a weak increase (statisti-
cally not significant according to the two‐sided 5% Boot-

strap significance test). This behavior appears to be biased
by the UKMO model, which produces intermittently a
threefold increase in the PNA variability (Table 3).
[23] Whereas individual model scenarios show some

distinctive changes in the covariance structures (e.g.,
UKMO_HADCM3 during the end of the 21st century),
no consistent changes can be deduced from the model
ensemble (Table 5). We applied the Bootstrap test on the null
hypothesis that the covariance of the pre and post climate
shift period are equal. The differences between the covar-
iances did not pass the two‐sided 5% significance test, except
for the UKMO_HADCM3 model. The constancy of the
covariance throughout the 21st century scenario simulations
is suggestive of a stable teleconnection process between the
tropical and extratropical Pacific climate mode in a globally
warming climate.

4. Discussion

[24] As was shown in the cross validation, only 18–44%
of the interannual to decadal variability in the number of wet
season heavy rain days is explained by the SD model. The
remaining part of the variability, which is either controlled
by other climate modes or local‐scale processes, must be
studied with complementary statistical or dynamical mod-
eling methods. The lack of significant changes in ENSO or
PNA does not exclude the possibility of significant future
changes in the heavy rain event statistics. The general
increase of precipitable water in a warming atmosphere
according to the Clausius‐Clapeyron equation will increase
the overall potential for heavy rain events. However, locally
operating feedbacks between increased ocean SST and
convection for example [Xie et al., 2010], or changes in
the Hadley Circulation [Vecchi et al., 2006; Held and
Soden, 2006] can impose strong dynamical control on
the regional distribution of the water vapor in the atmo-
sphere. To assess the risk of more intense heavy rainfall
events due to enhanced precipitable water in the atmosphere,
one must deploy regional modeling studies, in which the
interaction between thermodynamic and dynamical pro-
cesses can be studied explicitly.
[25] With expected improvements in the modeling capa-

bilities in the next generation IPCC scenario runs, it is
possible that more robust estimates for the state of Pacific
climate modes will be achieved. The future changes reported
in Tables 3 and 5 fail to present consistent signs in the
projected mean changes. Moreover, the variance and

Table 5. Simulated Changes in the Covariance Between SOI and PNAI in Six Models of the IPCC AR4 Reporta

Model/Observations 20th Century 1961–1990 (1950–2009) Scenario A1B 2046–2065 (2081–2100) Scenario A2 2046–2065 (2081–2100)

NCEP reanalysis (−0.47) ‐ ‐
CCCMA_CGCM3_1 −0.30 −0.67 (−0.26) −0.08 (−0.07)
GFDL_CM2_0 −0.62 −0.47 (−0.47) −0.34 (−0.65)
GFDL_CM2_1 −0.73 −0.18 (−0.16) −0.46 (−0.42)
MPI_ECHAM5 −0.38 −0.67 (−0.72) −0.89 (−0.88)
MRI_CGCM2_32a −0.76 −0.75 (−0.92) −0.76 (−0.30)
UKMO_HADCM3 −0.31 −1.50 (−0.67) −1.21* (−1.35*)
Ensemble mean −0.51 −0.65 (−0.48) −0.63 (−0.59)

aCovariance changes between the 20th and 21st century were tested with bootstrap resampling using a two‐sided 5% significance test (significant
changes are marked with asterisks).
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covariance indicate no systematic increase in the amplitudes
of the projected changes toward the end of the 21st century.
This could be caused by the rather large internal multi-
decadal variability that confounds our efforts to detect the
CO2‐forced signals. Twenty year sampling periods may,
therefore, be insufficient for the detection of weak signals.
Improvements in the detection of future changes could be
achieved by including an extended multimodel ensemble
analysis, which would increase the signal‐to‐noise ratio in
the detection of mean or covariance changes between trop-
ical ENSO variability and the extratropical PNA climate
mode. However, the recent study of Oshima and Tanimoto
[2010] and Oshima et al. [2010, and personal communica-
tion, 2010] showed that ensemble averages can only reduce
a fraction of the uncertainty surrounding the future anomaly
estimates.
[26] Overall, a trend toward fewer heavy rain events has

been observed in Hawaii between the periods 1958–1976
and 1977–2005. This observation is in agreement with the
recent statistical analyses of Levinson and Kruk [2008] and
Chu et al. [2010], who also found a decreasing trend in the
number of extreme events and the rainfall amounts during
extreme events. Earlier results have reported that the number
of extreme rain events in Hawaii has increased during the
last 50 years [Kunkel et al., 2008, and references therein].
However, it is difficult to assess whether this apparent
conflict is due to the use of different definitions of extreme
events or to the different processing of the station rain gauge
data [Kunkel et al., 2003; Groisman et al., 2004, 2005]. The
methodology of Groisman et al. [2005], for example, was
developed for continental extratropical stations. The results
from the MLR demonstrated that the combined effects of
tropical ENSO‐related climate variability and the winter
circulation over the extratropical North Pacific are equally
important for the interannual to decadal variability in the
frequency of heavy rain events. Connections to the PDO,
which plays a dominant role in the low‐frequency vari-
ability of the North Pacific Ocean and the overlying
atmosphere [Yu and Zwiers, 2007] are difficult to integrate
into the MLR models used for the statistical downscaling.
The PDO index has a strong autocorrelation, which reduces
the equivalent sample size [von Storch and Zwiers, 1999,
p. 115], and with the limited record lengths for daily rainfall
data, the regression parameter would have a large uncertainty.
Earlier studies used the PDO index rather than the PNA for
their rainfall analysis [Chu, 1995;Chu et al., 2010]. However,
the amount of independent information about the rainfall
in Hawaii, which could be extracted from the PDO‐related
SST variability, is small because of the close relationship
between PDO, PNA and ENSO variability [Schneider and
Cornuelle, 2005; Yu and Zwiers, 2007].
[27] The extent to which the differences before and after

the mid‐1970s climate shift are attributable to natural or
anthropogenic forcing cannot be answered with high con-
fidence [Meehl et al., 2009] due to the lack of long‐term
climate and rainfall information from the past decades and
centuries, and due to insufficient understanding of how
external forcing and internal processes control ENSO, PNA,
and PDO. Since the ratio between natural and forced vari-
ability in current AOGCMs is still uncertain, single model
experiments must be considered with some caution regard-
ing their universality. In the presence of these remaining

uncertainties, our ability to project changes in the number of
heavy rain events is limited.
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