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Abstract We introduce Cost Distance FISHeries (CDFISH),

a simulator of population genetics and connectivity in

complex riverscapes for a wide range of environmental

scenarios of aquatic organisms. The spatially-explicit pro-

gram implements individual-based genetic modeling with

Mendelian inheritance and k-allele mutation on a riverscape

with resistance to movement. The program simulates indi-

viduals in subpopulations through time employing user-

defined functions of individual migration, reproduction,

mortality, and dispersal through straying on a continuous

resistance surface.
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The importance of simulation modeling in landscape

genetics has been emphasized in a number of recent articles

(e.g., Balkenhol et al. 2009; Epperson et al. 2010;

Balkenhol and Landguth 2011). However, available com-

putational tools for modeling complex stream networks

(riverscapes) are limited. We developed CDFISH to model

gene flow in riverscapes from the program architecture of

CDPOP (Landguth and Cushman 2010). There are three

major new functionalities in CDFISH that are not included

in CDPOP or any other simulation program. First, indi-

viduals are spatially-explicit and designated in subpopula-

tions. Second, subpopulations are allowed to reach a

carrying capacity, stabilize, or become extinct. Third, dis-

persal back to subpopulations is modeled through resi-

dency, migration, and straying.

These CDFISH features enable genetic simulations of a

wider range of biological scenarios than available in other

programs (e.g., AQUASPLATCHE (Neuenschwander 2006),

GENE-NET (http://www.inh.fr/pageperso/cfleuran/genenet/

genenet.html)). CDFISH differs in several ways, which (1) is

individual-based rather than deme-based, (2) is a forward

simulator for genotypes of all individuals in a spatially

structured landscape, (3) dispersal and mating are explicitly

cost functions across heterogeneous riverscapes. CDFISH

is specifically designed to enable quantification of how stream

resistance (to movement) affects gene flow patterns and the

time required for spatial patterns of genetic relatedness

to change or equilibrate as functions of individual-based

movement (mating and dispersal), vital rate dynamics, and

mutation on flexible resistance landscapes.

The program is written in Python 2.6 and is provided

with instructions for most platforms, along with sample

files. CDFISH is built on a docking architecture that allows

for ease of future development. CDFISH has been debug-

ged by testing all combinations of options. A user manual,

example data sets, and free downloads can be found at

http://cel.dbs.umt.edu/software/CDFISH/. Here, we briefly
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describe the main features noting that a more detailed

description can be found in the user manual.

CDFISH models genetic exchange for a stream resis-

tance surface and (x, y) located individuals as functions

of individual-based movement (mating and dispersal), vital

dynamics, and mutation. Users must create a stream

resistance surface where each cell value (pixel) represents

the unit cost of crossing each location. Pixels are given

weights or ‘resistance values’ reflecting the presumed

influence of each variable to movement or connectivity of

the species in question (e.g., Dunning et al. 1992; Cushman

et al. 2006; Spear et al. 2010). Stream resistance surfaces

can be parameterized to reflect different costs to movement

associated with water temperature and flow, habitat com-

plexity, physical barriers, elevation, slope, or other stream

features. From here, an input matrix of movement costs can

be computed between all pairs of individuals (e.g., by using

tools such as UNICOR (Landguth et al. in press) or CIR-

CUITSCAPE (McRae and Beier 2007)). By comparing

genetic distances between individuals with ecological cost

distances between them, researchers can test specific

hypotheses about the influences of stream features and

environmental conditions on gene flow (Cushman et al.

2006; Epps et al. 2007). The program can flexibly incor-

porate absolute or partial barriers and panmixia within this

framework.

Individual locations are user defined within subpopula-

tions. The genotypes are initialized randomly or with

empirical data. The initial age structure and sex of each

individual is user defined. Reproduction is heterosexual

with a random mating structure. Mated pairs are chosen

based on with or without replacement combinations. Each

mated pair can have a number of offspring that is a

bounded random draw, a specified mean Poisson draw, or a

constant number. Mendelian inheritance with k-allele

mutation is used to generate the genotypes.

Offspring can either reside in each subpopulation (e.g.,

tributary) or disperse to a source location (e.g., lake, river,

or ocean). Offspring that disperse to the source must

migrate back to their respective subpopulation or stray.

Straying and residency probabilities are user defined.

Migration is a function of the cost to movement in the

resistant riverscape. To reflect species dispersal abilities,

the user can specify the maximum effective distance an

Fig. 1 An example riverscape

with 19 subpopulations and 50

individuals per subpopulation.

The left inset shows a zoomed in

spawning bed with 50

individual locations. The right
inset shows the zoomed in

riverscape with varying degrees

of resistance values assigned to

each pixel value in the stream

network. The ‘‘Lake Source’’ is

Flathead Lake (Montana, USA),

to which some species that have

a migratory life history (e.g.,

Salvelinus confluentus) will

migrate to
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individual can travel in cost units. Offspring move a dis-

tance from their source location based on a random draw

from a probability distribution inversely proportional to a

user-specified function (e.g., linear).

The user must specify the parameters through an input

script file (Table S1). As the model simulates stochastic

processes, most applications will benefit from quantifica-

tion of the mean and variability of genetic structure and

Monte Carlo option is provided. Additionally, the user may

also wish to conduct sensitivity analyses and is provided

through batch capability. The program outputs files for the

genotypes, age, and sex of each individual at specified

generations, along with a file containing various population

parameters.

Comparisons of simulation output with theoretical

equations illustrate the validation, usefulness, and reli-

ability of CDFISH. Genetic exchange is simulated in 19

subpopulations with 50 individuals per subpopulation

under a riverscape (Fig. 1). Wright-Fisher assumptions

were used for 250 generations, 100 Monte Carlo replicates,

and genotypes initialized with 30 loci and 30 alleles per

locus. We provide basic graphics, including comparison of

results to theoretical predictions for loss of heterozygosity

over time (Fig. 2).

He and Ho are calculated at each generation as the

estimated proportion of individuals that are expected het-

erozygous based on a Hardy–Weinberg population and the

proportion of individuals that are observed heterozygous,

respectively. He and Ho results are shown in Fig. 2, com-

pared with heterozygosity produced according to the fol-

lowing equation (Crow and Kimura 1970) adjusted for a

small sample size,

Ht ¼ 1� 1

2Ne þ 1

� �t

Hoð0Þ; ð1Þ

where the effective population size for separate sexes

(Hedrick 2011) is defined as

Ne ¼
4NMNF

NM þ NF

; ð2Þ

and Ht is the theoretical rate of decay after t generations,

Ho(0) is initial heterozygosity, NM is the male total, and NF

is the female total.
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