

The Big Burns Project: causes and consequences of fire-regime variability in Rocky Mountain subalpine forests

UNIVERSITY OF MONTANA University of Idaho

1. Background and Motivation

Recent increases in fire activity highlight major uncertainties about how disturbances will interact with ongoing climate change. In the western U.S., shifting disturbance regimes are predicted to lead to long-lasting directional changes or shifts in biogeochemical states, influencing carbon and nitrogen balance over large spatial and temporal scales. While these ideas have a strong conceptual basis and empirical support on decadal timescales, data have been lacking to test them over longer timescales - and to consider their implications for future projections - until only recently. Here we present preliminary finding from the Big Burns Project, which is investigating coupled climate-fireecosystem dynamics over the past several millennia across some of the most Smoke plume from the Lolo Peak Fire, one of many fire-prone regions in the Rocky Mountains. wildfires around Missoula, MT, as of 2 August, 2017.

3. Dunnette, P.V., P.E. Higuera, K.K. McLauchlan, K.M. Derr, C.E. Briles, and M.H. Keefe. 2014. Biogeochemical impacts of wildfires over four millennia in a Rocky Mountain subalpine watershed. New Phytologist 203:900-912. 4. Higuera, P.E., C.E. Briles, and C. Whitlock. 2014. Fire-regime complacency and sensitivity to centennial-through millennial-scale climate change in Rocky Mountain subalpine forests, Colorado, USA. Journal of Ecology 102:1429-1441. 5. Hudiburg, T.W., P.E. Higuera, and J.A. Hicke. 2017. Fire-regime variability impacts forest carbon dynamics for centuries to millennia. *Biogeosciences* InPress. 6. Kelly, R.F., M.L. Chipman, P.E. Higuera, V. Stefanova, L.B. Brubaker, and F.S. Hu. 2013. Recent burning of boreal forests exceeds variability of the past 10,000 years. PNAS 110: 13055-13060 7. Leys, B.A., P.E. Higuera, K.K. McLauchlan, and P.V. Dunnette. 2016. Wildfires and geochemical change in a subalpine forest over the past six millennia. Environmental Research Letters 11:125003 8. McLauchlan, K.K., P.E. Higuera, D.G. Gavin, et al. 2014. Reconstructing disturbances and their biogeochemical consequences over multiple timescales. Bioscience 64:105-116.

¹Ecosystem and Conservation Sciences, University of Montana, Missoula, MT. philip.higuera@umontana.edu ² Forest, Rangeland, and Fire Sciences, University of Idaho, Moscow, ID ³ Geography, Kansas State University, Manhattan, KS ⁴ Geology and Geophysics, University of Wyoming, Laramie, WY ⁵Geography, University of Idaho, Moscow, ID

Philip E. Higuera¹, Tara Hudiburg², Kendra McLauchlan³, Bryan Shuman⁴, Jeffery Hicke⁵

The consequences of repeated fires or temporal variability in a fire regime (e.g., the characteristic timing or severity of fire) are largely unknown, yet theory suggests that such variability could strongly influence forest C trajectories (i.e., future states or dynamics) for millennia. In a proof-of-concept study, we combined a 4500-year paleoecological record of fire activity [3] with ecosystem modeling to investigate how fire-regime variability impacts soil C and net ecosystem C balance [5].

We found that C trajectories in a paleo-informed scenario differed significantly from an equilibrium scenario (with a constant fire return interval), largely due to variability in the timing and severity of past fires. Paleo-informed scenarios contained multicentury periods of + and - net ecosystem C balance, with magnitudes significantly larger than observed under the equilibrium scenario. This variability created legacies in soil C trajectories that lasted for millennia, and was of a greater magnitude than simulated under an equilibrium, climate-warming scenario (i.e., 2° C growing season warming).

Our results imply that fire-regime variability is a major driver of C trajectories in stand-replacing fire regimes. Predicting carbon balance in these systems, therefore, will depend strongly on the ability of ecosystem models to represent a realistic range of fire-regime variability over the

balance. The warming scenario did not differ from the equilibrium scenario.

5. "Big Burns" study regions

Southern Rockies ecoprovince: Ecosystem modeling will start using existing high-resolution records of fire (n = 21), vegetation (n = 2), and biogeochemical change (n = 2) from two landscapes to study the patterns and drivers of fire regimes [1-4, 7]. We are developing additional biogeochemical proxies in two existing records for a total of four focal sites in the region.

Northern Rockies ecoprovince: We are developing 12 high-resolution firehistory records, and four high-resolution records of vegetation and biogeochemical change within a $\approx 1000 \text{ km}^2$ landscape centered on the Great Fire of 1910. Site density (0.01 lakes/km²) should capture enough area to detect changes in fire regimes, if present, as in recent studies highlighting fire-regime change during the Medieval Climate Anomaly [1,6].

