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Lake sediment charcoal records are used in paleoecological analyses to reconstruct

fire history, including the identification of past wildland fires. One challenge of

applying sediment charcoal records to infer fire history is the separation of char-

coal associated with local fire occurrence and charcoal originating from regional

fire activity. Despite a variety of methods to identify local fires from sediment char-

coal records, an integrated statistical framework for fire reconstruction is lacking.

We develop a Bayesian point process model to estimate the probability of fire asso-

ciated with charcoal counts from individual-lake sediments and estimate mean fire

return intervals. A multivariate extension of the model combines records from mul-

tiple lakes to reduce uncertainty in local fire identification and estimate a regional

mean fire return interval. The univariate and multivariate models are applied to 13

lakes in the Yukon Flats region of Alaska. Both models resulted in similar mean

fire return intervals (100–350 years) with reduced uncertainty under the multivari-

ate model due to improved estimation of regional charcoal deposition. The point

process model offers an integrated statistical framework for paleofire reconstruction

and extends existing methods to infer regional fire history from multiple lake records

with uncertainty following directly from posterior distributions.
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1 INTRODUCTION

Charcoal particles deposited in lake sediments during and following wildland fires serve as records of local to regional fire

history. Sediment charcoal records are used in paleoecological analyses to identify individual fire events and to estimate

Environmetrics. 2017;e2450. wileyonlinelibrary.com/journal/env Copyright © 2017 John Wiley & Sons, Ltd. 1 of 15
https://doi.org/10.1002/env.2450

https://doi.org/10.1002/env.2450


2 of 15 ITTER ET AL.

fire frequency and regional biomass burned (i.e., the amount of organic plant matter consumed due to fire) at centennial to

millennial time scales (Clark, 1988, 1990; Long, Whitlock, Bartlein, & Millspaugh, 1998; Power et al., 2008; Whitlock &

Millspaugh, 1996). When combined with sediment pollen records, charcoal deposits can be used to infer relationships between

changing climate, vegetation, and fire regimes, including fire frequency, size, and severity (Carcaillet et al., 2001; Clark &

Royall, 1996; Clark, Royall, & Chumbley, 1996; Higuera, Brubaker, Anderson, Hu, & Brown, 2009; Kelly et al., 2013;

Long et al., 1998). In particular, combined sediment charcoal records from multiple lakes have been used to correlate

changes in regional biomass burned with shifts in regional vegetation and/or climate (Higuera et al., 2009; Kelly et al., 2013;

Marlon et al., 2012; Power et al., 2008).

Charcoal deposits in lake sediments arise from several different sources. Large charcoal particles (> 100 𝜇m) have small

dispersal distances and exhibit strong correlation with fire occurrence within roughly 500–1,000 m of lakes (Clark, 1988;

Gavin, Brubaker, & Lertzman, 2003; Lynch, Clark, & Stocks, 2004; Peters & Higuera, 2007; Whitlock & Millspaugh, 1996).

Small charcoal particles (< 50 𝜇m) have larger dispersal distances (typically 1–20 km) and are indicators of regional biomass

burned (Clark, 1988; Clark et al., 1996). Sediment charcoal deposits arise from primary sources—direct transport during a

fire—and secondary sources, including surface transport via wind and water of charcoal deposited within a lake catchment

(Higuera, Peters, Brubaker, & Gavin, 2007; Whitlock & Millspaugh, 1996). Further, lake sediments mix over time, redistribut-

ing charcoal particles vertically and concentrating charcoal in the lake center (Whitlock & Millspaugh, 1996). The different

depositional sources and sediment mixing increase the variability in sediment charcoal records and make inferences regarding

the size and location of individual fire events difficult (Higuera et al., 2007). Despite the noise present in sediment char-

coal records, the use of such data to accurately identify local fire events has been consistently demonstrated (Clark, 1990;

Gavin et al., 2003; Higuera et al., 2007; Lynch et al., 2004).

Charcoal deposition is often expressed in terms of charcoal accumulation rate to account for different sedimentation rates

over time (CHAR; particles · cm−2· yr−1). Analytical approaches to identify individual, local fire events based on sediment char-

coal records decompose CHAR into background and peak components. The background component captures low-frequency

variability associated with time-varying charcoal production rates (e.g., changes in biomass burned), secondary charcoal depo-

sition, sediment mixing, and charcoal arising from regional sources. The peak component captures high-frequency variability

associated with local fire events as well as measurement and random error (Clark et al., 1996; Long et al., 1998). Approaches

to estimate background accumulation include low-pass filters applied to Fourier-transformed CHAR (Carcaillet et al., 2001;

Clark et al., 1996) and locally weighted regression models (Gavin, Hu, Lertzman, & Corbett, 2006; Higuera et al., 2009;

Long et al., 1998). Charcoal peaks are defined as the residuals resulting from raw CHAR series minus background CHAR

or the ratio between raw and background CHAR. A threshold is used to distinguish charcoal peaks indicative of local fire

events from false peaks attributable to elevated background deposition (Clark & Royall, 1996). Optimal thresholds, in terms

of correct identification of local fires, are estimated using sensitivity analysis (Clark & Royall, 1996) or upper quantiles of a

Gaussian mixture model (Gavin et al., 2006), lacking independent fire records to identify and validate optimal threshold values

(Higuera et al., 2009).

Although methods to identify local fire events based on sediment charcoal records have been well developed over the past

30 years, an integrated statistical framework for fire identification is still lacking (Higuera, Whitlock, & Gage, 2010). We

build upon existing charcoal analysis methods to develop a hierarchical Bayesian point process model for fire identifica-

tion and estimation of fire return intervals (FRIs). The point process model offers a fully model-based approach to charcoal

analysis with several important properties. The model operates on charcoal counts directly, using an offset term to control

for sedimentation rate. We generate an explicit estimate of the probability of fire for each charcoal count. The hierarchi-

cal Bayesian approach makes for tractable error propagation allowing for a complete treatment of uncertainty sources in

sediment charcoal records, including uncertainty associated with sediment age models. The model is easily extended to mul-

tivariate data sets, allowing for pooling of sediment charcoal records among lakes. Although methods currently exist to pool

charcoal records (Power et al., 2008), the point process model requires no transformation or interpolation of charcoal counts,

improving interpretability of results and avoiding potential introduction of nonquantifiable error to charcoal data sets. The mod-

eling approach objectively identifies parameter values controlling the decomposition of sediment charcoal into background

and peak components via regularization. Most importantly, our hierarchical Bayesian point process model provides an inte-

grated probabilistic framework to identify local fires and estimate FRIs across multiple lake records with explicit uncertainty

quantification.

The remainder of this article is organized as follows. In Section 2, we develop a point process model for charcoal deposition

using data from a single lake (Section 2.1) and a regional network of lakes (Section 2.2). Estimation of local fire probability

and mean FRIs are described in the context of developing the single-lake model and the multiple-lake model. Implementation

of the two models applying Bayesian inference is described in Section 2.3. We demonstrate the application of the single- and
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FIGURE 1 Illustration of theoretical charcoal deposition to a lake if charcoal particles arising from regional fires were distinguishable from

particles arising from local fires (in practice, charcoal particles from different sources are indistinguishable, i.e., we observe only

y(𝜏 j,i) = yb(𝜏 j,i) + yf (𝜏 j,i)). The figure also depicts the formation of a sediment charcoal record from deposited charcoal and the structure of the

charcoal data (i.e., counts of charcoal over discrete, nonoverlapping time intervals). Note the figure does not depict charcoal arising from secondary

sources such as surface water runoff or sediment mixing

multiple-lake models to both simulated and observed data from a regional network of lakes (Section 3). We conclude with a

discussion of modeling properties and results (Section 4).

2 BAYESIAN POINT PROCESS MODEL FOR CHARCOAL DEPOSITION

We construct a Bayesian point process model that relates charcoal deposition in lake sediments to local and regional fire occur-

rence. Central to the model is the separation of charcoal arising from regional and secondary sources from charcoal attributable

to local fires (as depicted in Figure 1). In practice, charcoal particles arising from different sources (i.e., regional and sec-

ondary sources versus local fire events) are indistinguishable in sediment charcoal records (apart from the size distinction

noted earlier). We separate background from peak deposition by assuming that charcoal particles are generated by indepen-

dent processes in time: a smooth background process, exhibiting low-frequency changes in charcoal deposition rates over time,

and a highly variable foreground (or peak) process, exhibiting high-frequency changes in charcoal deposition rates associ-

ated with local fire events. Total charcoal deposition is proportional to the sum of the background and foreground processes

(Clark & Royall, 1996). The separation of total charcoal deposition into background and foreground processes provides the

necessary analytical mechanism to identify local fire events from noisy sediment charcoal records. We begin this section by

defining a univariate point process model to identify local fire events. We then extend the univariate model to accommodate

sediment charcoal records from a regional network of lakes using a multivariate model.

2.1 Univariate model
Charcoal counts are observed over time intervals spanned by the bottom and top ages of a sediment core section: 𝜏j,i = t(b)j,i −
t(a)j,i , where t(b)j,i and t(a)j,i are the bottom and top ages of sediment core section i (i = 1, … , nj) from lake j (j = 1, … , k),

respectively. The 𝜏 j,i correspond to nonoverlapping time intervals, such that ∪nj

i=1
𝜏j,i = Dj, where Dj is the temporal domain

of lake j. Throughout this article, we use 𝝉 j to denote the set of observed time intervals, the temporal support, for lake j (i.e.,

𝝉 j = (𝜏j,1, 𝜏j,2, … , 𝜏j,nj )
′). Let y(𝜏 j,i) equal the observed charcoal count for 𝜏 j,i defining y𝛕j = (y(𝜏j,1), y(𝜏j,2), … , y(𝜏j,nj ))

′. We

model the accumulated charcoal particles over each observed time interval using a Poisson likelihood conditional on a latent

continuous intensity process mapped to the observed temporal support. Specifically, we let

y𝛕j |𝜆j ∼
nj∏

i=1

Poisson
(
𝜇(𝜏j,i)

)
, (1)

where 𝜇(𝜏 j,i) arises as the temporal aggregation of the continuous intensity process,

𝜇(𝜏j,i) = ∫
𝜏j,i

𝜆j(t)dt, t ∈ 𝜏j,i,
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for i = 1, … , nj and j = 1, … , k. We assume the latent continuous intensity process 𝜆j can be decomposed into additive

continuous background and foreground intensity processes: 𝜆j = 𝜆j,b + 𝜆j,f, where 𝜆j,b and 𝜆j,f denote the background and

foreground intensities, respectively. This assumption allows us to model the arrival of charcoal particles from regional/secondary

sources and local fire events as separate, independent Poisson point processes conditional on 𝜆j,b and 𝜆j,f (Figure 1).

The background and foreground intensities both vary with changes in environmental conditions, but at different frequencies.

The background intensity varies with climate and regional vegetation patterns on a centennial-to-millennial scale; the foreground

intensity varies with local fuel loads and weather patterns on an annual-to-decadal scale. We model changes in the background

and foreground intensities at the observed temporal support 𝝉 j, assuming intensity values are constant within each observed time

interval. This represents a discretization of the continuous intensity functions. The length of observed time intervals, however,

is extremely short relative to the span of sediment charcoal records (|𝜏j,i|∕|Dj| ≈ 1.0 × 10−3, where | · | represents the length)

such that the approach mimics an inhomogeneous Poisson point process over Dj. Importantly, the environmental conditions

driving changes in the intensities are unlikely to vary substantially in the observed time intervals.

We apply a basis expansion in time to approximate the temporal dynamics of the background and foreground intensities as

a proxy for changing environmental conditions. Specifically, we model the background and foreground intensity processes at

temporal support 𝝉 j on the log scale as

log
(
𝜆j,b(𝜏j,i)

)
= 𝛽

(b)
0,j + x(𝜏j,i)′𝜷 (b)

j

log
(
𝜆j,f (𝜏j,i)

)
= 𝛽

( f )
0,j + x(𝜏j,i)′𝜷( f )

j ,
(2)

where 𝛽
(b)
0,j and 𝛽

( f )
0,j are intercept terms, 𝜷

(b)
j and 𝜷

( f )
j are p-dimensional vectors of regression coefficients, and x(𝜏 j,i) is a

p-dimensional set of known covariate values corresponding to basis function values at p knots. We assume the latent intensity

processes 𝜆j,b and 𝜆j,f are independent conditional on their respective regression coefficients. We apply natural cubic splines as

our basis functions in Equation 2, although alternative spline or predictive process basis functions may also be used. Following

from the previous discussion of the environmental factors driving changes in the two intensities over time, we assume the back-

ground intensity process is smooth, whereas the foreground process is highly variable. We regularize 𝜷
(b)
j and 𝜷

( f )
j to control the

relative smoothness and volatility of the two processes (Hooten & Hobbs, 2015). Specifically, we apply separate scalar penalties

to 𝜷
(b)
j and 𝜷

( f )
j (equivalent to informed prior variances; see Section 2.3.1) to constrain the background intensity to be smooth

and allow the foreground intensity to be sufficiently flexible to capture short periods with high charcoal counts attributable to

local fires. Optimal penalties are identified based on out-of-sample prediction (Section 2.3.3). Lacking observations of back-

ground and foreground charcoal counts (as depicted in Figure 1), the coefficients in Equation 2 would be unidentifiable given

identical covariate values, without the aforementioned assumption and corresponding regularization.

Following from Equation 2, we can express the mean background (𝜇b) and foreground (𝜇f) charcoal counts at temporal support

𝝉 j as

𝜇b(𝜏j,i) = ∫
𝜏j,i

𝜆j,b(𝜏j,i) dt = e
𝛽
(b)
0,j +x(𝜏j,i)′𝜷

(b)
j |𝜏j,i|

𝜇f (𝜏j,i) = ∫
𝜏j,i

𝜆j,f (𝜏j,i) dt = e
𝛽
( f )
0,j +x(𝜏j,i)′𝜷

( f )
j |𝜏j,i|. (3)

The mean in Equation 1 can then be expressed as 𝜇(𝜏 j,i) = 𝜇b(𝜏 j,i) + 𝜇f(𝜏 j,i), defining the total charcoal count in 𝜏 j,i as a

function of independent, homogeneous Poisson point processes conditional on 𝜆j,b(𝜏 j,i) and 𝜆j,f (𝜏 j,i). The point process model

applied is similar to a Cox process in that charcoal counts are observed over disjoint time intervals (𝜏 j,i) that span Dj conditional

on the sum of variable intensity functions. Unlike a Cox process, however, the latent background and foreground intensities

are nonstochastic. For example, adding normally distributed random error terms to the background and foreground intensity

functions in Equation 2 results in two independent log-Gaussian Cox processes. The variances associated with such random

error terms are unidentifiable in the current application, given we do not observe background and foreground charcoal counts.

2.1.1 Probability of fire
Charcoal influx at time t arising from local fire events is distinguished from regional/secondary sources according to Pj(𝜏 j,i) ≡
Pr{fire event local to lake j at time t} for t ∈ 𝜏 j,i. That is, a charcoal particle arriving at lake j at time t generated conditional

on 𝜆j(𝜏 j,i) = 𝜆j,b(𝜏 j,i) + 𝜆j,f (𝜏 j,i), for t ∈ 𝜏 j,i, is labeled as a background or foreground particle according to independent

Bernoulli trials with probability Pj(𝜏 j,i) (Diggle, 2014). It follows that 𝜆j,f (𝜏 j,i) = Pj(𝜏 j,i)𝜆j(𝜏 j,i) and 𝜆j,b(𝜏 j,i) = (1−Pj(𝜏 j,i))𝜆j(𝜏 j,i)
(Ross, 2010; see Figure 1), so that

Pj(𝜏j,i) =
𝜆j,f (𝜏j,i)

𝜆j,f (𝜏j,i) + 𝜆j,b(𝜏j,i)
. (4)
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FIGURE 2 Example creation of new temporal support 𝝉* from three individual lake records. Note the temporal misalignment across lakes and 𝝉*

Although the coefficients in Equation 2 may not all be statistically identifiable, even with the constraints placed on the

background and foreground intensities, the resulting probability of fire as defined in Equation 4 is identifiable (see the

Appendix).

2.1.2 Mean FRI
A chronology of local fire events is derived after fitting the point process model by establishing a probability of fire thresh-

old, which indicates a local fire event when exceeded. Specifically, we transform Pj(𝜏 j,i) into a binary variable Zj(𝜏 j,i), with

1 indicating a local fire event, according to Pj(𝜏j,i)
f
→ Zj(𝜏j,i), where

f
(
Pj(𝜏j,i)|𝜉) =

{
1, if Pj(𝜏j,i) > 𝜉,
0, if Pj(𝜏j,i) ⩽ 𝜉,

for a defined probability of fire threshold 𝜉. The fire chronology generated depends on the specific probability of fire threshold

applied. We discuss selection of an optimal threshold in Section 2.3.4.

The series of estimated fire events resulting from the application of the probability of fire threshold constitute a temporal

Poisson process defined by a rate parameter (𝛼−1). A property of Poisson processes is the interarrival times, in this case, the time

intervals between local fire events, are independently and identically distributed as exponential random variables with mean

𝛼. The exponential mean represents the mean FRI, whereas its inverse, the Poisson rate parameter, represents the frequency

of local fires. The maximum likelihood estimate (MLE) for 𝛼 is equal to the observation period divided by the number of fire

events observed for a given lake, for example,

�̂�j =
|Dj|

nj∑
i=1

Zj(𝜏j,i)
.

We apply Bayesian inference to estimate the exponential mean parameter (𝛼) as described in Section 2.3.4, rather than cal-

culating the MLE, to allow for estimation of a regional mean FRI (see Section 2.2.1). It is common in fire ecology to apply a

Weibull likelihood function to estimate the mean FRI. Applying a Weibull likelihood function allows for the probability of a

fire event to increase as a function of time elapsed since the last fire event. We did not apply a Weibull likelihood function in

the current analysis because sediment charcoal records were of relatively short length for a number of study lakes, leading to

poor estimation of the two Weibull likelihood parameters.

2.2 Multivariate model
The multivariate model follows directly from the univariate model and allows for joint estimation of fire probabilities and mean

FRIs across multiple lakes. We combine observations from all lakes y𝝉 ≡ (y′
𝝉1
, y′

𝝉2
, … , y′

𝝉k
)′ and define new temporal support

𝝉∗ =
(
𝜏∗

1
, 𝜏∗

2
, … , 𝜏∗n∗

)′
to accommodate the temporal misalignment among individual lake records (Figure 2). 𝝉* is defined by

nonoverlapping intervals of equal length |𝜏∗i | = |𝜏∗i′ |,∀ i, i′ = 1, … , n∗, that span D*, the temporal domain spanned by all lakes

combined D∗ =
⋃n∗

i=1 𝜏
∗
i .

The background intensity process for each lake is defined at temporal support 𝝉*, allowing charcoal counts to be pooled

across lakes to estimate a regional mean background intensity. Comparable with the univariate model, we model the background

intensity process for each lake on the log scale but apply a new set of cubic regression splines defined for p* knots corresponding

to temporal support 𝝉*. Specifically,

log
(
𝜆j,b(𝜏∗i )

)
= 𝛽

(b)
0,j + x(𝜏∗i )

′𝜷
(b)
j ,

where x(𝜏∗i ) is a p*-dimensional set of known cubic regression spline covariate values equal to the ith row of the n* × p*

matrix X.
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The background intensity process defined at temporal support 𝝉* is mapped back to the observed temporal support for each

lake 𝝉 j by an N × n* matrix A, where N =
∑k

j=1 nj. Specifically, given A ≡ (A′
1
, … ,A′

k)
′, where each Aj is an nj × n*dimensional

matrix,

𝜆j,b(𝜏j,i) = a′
j,i exp

(
𝛽
(b)
0,j 1 + X𝜷

(b)
j

)
,

where aj,i is an n*-dimensional vector equal to the ith row of Aj and 1 is an n*-dimensional vector of ones. The lth entry of aj,i
is equal to

aj,i(𝜏∗l ) = |𝜏j,i ∩ 𝜏∗l |, l = 1, … , n∗,

such that
n∗∑

l=1

aj,i(𝜏∗l ) = |𝜏j,i|, i = (1, … , nj), j = (1, … , k).

A joint, regional background intensity would ideally be modeled as a spatiotemporal process across multiple lakes at temporal

support 𝝉*. Given the time and challenges associated with collecting sediment charcoal records, however, sediment samples

from regional lake networks are rarely of sufficient size (in terms of the number of lakes sampled) to allow estimation of a

spatiotemporal background intensity process. In the current analysis, charcoal counts are pooled across lakes to estimate a

regional mean background intensity process by assigning the 𝛽
(b)
0,j and 𝜷

(b)
j exchangeable normal prior distributions, as described

in Section 2.3, in lieu of estimating a spatiotemporal background intensity process. The foreground intensity process is modeled

exactly as in the univariate model. Specifically, the foreground process is modeled at the observed temporal support for each

lake (𝝉 j) using lake-specific foreground coefficients (𝜷
( f )
j ) corresponding to a set of p knots. Probability of fire estimates are

calculated for each lake independently according to Equation 4.

2.2.1 Regional mean FRI
We seek inference regarding the regional mean FRI in addition to individual-lake mean FRIs under the multivariate model.

We apply a partial pooling approach to estimate the regional mean FRI across lakes. Specifically, individual-lake mean FRI

values (𝛼j) are assigned exchangeable lognormal priors centered on the log of a regional mean FRI (log 𝛼*) with variance 𝜎2
fri

.

The partial pooling approach allows charcoal records from each lake to inform the regional average but penalizes lakes with

large uncertainty in their mean FRI value estimate. The regional mean FRI variance parameter (𝜎2
fri

) quantifies the deviation of

individual-lake mean FRI values from the regional average.

2.3 Bayesian implementation
The univariate and multivariate models are completed by specifying prior distributions for remaining unknown parameters.

These include background and foreground regression coefficients and mean FRI parameters.

2.3.1 Univariate model
We assigned normal priors to regression coefficients under the univariate model: 𝛽

(b)
0,j ∼ N(0, 𝜎2

0
), 𝜷 (b)

j ∼ N(0, 𝜎2
b,jS

−1
j ), 𝛽( f )

0,j ∼
N(0, 𝜎2

0
), and 𝜷

( f )
j ∼ N(0, 𝜎2

f ,jS
−1
j ). In our specification, 𝜎2

0
is fixed at a large value defining a diffuse normal prior. The 𝜎2

b,j
and 𝜎2

f ,j terms represent scalar penalties (or regulators) that ensure the background process is smooth while the foreground

process is sufficiently flexible to capture irregular charcoal counts subject to the constraint 𝜎2
b,j < 𝜎2

f ,j (identification of optimal

penalties is described in Section 2.3.3). The p× p matrix Sj consists of known coefficients defined as a function of the selected

knot values (Wood, 2006). Note that Sj is not full column rank; rather, its rank is p − 2 given the second derivative of the

boundary knots is equal to zero for natural cubic splines. Thus, the priors for 𝜷
(b)
j and 𝜷

( f )
j are improper, but can be shown to

result in proper posterior distributions. Combining the likelihood from Equation 1 with the priors for the regression parameters,

the joint posterior distribution for a single lake under the univariate model, using notation similar to Gelman et al., (2014), is

proportional to

nj∏
i=1

Pois
(
y(𝜏j,i)|𝜇(𝜏j,i)

)
× N

(
𝛽
(b)
0,j |𝜎2

0

)
× N

(
𝜷
(b)
j |𝜎2

b,j,Sj

)
× N

(
𝛽
( f )
0,j |𝜎2

0

)
× N

(
𝜷
( f )
j |𝜎2

f ,j,Sj

)
. (5)
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2.3.2 Multivariate model
We specified identical normal priors for the foreground regression coefficients under the multivariate model as in the univariate

model, and exchangeable normal priors for the background coefficients: 𝜷
(b)
0

∼ N(𝜇0,b1, 𝜏2
b Ik) and 𝜷(b) ∼ N(R𝝁b,𝚺b), where

𝜷
(b)
0

≡ (
𝛽
(b)
0,1
, 𝛽

(b)
0,2
, … , 𝛽

(b)
0,k

)′
, 𝜷(b) ≡ (

𝜷
(b)′
1

, 𝜷
(b)′
2

, … , 𝜷
(b)′
k

)′
, 𝜇0,b and 𝜏2

b are univariate mean and variance parameters, 1 is a

k-dimensional vector of ones, Ik denotes a k-dimensional identity matrix, 𝝁b is a p*-dimensional mean vector, 𝚺b is a kp* × kp*

covariance matrix, and R is a kp*×p* incidence matrix equal to 1 ⊗ Ip∗ . The univariate variance 𝜏2
b quantifies interlake variation

in the intercept of the background intensity. The covariance matrix 𝚺b can be decomposed into inter- and within-lake covariance

in background coefficients. Defining a kp* × kp* block diagonal matrix Sb ≡ Diag(𝜎2
b,1S∗−1, 𝜎2

b,2S∗−1, … , 𝜎2
b,kS∗−1), where S*

is a p* × p* matrix of known coefficients associated with the p* knots defined for 𝝉*, we can express the background coefficient

covariance matrix as 𝚺b = LSbL′, where LL′ is the Cholesky decomposition of H ⊗ Ip∗ , and H is a k-dimensional covariance

matrix. The matrix Sb accounts for covariance in background coefficients within lakes, whereas H captures covariance among

lakes. We apply a spatial covariance function to construct H, although any valid covariance function can be used. Specifically,

H ≡ Hs(𝜽b), where (Hs(𝜽b))j,j′ = c(||sj − sj′ ||;𝜽b), given sj indicates the geographic location of lake j, and 𝜽b are unknown

spatial covariance parameters.

In the current analysis, we assigned normal priors to the mean intercept 𝜇0,b ∼ N
(
0, 𝜎2

0

)
and mean regression coefficients

𝝁b ∼ N
(
0, 𝜓2I

)
, where 𝜎2

0
is fixed at a large value, while𝜓2 is set to an appropriate order of magnitude for 𝜷

(b)
j based on univari-

ate model results. The univariate among-lake standard deviation parameter 𝜏b was assigned a uniform prior: 𝜏b ∼ Unif(a𝜏 , b𝜏).
The scalar penalty on the background deposition process for each lake (𝜎2

b,j) was set equal to the optimal background penalty

value from the univariate model 𝝈2
b ≡ (𝜎2

b,1, 𝜎
2
b,2, … , 𝜎2

b,k). We applied an exponential spatial covariance function to form

H: (Hs(𝜽b))j,j′ = 𝜎2
s exp

(
−𝜙||sj − sj′ ||), where 𝜽b ≡ (𝜎2

s , 𝜙)′. The partial sill (𝜎2
s ) represents spatial variance in background

regression coefficients among lakes and has the potential, if it is large, to generate highly variable, unconstrained background

deposition processes for individual lakes. To avoid the generation of overly flexible background deposition processes, we fixed

the partial sill at one (𝜎2
s = 1). The spatial decay parameter was treated as a free parameter and estimated applying a dif-

fuse uniform prior: 𝜙 ∼ Unif(a𝜙, b𝜙). Combining the joint likelihood for charcoal counts from all lakes with the priors for

the multivariate regression model parameters, the joint posterior distribution for all lakes under the multivariate model is

proportional to

k∏
j=1

nj∏
i=1

Pois
(
y(𝜏j,i)|𝜇(𝜏j,i)

)
× N

(
𝜷
(b)
0

|||𝜇0,b, 𝜏
2
b

)
× N

(
𝜷(b)|||𝝁b,𝝈

2
b,S

∗, 𝜙
)

×
k∏

j=1

N
(
𝛽
( f )
0,j
|||𝜎2

0

)
×

k∏
j=1

N
(
𝜷
( f )
j
|||𝜎2

f ,j,Sj

)
× N

(
𝜇0,b

|||𝜎2
0

)

× N
(
𝝁b

|||𝜓2
)
× Unif(𝜏b|a𝜏 , b𝜏) × Unif(𝜙|a𝜙, b𝜙).

(6)

We use a Metropolis-within-Gibbs Markov chain Monte Carlo (MCMC) algorithm (Robert & Casella, 2004) to sample from

the posterior distributions in Equations 5 and 6.

2.3.3 Identification of optimal penalties
Optimal background (𝜎2

b,j) and foreground (𝜎2
f ,j) penalties (prior variances) were identified based on out-of-sample model pre-

diction. Specifically, we conducted a gridded search over a range of penalty values based on initial exploratory modeling with

five unique penalty values assigned to the background and foreground: 25 total combinations. The gridded search was con-

ducted applying the univariate point process model to a single validation data set for each lake with 25% of observations

held out. Prediction of held-out charcoal counts was carried out via composition sampling using posterior samples of back-

ground and foreground coefficients (𝛽
(b)
0,j , 𝜷

(b)
j , 𝛽

( f )
0,j , 𝜷

( f )
j ) to generate 𝜆j,b(𝜏 j,i) and 𝜆j,f (𝜏 j,i). We sampled yho(𝜏 j,i) ∼ Pois(𝜇(𝜏 j,i))

in a one-for-one fashion, where yho(𝜏 j,i) indicates a held-out observation. The resulting samples of yho(𝜏 j,i) represent the pos-

terior predictive distribution of yho(𝜏 j,i). Optimal penalty terms were identified as the background and foreground variances

that minimized the posterior predictive loss calculated for the hold-out data (Gelfand & Ghosh, 1998). The posterior predictive

loss rewards accuracy of predictions with a penalty for large variance in predictions indicative of overparameterization. For

the multivariate model, we applied the optimal background and foreground penalty values identified for each lake under the

univariate model.
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2.3.4 Mean FRI
The mean FRI under the univariate and multivariate models is estimated using FRIs calculated after applying a probability of fire

threshold to sampled posterior probability of fire values at each iteration of the Gibbs sampler. Specifically, for the 𝓁th iteration

of the Gibbs sampler, we obtain a set of fire event times
(

t(fire)j,1 , t(fire)j,2 , … , t(fire)j,mj

)(𝓁)
, where mj is the total number of fire events

observed for lake j, by conditioning samples on Z(𝜏 j,i)(𝓁) = 1. A given FRI is equal to the elapsed time between two consecutive

fire events. For example, for lake j and iteration 𝓁, the rth FRI is given by FRI
(𝓁)
j,r =

(
t(fire)j,r+1

− t(fire)j,r

)(𝓁)
, for r = (1, 2, … ,mj −1).

We assigned a semi-informative, conjugate inverse-gamma prior to the mean FRI parameter 𝛼j ∼ InvGamma(a𝛼, b𝛼)
under the univariate model centering its density over the possible range of FRIs for study lakes based on previous analyses

(Kelly et al., 2013). Combining the prior with the exponential likelihood of the FRIs (see Section 2.1.2), we obtain an

inverse-gamma posterior distribution for 𝛼j conditional on the derived set of FRIs. Specifically, for the 𝓁th iteration of the Gibbs

sampler, FRI(𝓁)j =
(
FRIj,1,FRIj,2, … ,FRIj,mj−1

)′
and 𝛼

(𝓁)
j |FRI(𝓁)j ∼ InvGamma(a𝛼 + m(𝓁)

j − 1, b𝛼 +
∑m(𝓁)

j −1

r=1
FRI

(𝓁)
j,r ).

We seek inference regarding the regional mean FRI in addition to individual-lake mean FRIs under the multivariate model.

We assigned diffuse uniform priors to the regional mean FRI (𝛼*) and the interlake standard deviation (𝜎fri). Combining the

priors and the exponential likelihood of the FRIs, the joint posterior distribution conditional on the model parameters defined

in Equation 6 is proportional to

k∏
j=1

mj−1∏
r=1

Exp(FRIj,r|𝛼j) ×
k∏

j=1

N(log 𝛼j| log 𝛼∗, 𝜎2
fri
) × Unif(𝛼∗|a∗, b∗) × Unif(𝜎fri|a𝜎, b𝜎).

We estimated mean FRI values under the univariate and multivariate models using a range of probability of fire thresholds:

𝝃 = (0.50, 0.55, … , 1.00)′. Ideally, we would select the probability of fire threshold yielding the greatest accuracy in terms of

identifying local fire events (i.e., the most accurate mean FRI estimate). A common challenge with the use of sediment charcoal

records, however, is the lack of independent fire history data to conduct model validation. In the absence of independent fire

history data, we sought an optimal probability of fire threshold in the sense of providing a precise mean FRI estimate based on

a consistent fire chronology for each posterior sample of Pj(𝝉 j) ≡ (P(𝜏j,1),P(𝜏j,2), … ,P(𝜏j,nj ))
′. We estimated the coefficient

of variation for posterior mean FRI samples (i.e., �̃�∕�̃�, where �̃� and �̃� are the posterior sample standard deviation and mean,

respectively). We selected the probability of fire threshold that minimized the coefficient of variation as the optimal threshold.

The optimal threshold provided the most consistent mean FRI estimate based on posterior samples. This approach is similar to

previous paleoecological approaches relying on sensitivity analysis to identify an optimal threshold (Clark et al., 1996).

3 MODEL APPLICATION

We apply the point process model to both simulated data and to sediment charcoal records from a 13-lake network in interior

Alaska. The use of simulated data allows for proper model validation, which is difficult using sediment charcoal records due to

the lack of observed fire data to compare with the probability of fire estimates.

3.1 Simulation study
We tested the accuracy of the point process model by applying it to simulated sediment charcoal records generated using

CharSim (Higuera et al., 2007). CharSim is a semimechanistic model that generates fires on a landscape and maps the subsequent

deposition of charcoal particles to a target lake. The amount of charcoal deposited in the target lake is proportional to the size

of the fire, its proximity to the target lake, the atmospheric injection height of charcoal particles during the fire, and secondary

charcoal deposition and sediment mixing within the lake (see Higuera et al., 2007, for additional details).

We applied the univariate point process model to a simulated sediment charcoal record generated by CharSim to mimic a fire

regime consistent with historic fire regimes in the Alaskan boreal forest (as described in table 2 of Higuera et al., 2007). We

defined a binary variable for each sample interval of the simulated record, with 1 indicating a local fire event within 100 m of

the target lake within an interval and 0 indicating no local fires within an interval. Probability of fire estimates from the point

process model were converted to binary fire occurrences, as described in Section 2.1.2, and compared with true fire occurrence

values to determine the percentage of fires correctly identified.

The simulated record was 4,760 years long divided into 238 equal-length sample intervals (i.e., each interval was 20 years).

There were 41 fires within 100 m of the target lake, leading to a true mean FRI of 116 years. The point process model correctly
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FIGURE 3 Univariate model results for simulated sediment charcoal record generated by CharSim. Upper panel indicates observed charcoal

counts along with the posterior mean charcoal count (blue line). Second panel illustrates posterior mean foreground (orange line) and background

(black line) intensities. Third panel plots posterior mean probability of fire estimates for each observed time interval (black line) along with the

upper and lower bounds of the 95% credible interval (gray shading) and the optimal threshold (red line). The points in the third panel correspond to

true fire events occurring during the sample interval, with black dots delineating correctly identified fires and red open dots delineating missed fires.

The arrow highlights the single falsely identified fire during the simulated study period. Lower panel indicates observed charcoal counts, with the

color and shape indicating whether the count was correctly identified as a true fire (black points), no fire (gray points), missed true fire (red open

circles), or falsely identified fire (red points). YBP = years before present

identified 38 of the 41 fires occurring over the simulated study period, applying an optimal threshold value of 0.95, correspond-

ing to a 93% fire identification rate (Figure 3). The model was accurate in its identification of local fires with only a single

falsely identified fire between 1,880 and 1,920 years before present (YBP). Despite the accuracy of the point process model

in identifying true local fires, the mean FRI was overestimated: posterior mean FRI equaled 191 years (95% credible interval:

135–271 years). The upward bias of the point process model in estimating the mean FRI was due to the model's inability to

separate fires occurring in close temporal proximity as unique fire events. For example, there were 40 sample intervals that

included a true fire in the simulated record (note that two fires occurred within a single sample interval), but only 25 unique

threshold exceedances (or peaks) were estimated. A more in-depth discussion of source of bias is provided in Section 4. Model

results were sensitive to the definition of a local fire event. Specifically, if a local fire is defined as occurring within 1,000 m of

the target lake (rather than 100 m), the fire identification rate drops to 75%.



10 of 15 ITTER ET AL.

145°30'0"W146°0'0"W

0 10 20 Km

Area Burned (1940 CE to Present)

FIGURE 4 Location of study lakes within the Yukon Flats region of Alaska relative to areas burned in wildland fire since 1940 Common Era (CE)

3.2 Yukon Flats
We applied the univariate and multivariate point process models to previously published sediment charcoal records from

13 lakes in the Yukon Flats region of Alaska (Figure 4; Kelly et al., 2013). The Yukon Flats region is dominated by boreal

forests and has a fire regime characterized by stand-replacing fires with return intervals of several decades to centuries.

3.2.1 Univariate model
We applied the univariate model to each of the 13 lakes in the Yukon Flats data set and the multivariate model to all lakes

jointly. Mean FRI values from the univariate model varied from roughly 134 years for fires local to Chopper Lake to roughly

356 years for fires local to Screaming Lynx Lake. Table 1 provides mean FRI value estimates for each of the 13 lakes. Optimal

threshold values providing the most precise mean FRI estimate for each lake varied from 0.50 to 0.75 (Table 1). Results of the

univariate model for Chopper and Screaming Lynx Lakes are provided in Figure 5 (similar plots are provided for all lakes in the

Supporting Information along with additional plots for Chopper and Screaming Lynx Lakes illustrating the identification of an

optimal threshold and uncertainty in local fire chronologies; Chopper and Screaming Lynx Lakes are selected to illustrate the

lakes with the shortest and longest mean FRI, respectively).

Geospatial fire perimeter data for the state of Alaska date back to 1940 Common Era (CE; Alaska Fire Service, 2016).

Restricting the fire perimeter data to fires local to lakes within the Yukon Flats data set, there were five fires since 1940 within

100 m of one or more of the 13 study lakes (a threshold of 100 m from the lake edge was used to distinguish local fire events

based on results of the simulation study) the earliest of which occurred in 1985. Although the local fire record is insufficient in

length to conduct proper model validation (i.e., roughly 70 years of local fire data for a study period of over 10,000 years is less

than 1% data coverage), we can compare the true occurrence of local fires to local fires identified by the point process model to

assess model performance. Two of the five fires local to at least one study lake occurred after the end of the sediment charcoal

records for local lakes: Big Creek Fire in 2009 and Discovery Creek Fire in 2013. The Preacher Creek Fire in 2004 occurred

local to Picea and Epilobium Lakes; however, the point process model did not identify a local fire for either of these lakes in

the most recent 50 years. There were two unnamed fires, the first in 1985 and the second in 1988, local to several study lakes.
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TABLE 1 Summary of univariate and multivariate Poisson process model results for each lake in the Yukon Flats data set. Mean fire return

interval (FRI) is equal to the posterior mean FRI with 95% credible intervals (Cred. Int.) in parentheses

Univariate model Multivariate model
Lake Optimal threshold Mean FRI Cred. Int. width Optimal threshold Mean FRI Cred. Int. width

Chopper 0.60 134 (91,197) 106 0.85 144 (97,216) 119

Epilobium 0.50 197 (133,292) 159 0.50 201 (136,293) 157

Granger 0.55 286 (187,436) 249 0.50 246 (165,368) 203

Jonah 0.50 159 (111,228) 117 0.55 148 (107,207) 100

Landing 0.70 303 (206,445) 239 0.70 291 (201,419) 218

Latitude 0.75 158 (106,235) 129 0.75 137 (96,194) 98

Lucky 0.75 136 (92,200) 108 0.75 138 (93,206) 114

Picea 0.50 318 (227,448) 221 0.50 312 (223,429) 206

Reunion 0.70 244 (167,354) 186 0.70 237 (165,345) 180

Robinson 0.55 142 (94,213) 119 0.80 124 (87,180) 93

Screaming Lynx 0.60 356 (255,497) 242 0.55 357 (255,502) 247

West Crazy 0.50 204 (133,315) 182 0.70 200 (129,306) 177

Windy 0.50 162 (110,239) 128 0.65 155 (107,226) 119
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FIGURE 5 Univariate model results for (a) Chopper Lake and (b) Screaming Lynx Lake. Upper panel indicates observed charcoal counts along

with the posterior mean charcoal count (blue line). Middle panel illustrates posterior mean foreground (orange line) and background (black line)

intensities. Lower panel plots posterior mean probability of fire estimates for each observed time interval (black line) along with the upper and lower

bounds of the 95% credible interval (gray shading) and the optimal threshold (red line). YBP = years before present

A fire event was identified by the point process model within the past 25 years in four out of seven lakes local to the 1985 fire

and two of five lakes local to the 1988 fire.

3.2.2 Multivariate model
Joint probability of fire estimates generated using the multivariate model varied in magnitude from the univariate model results.

Figure 6 presents the multivariate model results for Chopper and Screaming Lynx Lakes. Comparing the results presented in

Figure 6 to those from the univariate model (Figure 5), the probability of fire estimates for Chopper Lake are slightly higher

under the multivariate model than the univariate model, whereas the probability of fire estimates for Screaming Lynx Lake are

roughly consistent between the two models. In general, probability of fire estimates were higher under the multivariate model

than the univariate model. The different magnitudes of probability of fire estimates under the multivariate model necessitated

calculating new optimal fire thresholds for each lake (Table 1). Optimal threshold values ranged from 0.50 to 0.85 for the
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FIGURE 6 Multivariate model results for (a) Chopper Lake and (b) Screaming Lynx Lake. Upper panel indicates observed charcoal counts along

with the posterior mean charcoal count (blue line). Middle panel illustrates posterior mean foreground (orange line) and background (black line)

intensities. Lower panel plots posterior mean probability of fire estimates for each observed time interval (black line) along with the upper and lower

bounds of the 95% credible interval (gray shading) and the optimal threshold (red line). YBP = years before present

multivariate model consistent with slightly higher probability of fire estimates compared to the univariate model. Mean FRI

values estimated using the multivariate model were consistent with the mean FRI values estimated for each lake using the

univariate model; however, the credible interval widths for the multivariate model were narrower than under the univariate

model. Specifically, 10 out of 13 lakes had narrower credible intervals under the multivariate model than the univariate model

(Table 1). The average credible interval width for the mean FRI was 156 years under the multivariate model versus 168 years

under the univariate model. In addition to lake-specific, local mean FRIs, we applied the joint probability of fire estimates and

optimal thresholds for each lake to estimate a joint regional mean FRI, as described in Section 2.2.1. We estimated a regional

mean FRI over the study period (10,680 to −59 YBP, relative to 1950 CE) of roughly 187 years (95% credible interval: 136–261

years) for the Yukon Flats region based on the lake network data.

The multivariate model provides inference on regional background charcoal deposition. Applying an exponential spatial

covariance function to describe spatial correlation in background regression coefficients (as described in Section 2.3.2) resulted

in an estimated effective spatial range of approximately 16.5 km (95% credible interval: 14.4–19.1 km) where the effective

spatial range is defined as the distance at which the correlation drops to 0.05. This suggests the parameters describing local,

background charcoal intensity for individual lakes are similar for lakes within 20 km of each other. Finally, the multivariate model

provides an estimate of the background charcoal deposition in each lake over the entire study period, although the sediment

charcoal records for most lakes are shorter than the full study period. The background charcoal intensities for each lake in the

Yukon Flats network are plotted together in Figure 7 along with a regional loess smooth function. The background charcoal

deposition for most lakes exhibited a similar pattern, with a long-term increase in background charcoal deposition from 6,000

YBP to present, a sharp increase in background deposition roughly 3,000 YBP, and a secondary increase 1,000 YBP followed

by a decrease in background deposition roughly 500 YBP.

4 DISCUSSION

The use of sediment charcoal records to reconstruct past fire regimes is challenging given that charcoal counts rather than

past fire occurrences are observed. Further, observed charcoal counts include charcoal generated during local fires as well as

charcoal stemming from regional fire activity and secondary sources. The goal of our analysis was to construct an integrated

statistical framework for local fire identification and the estimation of mean FRIs based on sediment charcoal records from

individual lakes building on previous approaches to paleofire reconstruction. We further sought to advance existing approaches

to reconstruct regional fire history through the development of a multivariate model, which combines sediment charcoal records

from multiple lakes to identify local fires and jointly estimate mean FRIs at individual-lake and regional scales. Here, we discuss
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FIGURE 7 Background charcoal deposition intensity for each lake in the Yukon Flats data set over the entire study period (10,680 to −59 years

before present [YBP], relative to 1950 Common Era [CE]) based on the multivariate point process model. The bold line in the upper panel is a

regional loess smooth function reflecting mean changes in background charcoal deposition across all lakes (fit using a span of 0.15). The lower panel

indicates the number of lake records used to estimate background charcoal deposition over time

the key results of the application of the univariate and multivariate point process models to the Yukon Flats data set and connect

the results of the current analysis to previous studies in the same region.

Mean FRI estimates from the univariate and multivariate point process models applied to the Yukon Flats data set ranged

from 100 to 350 years (Table 1). The lakes with the largest mean FRI estimates have sediment charcoal records dating back

the longest among study lakes: Reunion, Granger, Landing, Picea, and Screaming Lynx Lakes all have records that date back

at least 5,000 YBP. This pattern is consistent with previous interpretations of Holocene fire history in Alaskan boreal forests,

which highlight increased fire activity over the last several thousand years beginning with the local arrival of black spruce

between 6,000 and 3,000 YBP (Higuera et al., 2009; Kelly et al., 2013; Lynch et al., 2004). We observe a similar pattern of

increased fire activity in plots of the background charcoal deposition intensity for each lake over the study period derived from

the multivariate model (Figure 7). The increase in fires across the Yukon Flats region from 6,000 to 3,000 YBP reflected in

the background intensity suggests that lakes with sediment charcoal records dating back prior to 3,000 YBP should have longer

mean FRI values than lakes with relatively short records. A secondary peak in the background charcoal deposition intensity is

observable around 500 YBP coincident with the Medieval Climate Anomaly, a period of increased temperatures and drought

frequency (1,000–500 YBP), followed by the Little Ice Age, a period of cooler and wetter climatic conditions (500–80 YBP).

Finally, modeled background charcoal intensities for individual lakes indicate an increase in biomass burned in recent decades,

although the increase is not reflected in the regional loess smoother (Figure 7). The modeled background charcoal intensities

are consistent with composite CHAR records (i.e., mean charcoal accumulation rate among lakes) calculated using the Yukon

Flats data (Kelly et al., 2013).

The univariate Bayesian point process model provides a model-based approach to estimate probability of fire values associated

with sediment charcoal records from a single lake and convert those probabilities into mean FRI estimates. The multivariate

model allows for correlation among lakes in the parameters used to estimate the background charcoal deposition intensity. The

background intensity reflects regional charcoal sources and exhibits low-frequency changes over time associated with factors

such as species composition and climate. As such, background charcoal deposition should be similar among lakes in the same

region with a high potential for correlation in background deposition process parameters. As expected, mean FRI estimates for

each lake are similar based on the univariate and multivariate models (Table 1). The multivariate model, however, resulted in
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mean FRI estimates with reduced uncertainty. Specifically, the 95% credible interval for the mean FRI was narrower in 10 out

of 13 lakes in the Yukon Flats network, with a mean credible interval width of 156 years for the multivariate model versus

168 years for the univariate model. The reduced uncertainty in mean FRI estimates under the multivariate model provides

some evidence that background charcoal deposition is indeed correlated among lakes located in the same region and that we

can reduce uncertainty in estimates of background charcoal deposition by accounting for such correlation. The effective spatial

range for the background process regression parameters (𝜷
(b)
j ) was estimated to be 16.5 km and provides some indication of

the distance within which background charcoal deposition is similar among lakes within the Yukon Flats region. This estimate

is consistent with the previous analysis using the Yukon Flats data set, which found significant correlation between composite

CHAR and regional area burned within a 20-km radius (Kelly et al., 2013).

We estimated a regional mean FRI of roughly 187 years (95% credible interval: 136–261 years) for the Yukon Flats over

the study period, applying the partial pooling approach described in Section 2.2.1. The partial pooling approach also pro-

duces estimates of mean FRI values for individual lakes similar to the univariate and multivariate results presented in Table 1.

However, we do not see the same reduction in uncertainty in individual-lake mean FRI estimates when conducting partial pool-

ing. Specifically, credible interval widths were narrower in only six out of 13 lakes, with the remaining intervals comparable

to univariate model results. The partial pooling approach adds two additional parameters (𝛼∗, 𝜎2
fri

) and combines uncertainty in

mean FRI values across lakes. As such, it is not surprising that the partial pooling approach does not lead to the same reductions

in uncertainty as generating individual-lake mean FRI estimates based on the multivariate model. We envision the partial pool-

ing approach being applied only in the setting where a researcher is interested in estimating a regional mean FRI; otherwise,

the individual-lake approach is preferred.

The univariate point process model we developed achieves our goal of developing an integrated statistical framework for local

fire identification and estimation of mean FRIs based on sediment charcoal records for individual lakes. The Bayesian hierarchi-

cal model structure allows for tractable propagation of additional uncertainty sources in paleofire reconstructions. In particular,

uncertainty in sediment age models can be integrated by treating the ages of sediment core sections as unobserved, latent vari-

ables in the point process model. The multivariate extension of the point process model provides a novel approach for paleofire

reconstruction applying multiple lake records to make inferences at both individual-lake and regional scales. Specifically, the

multivariate model provides estimates of individual-lake mean FRIs, a regional mean FRI, and background charcoal deposition

intensity indicative of regional biomass burned. When applied to the Yukon Flats data set, pooling of individual-lake records

under the multivariate model led to reduced uncertainty in individual-lake mean FRIs. We expect the multivariate model to

provide even greater reductions in uncertainty in individual-lake mean FRI values and improved estimates of regional parame-

ters, including the regional mean FRI, when applied to larger regional lake networks (i.e., networks with more than 20 lakes),

assuming that all lakes share a common regional fire regime.
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APPENDIX A : PROBABILITY OF FIRE IDENTIFACTION

The probability of fire for a given sample interval 𝜏 j,i as defined in Equation 4 can be expressed as

e
𝛽
( f )
0,j +x(𝜏j,i)′𝜷

( f )
j

e
𝛽
( f )
0,j +x(𝜏j,i)′𝜷

( f )
j + e

𝛽
(b)
0,j +x(𝜏j,i)′𝜷

(b)
j

,

which can be simplified to
1

1 + e
−
(
𝛽∗

0,j+x(𝜏j,i)′𝜷∗
j

) ,
where 𝛽∗

0,j = 𝛽
( f )
0,j − 𝛽

(b)
0,j and 𝜷∗

j = 𝜷
( f )
j − 𝜷

(b)
j , thereby proving the identifiability of the probability of fire Pj(𝜏 j,i). The simplified

probability of fire is equivalent to the mean response of a logistic regression model fit using a binary variable indicating the

occurrence of a local fire within a given sample interval. Specifically, we can express the odds of a local fire in a given sample

interval as
𝜆j,f (𝜏j,i)
𝜆j,b(𝜏j,i)

= e
𝛽
( f )
0,j +x(𝜏j,i)′𝜷

( f )
j

e
𝛽
(b)
0,j +x(𝜏j,i)′𝜷

(b)
j

such that the log odds are given by 𝛽∗
0,j + x(𝜏j,i)′𝜷∗

j . Thus, there is a direct connection between the mean probability of fire

function defined using Poisson count data in Equation 4 and a logistic regression model used to estimate the probability of fire

using Bernoulli observations of fire occurrence/nonoccurrence.

https://doi.org/10.1002/env.2450
https://doi.org/10.1002/env.2450

	A model-based approach to wildland fire reconstruction using sediment charcoal records
	Abstract
	INTRODUCTION
	BAYESIAN POINT PROCESS MODEL FOR CHARCOAL DEPOSITION
	Univariate model
	Probability ofxmltex ?> fire
	Mean FRI

	Multivariate model
	Regional mean FRI

	Bayesian implementation
	Univariate model
	Multivariate model
	Identification ofxmltex ?> optimal penalties
	Mean FRI


	MODEL APPLICATION
	Simulation study
	Yukon Flats
	Univariate model
	Multivariate model


	DISCUSSION
	REFERENCES
	Appendix


