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Abstract. Soil organicmatter plays a key role in the global carbon cycle, representing three to four times the total carbon

stored in plant or atmospheric pools. Although fires convert a portion of the faster cycling organic matter to slower cycling
black carbon (BC), abiotic and biotic degradation processes can significantly shorten BC residence times. Repeated fires
may also reduce residence times, but this mechanism has received less attention. Here we show that BC exposed to

repeated experimental burns is exponentially reduced through four subsequent fires, by 37.0, 82.5, 98.6 and 99.0% of BC
mass. Repeated burning can thus be a significant BC lossmechanism, particularly in ecosystemswhere fire return rates are
high, relative to BC soil incorporation rates. We further consider loss rates in the context of simulated BC budgets, where

0–100% of BC is protected from subsequent fires, implicitly representing ecosystems with varying fire regimes and BC
transport and incorporation rates. After five burns, net BC storage was reduced by as much as 68% by accounting for
degradation from repeated burning. These results illustrate the importance of accounting for BC loss from repeated

burning, further highlighting the potential conflict between managing forests for increasing soil carbon storage vs

maintaining historic fire regimes.
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Introduction

Biomass burning converts a portion of the faster cycling
organic matter to slower cycling black carbon (BC) (Lehmann
et al. 2008), which has been shown to be resistant to biotic

degradation due to changes in its chemical structure (Schmidt
and Noack 2000; Masiello 2004). For the boreal biome, for
example, it has been estimated that.25%of carbon affected by

fire is converted into a slower cycling form (Santı́n et al.

2015a). Increased fire activity is predicted for many ecosys-
tems in response to climate change and will likely lead to

significant changes in the global carbon cycle (Chapin et al.

2000; Westerling et al. 2006; Moritz et al. 2012; Flannigan
et al. 2013; IPCC 2013). Given the potential for long-term

carbon storage, this process has received significant attention
in recent decades (Goldberg 1985; Preston and Schmidt 2006),
especially given the growing interest in BC’s contribution to
the soil organic carbon (SOC) pool, which can exceed 50% in

some ecosystems (Lehmann et al. 2008; Schmidt et al. 2011;
Cheng et al. 2013).

Radiocarbon dating of BC in soils has shown residence times
in the order of hundreds to thousands of years (Ohlson et al.

2009; Egli et al. 2012). This variation is commonly attributed to
abiotic and biotic loss processes, which can significantly shorten
BC residence times (Czimczik and Masiello 2007; Zimmerman

2010). Repeated biomass burning has been postulated to also
reduce residence times of BC (Ohlson and Tryterud 2000;
Rovira et al. 2009), but this BC loss mechanism has received

less attention than most biotic mechanisms (Santı́n et al. 2013).
However, in forested ecosystems that have a high propensity to
produce BC through combustion of woody fuels (Hurteau and

Brooks 2011), the typical time between fires is in the order of
decades to centuries. This temporal scale limits the ability to
observe and quantify this process in a field setting, thus
emphasising the need for an experimental approach.
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Black carbon cycling

Fire-altered carbon from biomass burning exists on a recalci-

trance gradient, from partially charred vegetation to very recal-
citrant soot (Masiello 2004; Smith and Hudak 2005; Preston and
Schmidt 2006; Keiluweit et al. 2010). Past research into BC has

been in the fields of soil science, biogeochemistry and fire sci-
ence, which use differing terminology including char, charcoal,
soot and graphite that can cause confusion. As described in

Preston and Schmidt (2006), the term ‘pyrogenically altered
carbon’ is used to describe the entire spectrum of carbon that has
been thermally altered by fire, whereas BC often refers only to a
narrow range of pyrogenic carbon produced through thermal

exposure. Specifically, BC is defined here as the highly recalci-
trant material that exhibits significantly lowered H:C and O:C
ratios as compared to charcoal and charred biomass (Kuhlbusch

et al. 1996; Hatten and Zabowski 2009; Brewer et al. 2013).
Pyrogenic organic matter is another widely used term that
describes BC (Santı́n et al. 2015a). Confusionmay arise fromuse

of the term ‘pyrogenic carbon’, which is used to describe BC
(Santı́n et al. 2013) due to its closeness to the Preston andSchmidt
(2006) terminology. In this study,we donot advocate the usage of

a specific set of terminology, but utilise the terminology associ-
ated with the analytical BC calculation method used in this paper
(Hatten and Zabowski 2009).

The coupling of BC production, soil incorporation, off-site

transport and BC loss via combustion creates a complex rela-
tionship between the frequency of burning in an ecosystem and
total BC storage. The molecular composition alone cannot

singularly predict carbon’s persistence in soils; rather, ecosys-
tem processes including fire intensity and frequency, soil
pedoturbation, and climatic fluctuations interact to play impor-

tant roles in its longevity (Czimczik and Masiello 2007; Jenkins
et al. 2014). Specifically, the physical protection of BC, for
example via soil incorporation or off-site transport, is required
for it to be preserved over hundreds to thousands of years

(DeLuca and Aplet 2008; Fang et al. 2014). However, the
literature describes a complex picture (Singh et al. 2014), in
part because of the aforementioned challenges associated with

different definitions of what constitutes BC. Some studies have
indicated that due to soil stabilisation processes, BC levels can
persist over periods of,50 years in fallow soils (Vasilyeva et al.

2011). Other studies have indicated rapid losses over decadal
time scales (Nguyen et al. 2008).

With each new fire, BC is generated, but the existing BC

from prior fires may also be consumed if it remains near the soil
surface and exposed to the fire (Ohlson and Tyrterud 2000;
Czimczik et al. 2003; Rovira et al. 2009). Two recent field
studies measured consumption of pre-existing BC (charcoal) by

fire in contrasting environments. Santı́n et al. (2013) found
median mass losses of ,15% of BC samples placed within the
surface of the organic layer consumed in a boreal forest fire;

although the organic layer was consumed – exposing the
charcoal – the samples survived. In contrast, when considering
burying charcoal within the mineral layer Schmidt and Noack

(2000) suggested that thermal degradation is not usually
achieved at mineral soil depths .30 mm. Although the impor-
tance of soil insulation to prevent thermal degradation is clear,
there is a lack of research quantifying soil incorporation rates of

pyrogenic carbon (Nocentini et al. 2010). Preliminary projec-
tions suggest that it takes decades to centuries for fire residues to
be adequately incorporated into a soil matrix to ensure protec-

tion from fires (Eckmeier et al. 2007; Lehmann et al. 2008),
considerably longer than fire return intervals in most dry
temperate forests (Littell et al. 2009). Given fire frequencies

in many ecosystems are expected to increase due to climatic
warming (Flannigan et al. 2013), it is important to address how
repeated burning may influence BC pools (Czimczik and

Masiello 2007; Schmidt et al. 2011; Santı́n et al. 2015b). Saiz
et al. (2014) evaluated fire as a BC consumption mechanism in
Australian savannah woodlands, finding mass losses of,8% of
BCwhen particles were placed on the soil surface in a prescribed

fire. The low mass loss rates reported in the literature are
attributed to a combination of soil insulation and fuels properties
that could limit consumption (Santı́n et al. 2013; Saiz et al.

2014). We present results from a controlled laboratory experi-
ment as a case study that quantifies the loss of BC biomass from
an initial burn when exposed to four subsequent fire events. We

hypothesise that neglecting the BC losses associated with
repeated burning may lead to substantial overestimation of soil
BC storage if soil incorporation does not occur to protect the

particles from further pyrolytic degradation. In turn, accounting
for BC losses as a function of repeated burning will lead to less
BC being available for incorporation into the passive SOC pool,
and these losses will likely have substantial effects on net soil

BC estimates.

Methods

Sample collection and construction of fuelbeds

To test our hypothesis, we selected woody surface fuels that had

been controlled for their particle size and moisture content,
allowing for a controlled laboratory combustion experiment. The
constructed fuelbeds represented a masticated fuel matrix (i.e.
mechanically shredded and distributed tree biomass) within a

western North American temperate conifer forest dominated by
western white pine (Pinus monticola), Douglas-fir (Pseudotsuga
menziesii), and lodgepole pine (Pinus contorta). Full details on

sample collection, characterisation and fuelbed construction are
provided in a prior study that evaluated the influence of fuel
moisture on BC production rates (Brewer et al. 2013), and here

we provide a brief summary. Fuels were sampled and collected
from an 8-ha stand within the Clearwater National Forest
(4684706000N, 11982801200W) that included western white pine,

Douglas-fir and lodgepole pine. During mastication the wood
was chipped into predominately small-diameter particles
(,7.6 cm) although some larger diameter particles (.7.6 cm)
were also observed (Brewer et al. 2013). Fifteen fuelbeds were

constructed from this material to match the total surface fuel
loading (5835 gm�2) and particle size class distribution (7.6–2.5,
2.5–1.3, 1.3–0.6 and 0.6–0.3 cm diameter, and litter) observed in

the field. This total surface fuel loading value is in line with other
observed fuel loadings in mesic mixed conifer systems of the
north-western United States (Kreye et al. 2014).

Initial burn methodology

Fire experiments were conducted at the Idaho Fire Initiative for
Research and Education laboratory located in a climatically
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controlled environment (Brewer et al. 2013; Smith et al. 2013).
The experimental burn and residue collection and analysis
methodologies followed the procedures detailed byBrewer et al.

(2013). Burns were considered to be complete when mass loss
had ceased, as measured using a Sartorius EB Series scale
(precision: 1 g, range: 0.0005–65.0000 kg, Goettingen, Ger-
many). Following combustion, post-fire residues were sieved

into .6 mm, 1–6 mm and ,1-mm size classes and weighed
using a Sartorius scale (precision: 0.1 g, range: 0.1–2000.0 g),
with two ,1-g sub-samples collected for BC proportion anal-

ysis. BC was quantified using thermo-chemical methods adap-
ted from CTO375 protocols, which isolate a graphitic and
biologically resistant portion of the pyrogenic carbon (Gus-

tafsson et al. 1997; Masiello 2004; Hatten and Zabowski 2009;
Sánchez-Garcı́a et al. 2012). Following elemental analysis of
BC proportions (CTO375BC(%)), the BC mass (BCmass, g) was

calculated using Eqn 1 (Hatten and Zabowski 2009):

BCmass ¼ CTO375BCð%Þ � ½premass � postmass� ð1Þ

where premass (g) and postmass (g) are the original fuel mass and
the mass of post-fire residues.

Repeated burns methodology

To quantify how the postmass residues from the initial burns
persisted under subsequent burns, each burnt fuelbed (n ¼ 15)
was subsequently exposed to four consecutive burn trials. We

acknowledge that ideally we should observe BC incorporation
and losses in a field setting (e.g. Santı́n et al. 2013); however we
contend that this experimental approach allowed us to simulate

long fire return intervals that otherwise could only be inferred
from modelling studies. In each of the subsequent burn trials a
consistent litter fall was included as a layer of solely pine nee-
dles consisting proportionally (by mass) of lodgepole pine and

ponderosa pine (Pinus ponderosa), which are common early
seral species in the study region. The pine needles were added to
the top of the fuelbed and selected in lieu of other litter com-

ponents due to ease of replication, with the mass of needles
increased to account for other missing components (e.g. leaves,
twigs). These pine needle fuelbeds were constructed to resemble

observed rates of litter fuel loading in the fuel collection site,
which fall at the upper bound of litter fuel loading (1700 g m�2)
in temperate conifer forests in western North America (Law

et al. 2003; Hyde et al. 2011). Fuel moisture was controlled by
placing prepared fuelbeds in a drying oven before combustion
(Table 1; Brewer et al. 2013).

In each repeated burn after the initial characterisation, only
the residues .6 mm in size underwent additional elemental
analysis for assessing BC proportions. This component was then

carried forward into the subsequent burn trials, mixed through-
out the pine needle fuelbeds. Residues,6 mm were not carried
forward, as these were indistinguishable from the newly burnt
pine needles. To calculate percentage BC remaining [Eqn 2] in

subsequent burns, BC masses were standardised against BC
produced in the initial burn, by:

BCRi ¼ BC1 � BCi

BC1

ð2Þ

where BCRi is the normalised remaining BC after burn number i
(from2–5);BC1 is the BCproduced fromburn number 1 andBCi

is the remaining BC after burn number i.

Statistical analysis and modelling

A repeated-measures ANOVAwas used to test for differences in
post-fire residue and BC masses for each burn trial. When
Mauchly’s sphericity assumption was not met, the Greenhouse–

Geisser statisticwas used. ABonferroni post hoc testwas used to
compare the main effect of burn number. To generalise our
results and construct a range of partially protected BC budgets,
we fit a negative exponential model, y¼ a*ebx robust to outliers,

to the individual mass loss percentages of the exposed .6-mm
residues, where y is the predicted remaining BC mass (% of the
original mass), and x is the burn number (where x ¼ 1 for the

initial burn). When a ¼ 259.0 (239.5 – 278.6, 95% prediction
bounds) and b ¼ �0.9476 (�1.008 to �0.8877), this model
explained 98% of the variability in our observed data. The

observed BC mass loss rate was used to develop a BC budget
through the five burns. Further, a series of hypothetical BC
budgets, representing varying degrees (0–100%) of protection

of the total BC produced in the initial burn are produced and
discussed. Statistical analyses were conducted using IBM SPSS
predictive analytics software (version 19), and Matlab technical
computing software (version 7.11.1). For this modelling, the BC

produced in the combustion of the added litter layer is not
included, as it is indistinguishable from the fine woody BC.

Results and discussion

Following the initial burns, BC biomass in the burn residues
were divided into three size classes (,1, 1–6 and.6 mm), each

containing significantly different proportions of the residues:
,61, 31 and 8%. The.6-mmBC from the initial burns declined

Table 1. Mean (s.d.) fuelbed characteristics and burn conditions for the five experimental burns (n 5 15 replicates for each burn number)

Burn 1 represents the initial fire, which produced all of the .6-mm residues used in the subsequent burns represented as burns 2–5. All P-values ,0.001

reported from repeated-measures ANOVA

Burn number Bulk density (kg m�3) Fuel loading (g m�2) Consumption (%) Fuel moisture (%) Temperature (8C) Relative humidity (%)

1 102.1 (9.3) 5829.7 (211.7) 90.6 (2.6) 10.0 (3.5) 17.8 (7.3) 38.4 (12.3)

2 58.7 (6.3) 2107.2 (242.6) 45.5 (13.1) 9.7 (3.9) 16.7 (2.7) 36.1 (11.0)

3 48.8 (8.4) 1771.9 (201.7) 57.4 (18.1) 11.0 (3.3) 21.5 (2.9) 34.3 (5.2)

4 45.9 (4.4) 1752.5 (97.7) 57.3 (15.4) 9.5 (4.6) 25.4 (5.2) 30.2 (6.9)

5 52.5 (16.9) 1763.3 (128.4) 61.8 (18.1) 10.2 (4.7) 21.5 (2.3) 33.6 (6.4)
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significantly across the four subsequent burns (Table 2, Fig. 1).
FollowingBurn 5, only 1%of the exposed.6-mmBCproduced

in the initial burn (Burn 1) remained. Integrating the charred
residues throughout the litter layer probably made the charred
particlesmore susceptible to thermal degradation, as the thermal
insulation (e.g. provided by being at the bottom of the litter layer

or within the O-horizon – soil layers with high amounts of
organic matter) would have been reduced (Santı́n et al. 2013).
However, in a field setting, charred residues could remain at the

interface of the O-horizon andmineral soil, or thematerial could
be mixed throughout the O-horizon; depending on the pedo-
turbation intensity and soil texture, eventually the char will

become incorporated into mineral soil (Gavin 2003). Conse-
quently, our estimates are likely to represent an upper bound of
losses associated with repeated burning, and our results high-

light the need for future research on pedoturbation within the
O-horizon and influence of soil textures on BC soil incorpo-
ration. Further, use of the CTO375 method of characterising the
quantity of BC sets a fairly rigid definition that excludes part of

the BC continuum, especially were BC is produced under low
charring temperatures (Baldock and Smernik 2002; Chen et al.

2014). Nonetheless, our results support the prevailing hypoth-
esis that in forest types with high-frequency burning and little to

no soil incorporation, repeated burning can be a significant
mechanism for BC loss (Ohlson and Tryterud 2000; Preston and
Schmidt 2006; Rovira et al. 2009). Our results also indicate that
in as few as two repeated burns, the majority (,80%, Table 2,

Fig. 1) of the exposed BC produced in an initial fire can be lost.
Given that the best estimates of BC loss rates through biotic and
abiotic (non-pyric) mechanisms range from ,1% to 37% over

100 years (Zimmerman 2010), our results highlight repeated
burning as a potentially significant mechanism of carbon loss.

To estimate the compounding effects of BC loss through

repeated burning, we used the experimental loss rates of the
exposed carbon (Fig. 1) to construct a BC budget spanning five
burns (Fig. 2; Ohlson and Tryterud 2000; Czimczik and
Masiello 2007; Zimmerman 2010). This budget assumes all

material ,1 mm is protected from future burning, implicitly
representing immediate off-site wind transport, as is common in
grassland and savannah ecosystems, or incorporation of fine

particles into the soil and litter matrix (Rumpel et al. 2009).
Protecting the ,1-mm BC left 39% of the BC produced in an

Table 2. Median (s.d.) production and loss rates associated with the post-fire residues and black carbon (BC) (n 5 15)

Burn 1 represents the initial fire, which produced all of the .6-mm residues used in the subsequent burns represented as burns 2–5. All P-values ,0.001

reported from repeated-measures ANOVA. Homogenous subsets as identified by Bonferonni post hoc analysis are identified as a, b, c, d, and e

Burn number Residues (g m�2) Residue remaining (%) BC (g m�2) BC remaining (%)

1 198.1 (77.3) a 100.0 (0.0) 0.0650 (0.0290) a 100.0 (0.0)

2 113.7 (50.9) b 55.6 (17.1) 0.0400 (0.0180) b 63.0 (23.0)

3 78.8 (46.6) c 38.5 (15.0) 0.0140 (0.0100) c 17.5 (13.4)

4 54.8 (34.9) d 24.2 (13.3) 0.0010 (0.0006) d 1.4 (0.8)

5 39.5 (30.7) e 15.7 (13.3) 0.0007 (0.0004) d 1.0 (0.6)
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initial burn available for further thermal degradation. This
scenario also assumes that an equivalent masticated fuel loading
was reached between each burn, representing a best-case esti-

mate for dry forest types, were net BC increases at a near-linear
rate of,70% per burn (Fig. 2). By the fifth burn, BC storage is
381% of that created in the initial burn, whereas an estimate

ignoring BC loss from repeated burningwould predict a value of
500%. The ‘missing’ 119% represents the tradeoff between
generating new BC while consuming existing BC with each

successive burn. We acknowledge that a full accounting of the
residual size categories would provide more accurate estimates
of BC loss rates; however, given analytical limitations of
separating these fine char fractions from pine needle residues

in the repeated burns, this was not feasible. As grass fires likely
produce charcoal residues smaller than 6mm, the conclusions of
this experiment are limited to ecosystems with woody vegeta-

tion (i.e. trees and shrubs), which represents a continuum from
savannah to mesic forest.

The degree to which repeated burning influences a BC

budget inherently reflects assumptions on BC protection from
future burning (e.g. via soil incorporation or off-site transport;
Rumpel et al. 2009; Dittmar et al. 2012; Santı́n et al. 2013). To

generalise our results and explore their sensitivity, we used
the fitted model in Fig. 1 to calculate net BC storage under
five different scenarios, where 0%, 25%, 50%, 75%and 100%of
the BC produced in the initial burns is protected from future

burning (Fig. 3). As expected, BC budgets are highly sensitive to
protection rates: at 0% protection, net BC asymptotes around
160% after four burns, implying an upper limit to BC storage.

Under the scenario with 75% BC protected, values fail to
asymptote and reach 416% following the fifth burn (Fig. 3).

Implicitly, these scenarios are both sensitive to, and represent

a series of, generalised environmental conditions that dictate
both BC protection rate (% per year) and the rate of burning (fire
per year) in a given ecosystem. For example, although savannah
ecosystems are frequented by fires every 3–5 years, mesic

forests can exhibit fire return intervals of 200þ years. Although
less well known, soil incorporation and off-site wind transfer
rates of BC in these systems likewise vary (Rumpel et al. 2009;

Nocentini et al. 2010; Kasin and Ohlson 2013), principally due
to differences in soil exposure, topography, precipitation, tem-
perature and wind regimes.

We posit that if burning rates are faster than the protection
rate required to safeguard BC, thenmost BC produced in a burn
will still be exposed during subsequent burns. This may

represent a scenario of 0% or 25% BC protection between
burns, which may be comparable to the short fire return
intervals found in pine–savannah systems if off-site transport
through wind and water erosion is minimal; this scenario may

not be commonplace, given these particles are often considered
very susceptible to off-site transport by wind and water
processes in grasslands and savannahs. In contrast, if similar

tradeoffs were observed in other systems such as the longer fire
return intervals common to boreal forests, such systems may
exhibit enough time between burns for BC to be incorporated

sufficiently far into the litter and duff or mineral soil to be
protected during subsequent burns. Such ecosystems are more
likely represented by a scenario of 75% or 100%BC protection
(Santı́n et al. 2015b).

We contend that ecosystem variations affecting the ratio of

these two processes (fires per percentage BC protected), that is,
the rate of burning (fires per year) and rate of BC protection
(% per year), could determine the sensitivity of soil BC budgets
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to repeated burning. Assessment of this ratio could enable
studies to determine if and when net BC storage reaches an
asymptote, but will require understanding the protection and

production rates of residues of different sizes in different
ecosystems. If frequent fire consumes BC faster than it can be
protected by soils or off-site transport, then those forested

systems with short fire return intervals would have lower
amounts of BC compared with forested systems with long fire
return intervals. However, the per-fire production rate of black

carbon is a function of other factors such as fire severity and
biomass production between fires, which complicate studies
trying to determine the variability in this relationship (Jauss
et al. 2015).

Ultimately, these processes likewise dictate the feasibility of
using fuel treatments and fire hazard management (prescribed,
wildland fire use fires, etc.) as tools to increase soil BC storage

(DeLuca and Aplet 2008; Santı́n et al. 2015b). Given the
tradeoff between BC production and consumption in subsequent
burns, maintaining ‘natural’ fire regimes in ecosystems histori-

cally characterised by high-frequency fires (e.g. burning once
every several years to decades), may be at odds withmaximising
soil BC storage (Cheng et al. 2013).

Conclusion

This study highlights the potential importance of physical loss of

BC through repeated burning, adding combustion as a key
mechanism to previous work demonstrating BC loss through
biological and physical degradation. For BC that remains in situ

to be most effective as a net carbon sink, it must be incorporated
into the mineral soil matrix before subsequent burning. Our work
is a first step towards quantifying BC loss rates from repeated

burning to more accurately model long-term BC storage in soil
organic pools, but projecting the long-term impacts on carbon
budgets requires more precise estimates of BC protection rates.
Biogeochemical models that track BC should be sensitive to the

combined effects of burning, soil incorporation and off-site
transport rates, as exemplified by the ratio of these processes.
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