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Appendix 1. Supplementary Methods 

Boosted regression tree modeling 

To construct our boosted regression trees (BRTs), we used a Bernoulli distribution to 

characterize the binary response variable of fire presence/absence. We set our bagging fraction of 

0.5, and used a 5-fold cross validation to identify the optimal number iterations from a maximum 

of 5000. Since we used a small pre-selected subset of 2-km pixels to train each BRT, we set the 

training fraction to 1.0. The minimum number of observations allowed in each regression tree 

node was set to 1. Our interaction depth was set at 2, to capture pairwise potential interactions 

among explanatory variables. The learning rate (i.e., shrinkage) was 0.01 for each model, and 

was chosen to ensure deviance of the predicted response reached a minimum within the 

maximum number of trees (i.e., 5000) (Supplementary material Appendix 2, Fig. A1). 

Landscape sampling of Alaskan wildfire occurrence 

To prevent overfitting of historical fire-climate relationships and to account for potential 

spatial autocorrelation in our analyses, we sampled a small subset of all available 2-km pixels 

from the spatial domain of each model (AK, BOREAL, and TUNDRA). The total number of 

pixels from each spatial domain (i.e., sampling rate) used to train our boosted regression tree 

models (BRTs) was determined by evaluating the predictive performance of BRTs built at 

different sampling rates. Specifically, we increased the sampling rate until subsequent increases 

resulted in model improvement < 5% for both the mean AUC and median Pearson correlation 

value. We tested eight different sampling rates, based on the 50th, 60th, 75th, 80th, 85th, 90th, 

95th, and 99th percentiles of the size distribution of fires from 1950-2009. For example, in the 

BOREAL domain, the 85th percentile fire size is 121.6 km2, and the total study area is 125,470 

pixels (i.e., 501,880 km2); therefore there are 501,880 km2 / 121.6 km2 ≈ 4127 observations 



 
 

available, corresponding to a sampling rate of 4127 pixels / 125,470 pixels = 3.29% 

(Supplementary material Appendix 2, Table S3). This sampling rate is comparable to randomly 

selecting a single 2-km pixel every 122 km2. For each spatial domain and sampling rate, we 

trained a set of 15 BRTs, which was used to predict fire presence/absence. To evaluate model 

performance, we recorded AUC values and Pearson correlations between predicted and observed 

fire rotation periods (FRPs) for ecoregions. If needed, the number of iterations and the shrinkage 

parameters for the BRTs were adjusted for different sampling rates. Finally, we selected the 

lowest sampling rate that met our criteria for all three sampling domains. Based on our criteria, 

we used sampling rates associated with the 85th percentile of fire sizes, or 3.52%, 3.29%, and 

5.43% of the available pixels for the AK, BOREAL, and TUNDRA models, respectively 

(Supplementary material Appendix 2, Table S3).  

This sampling design has several advantages compared to using all available pixels in 

each sampling domain. First, our approach helps to guard against overfitting, as relationships 

derived from a subsample of points are likely more generalizable to new observations than 

relationships fit using all available pixels. Second, our design helps account for spatial 

autocorrelation, which is particularly important when modeling variability in fire occurrence, 

because the process of fire spread is highly autocorrelated in space. Using all available pixels 

runs the risk of over-estimating the predictive power of explanatory variables. Finally, using 

different subsampling rates for each spatial domain helps account for significant fire-regime 

differences among study domains (e.g., boreal forest fire are generally larger than tundra fires).  

 

 

 



 
 

Identifying climatic thresholds to fire occurrence with segmented regression models 

To quantify potential thresholds we used a piecewise linear regression using the 

“segmented” package in R (Muggeo 2003, Muggeo 2008). We used the median predicted 

probability of fire occurrence for each climate explanatory variable and restricted the segmented 

regression to climate values immediately surrounding a visually identified threshold. 

Specifically, we sampled BRT predictions (n = 100) with replacement 2000 times, calculated the 

median predicted probability from the 100 BRTs each time, performed piecewise regression on 

each sample, and recorded threshold estimates from each bootstrap sample. We report the mean 

threshold estimate and the 2.5th and 97.5th percentiles as 95% confidence intervals from the 2000 

bootstrapped samples.  



 
 

Appendix 2. Supplementary Results 

Table A1. List of the 13 continuous candidate explanatory variables originally considered in the 

boosted regression tree (BRT) analysis and their predictive performance when each is used 

individually to model the 30-yr probability of fire occurrence. Values for each candidate climate 

variable are the 30-yr average. For each explanatory variable, 100 BRTs were constructed and 

used to predict the presence/absence of fire. AUC mean and SD values are calculated from the 

predictions of these 100 BRTs.  

Variable Units Description AUC  
Mean (SD) 

GDDANN  °C Total Growing Degree Days 0.74 (0.01) 

PANN mm Total Annual Precipitation 0.64 (0.03) 

PDJF mm Total Winter Precipitation 

 

0.60 (0.06) 

PJJA mm Total Summer Precipitation 

 

0.65 (0.02) 

PMAM mm Total Spring Precipitation 0.62 (0.02) 

PRANGE mm Annual Precipitation Range 0.60 (0.03) 

P-PETANN mm Total Annual Moisture Availability 0.70 (0.02) 

P-PETJJA mm Total Summer Moisture Availability 0.60 (0.02) 

TANN °C Mean Annual Temperature 0.62 (0.02) 

TJJA °C Mean Summer Temperature 

 

0.73 (0.01) 

TRANGE °C Annual Temperature Range 0.59 (0.02) 

TWARM °C Mean Temp. of the Warmest Month 0.78 (0.01) 

TR m Topographic Ruggedness 0.57 (0.01) 

  



 
 

Table A2. Median Spearman rank correlations among candidate explanatory variables. 

Correlations were calculated using 5% of the data randomly sampled across space 100 times 

using 1950-2009 averages.  

ID 1 2 3 4 5 6 7 8 9 10 11 12 13 

1 GDDANN 1.00             

2 PANN 0.06 1.00            

3 PDJF -0.04 0.93 1.00           

4 PJJA 0.15 0.92 0.75 1.00          

5 PMAM 0.00 0.96 0.93 0.83 1.00         

6 PRANGE 0.06 0.96 0.83 0.95 0.89 1.00        

7 P-PETANN -0.19 0.96 0.92 0.85 0.94 0.92 1.00       

8 P-PETJJA 0.08 0.92 0.79 0.94 0.85 0.91 0.90 1.00      

9 TANN 0.69 0.54 0.44 0.56 0.51 0.50 0.40 0.64 1.00     

10 TJJA 0.96 -0.09 -0.19 0.03 -0.15 -0.08 -0.34 -0.10 0.51 1.00    

11 TRANGE 0.02 -0.71 -0.67 -0.64 -0.70 -0.67 -0.75 -0.82 -0.66 0.23 1.00   

12 TWARM 0.91 -0.17 -0.26 -0.06 -0.22 -0.15 -0.42 -0.21 0.40 0.98 0.34 1.00  

13 TR -0.22 0.37 0.31 0.43 0.32 0.38 0.38 0.34 -0.06 -0.22 -0.16 -0.24 1.00 

  



 
 

Table A3. Results from evaluating models built at different sampling rates. AUC and Pearson 

correlation values are calculated from the predictions of the 15 boosted regression trees models 

trained for each spatial domain and sampling rate. An example of how the “Number of pixels” 

and “Sampling rate” values are calculated is given in Appendix 1.  

 

Percentile 

Model/ 

Spatial 
domain 

Fire size 
(km2) 

Number 
of pixels 

Sampling 
rate (%) 

AUC 

Mean (SD) 

Median 
Pearson 

correlation 

99 
AK 1434.0 707 0.28 0.78 (0.03) 0.61 

BOREAL 1489.2 337 0.27 0.64 (0.05) 0.61 
TUNDRA 1070.2 381 0.37 0.58 (0.15) 0.38 

95 
AK 416.3 2435 0.96 0.78 (0.02) 0.64 

BOREAL 426.5 1177 0.94 0.63 (0.04) 0.64 
TUNDRA 348.0 1170 1.15 0.66 (0.09) 0.41 

90 
AK 199.0 5093 2.01 0.78 (0.02) 0.66 

BOREAL 205.4 2443 1.95 0.63 (0.03) 0.62 
TUNDRA 130.3 3126 3.07 0.70 (0.08) 0.52 

85 
AK 113.5 8930 3.52 0.78 (0.02) 0.75 

BOREAL 121.6 4127 3.29 0.63 (0.03) 0.63 
TUNDRA 73.7 5526 5.43 0.70 (0.08) 0.59 

80 
AK 75.1 13496 5.33 0.78 (0.02) 0.80 

BOREAL 79.7 6297 5.02 0.62 (0.03) 0.66 
TUNDRA 47.0 8665 8.51 0.72 (0.06) 0.57 

75 
AK 50.7 19991 7.89 0.78 (0.02) 0.81 

BOREAL 53.5 9381 7.48 0.62 (0.02) 0.70 
TUNDRA 34.6 11770 11.56 0.72 (0.06) 0.60 

60 
AK 18.8 53193 21.28 0.77 (0.01) 0.80 

BOREAL 19.6 25606 20.41 0.62 (0.03) 0.67 
TUNDRA 15.0 27510 26.67 0.72 (0.07) 0.55 

50 
AK 10.7 94725 37.38 0.77 (0.01) 0.82 

BOREAL 11.1 45214 36.04 0.62 (0.03) 0.68 
TUNDRA 8.0 50907 50.00 0.71 (0.06) 0.54 

  



 
 

 

Fig. A1 Boosted regression tree (BRT) diagnostic information for each modeling domain. The 

top row displays the training and testing deviance averaged from the 100 BRTs for each of the 

three models. The bottom row displays the distribution of the optimal number of iterations 

selected for each of the 100 BRTs.  



 
 

 

Fig. A2 Observed fire rotation periods (FRPs) for Alaskan ecoregions calculated using 30 non-

continuous, randomly sampled years (boxplots) compared with the FRP of each ecoregion using 

all sixty years (1950-2009) of available data (black diamonds). Boxplots represent a distribution 

of 100 FRPs calculated using a randomly sampled 30-yr time period. 



 
 

 

Fig. A3 Thirty-year fire rotation periods (FRPs) for continuous time periods from 1950 through 

2009 for the (a) boreal forest and (b) tundra spatial domains. The solid point is the calculated 

FRP for each thirty year time period. Confidence bounds are the 2.5th and 97.5th quantiles 

assuming FRP is an exponential random variable with the rate parameter equal to the inverse 

FRP (e.g., Chipman et al. 2015).  



 
 

 

Fig. A4 Partial dependence plots illustrating the relationships between topographic ruggedness 

and the predicted probability of fire occurrence from the (a) AK, (b) BOREAL, and (c) 

TUNDRA models, as in Fig. 4 in the main text. The solid black lines represent the median 

predicted probability of fire occurrence, and the dashed lines represent the interquartile range 

from 100 boosted regression tree models. A lowess function (span = 0.1) was used to smooth the 

plotted predicted median and interquartile lines. As a reference, lighter (darker) colored 

histograms represent the historical distribution of topographic ruggedness among unburned 



 
 

(burned) pixels from 1950 to 2009. Histograms heights were scaled individually and are not 

associated with y-axis values.  



 
 

 

Fig. A5 Projected changes in summer warmth (i.e., mean temperature of the warmest month) for 

Alaskan ecoregions and the boreal forest and tundra spatial domains. Values in parentheses next 

to ecoregion names are the 1950-2009 averages, while colors indicate the magnitude of projected 

change for the five-GCM average and each GCM individually. Projected changes were 

calculated by taking the difference in projected climate for each 2-km pixel and then averaging 

this difference across each region and time period.  



 
 

 

Fig. A6 Projected changes in annual moisture availability for Alaskan ecoregions and the boreal 

forest and tundra spatial domains. Values in parentheses next to ecoregion names are the 1950-

2009 averages, while colors indicate the magnitude of projected change for the five-GCM 

average and each GCM individually. Projected changes were calculated by taking the difference 

in projected climate for each 2-km pixel and then averaging this difference across each region 

and time period.   
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