FORS 201 – Biometrics
Autumn 2017

Instructor: Dr. David Affleck
Clapp Building (CHCB) 430
david.affleck@umontana.edu
Office hours Fridays 1 – 3 pm

Assistant: Biga Marshall
Clapp Building (CHCB) 460
abigail.marshall@umontana.edu
Office hours TBD in Stone Hall 107

Lectures: MWF 9:00 – 9:50 am in SS 352

Labs: Section 1 (CRN 72963) M 10:00 – 11:50 am in Stone Hall 106 & 107
Section 2 (CRN 72964) W 12:00 – 1:50 pm in Stone Hall 106 & 107

Course summary:

Introduction to data collection, data analysis, probability, and inferential statistics for forestry and the natural resource sciences. The course focuses on natural resource and environmental applications of statistical methods, ranging from descriptive graphical and quantitative analyses to the use of formal probability models, interval estimation, significance tests, and linear regression modeling.

Course learning outcomes:

By the end of this course you will:

1. Recognize the ubiquity and importance of variation in natural systems and the consequent need for statistical reasoning.
2. Be able to effectively summarize data to characterize central tendency, variation, bivariate relationships and other important distributional features of natural resource data.
3. Appreciate the role of randomization in data collection and statistical inference.
4. Understand the concept of sampling distributions, and the utility of the Central Limit Theorem.
5. Be familiar with probability distributions commonly used in statistical inference.
6. Be able to apply appropriate statistical methods to characterize uncertainty, to measure evidence in support of hypotheses, and to make quantitative predictions.

Prerequisites:

Probability and linear math, or (pre-)calculus (M115, 121, 122, 151, 162, 171, or 172).

Textbook:

There is no required textbook for the course, but readings from Statistics, 4th ed. (Freedman, Pisani, & Purves) will be recommended throughout the semester. Problems on quizzes and exams will draw on material covered in those readings and in class. A copy of the book is on reserve in the Mansfield Library, and copies are available in the bookstore and online.
Grading Policy:

There will be a midterm exam worth 15% of the course grade, a final exam worth 30%, and a sequence of laboratory assignments collectively worth 50%. An intermittent series of short online quizzes will account for the remaining 5% of the grade. Traditional letter grades will be assigned based on the combined percentage grade:

A ≥ 80% B 79-70% C 69-60% D 59-50% F <50%

Note that the class is offered for traditional letter grade only.

Exams:

The midterm and final exam will draw on the material presented in class and labs, and from that in assigned readings. A calculator and a formula sheet (double-sided but no larger than 5”x 8”) will be permitted.

The final exam is scheduled for 8 – 10 am on Thursday, Dec. 14 (in SS 352).

Labs:

There are weekly assignments focusing on applications of the material covered in lectures. These exercises consist of data analysis, problem solving, and computing. Exercises will be assigned in the lab period and will be due before the subsequent lab (i.e. in one week’s time), unless otherwise noted.

Group work is strongly encouraged in labs but, unless noted otherwise, every student must submit his or her own work.

Notes:

Class materials and announcements will be posted on the FORS201 Moodle website, which can be accessed from moodle.umt.edu.

Per university policy, all electronic communication associated with the course must be sent to University of Montana email accounts. Ensure that your umconnect.umt.edu email is properly configured and active!

All course activities are governed by the Student Conduct Code, which embodies the ideals of academic honesty, integrity, human rights, and mutual respect. Academic misconduct is subject to an academic penalty by the course instructor and/or a disciplinary sanction by the University. All students need to be familiar with the Student Conduct Code.

Students with disabilities may request reasonable modifications by contacting me. The University of Montana assures equal access to instruction through collaboration between students with disabilities, instructors, and Disability Services for Students (DSS).
Tentative course schedule:

<table>
<thead>
<tr>
<th>Week</th>
<th>Lecture & laboratory topics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aug 28</td>
<td>Course overview</td>
</tr>
</tbody>
</table>
| Sept 4 | Concerning data & variables. Tabular and graphical summaries of categorical and quantitative variables.
* Monday is Labor Day – no class, no lab meeting on Monday.
Lab 1: Introductions to the computer labs and Microsoft Excel. |
| Sept 11| Measuring central tendency: mean(s), median, and mode (proportions too). Characterizing variation: root mean square and standard deviations.
Lab 2: Describing and interpreting data distributions. |
| Sept 18| Ranks, percentiles, standardizations, and standard scores. Measurement error.
* September 21 is the last day that the course can be dropped on Cyberbear with a refund.
Lab 3: Characterizing center, spread, position. |
Lab 4: Creating and interpreting scatterplots; correlation. |
| Oct 2 | Describing bivariate relationships using linear regression.
Lab 5: Linear regression. |
| Oct 9 | Study design: Comparative experiments, observational studies, and sampling.
* No lab on Wednesday (Oct 11). |
| Oct 16 | Introduction to probability and probability models.
Lab 6: Sampling and design concepts. |
| Oct 23 | Common probability distribution: the binomial distribution and the normal curve
Midterm Exam from 9 – 10 am in SS 352 on Wednesday, Oct 25th
Lab 7: Probability models and calculations. |
| Oct 30 | Specifying probability models; determining expected values and standard errors.
* Dropping the class after Sept. 21 but before Nov. 2 requires submitting a form with instructor and advisor signatures; you will receive a ‘W’ on your transcript and no refund. After Nov. 2, classes can be dropped only under limited and unusual circumstances and will require approvals from instructor, advisor, and Associate Dean.
Lab 8: Applications of the binomial and normal distributions. |
| Nov 6 | The Central Limit Theorem and the normal approximation for probability histograms
* No class on Friday in recognition of Veterans’ Day
Lab 9: Working with probability models; deriving expected values and standard errors. |
| Nov 13 | Introduction to interval estimation; confidence intervals for population proportions
Lab 10: Applications of the central limit theorem. |
| Nov 20 | Estimating the accuracy of the sample mean.
* No labs this week. Wednesday and Friday are part of the Thanksgiving Break – no classes. |
<table>
<thead>
<tr>
<th>Week</th>
<th>Lecture & laboratory topics</th>
</tr>
</thead>
</table>
| Nov 27 | Introduction to significance testing: mechanics, test statistics, critical values and p-values.
Lab 11: Confidence interval estimation. |
| Dec 4 | Contingency tables, tests of independence, and the chi-squared distribution. Analysis of variance.
Lab 12: Significance tests for population means. |
| Dec 11 | Course Review.
No labs this week; classes meet on Monday only this week. |

Final exam from 8.00 – 10.00 am in SS 352 on Thursday, December 14th