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ABSTRACT 

 

 

 

INVESTIGATING THE DIRECT AND INDIRECT EFFECTS OF INTRODUCED 

GREENBACK CUTTHROAT TROUT ON BOREAL TOAD RECRUITMENT 

 

 

 Worldwide, numerous amphibian species are at great risk of extinction. Currently, a third 

of all amphibian species are listed by the International Union for Conservation of Nature as 

threatened and this number is likely underestimated as there are many species whose status is 

unknown due to insufficient data. Species in the family Bufonidae, the true toads, are one of the 

most threatened groups of amphibians. One such declining bufonid is the boreal toad, Anaxyrus 

boreas boreas.  

 While much of the decline in boreal toad populations can be attributed to the chytrid 

fungus, Batrachochytrium dendrobatidis (Bd), not all populations are impacted by this pathogen. 

Declining populations of boreal toads in protected areas in the absence of Bd are largely 

enigmatic. However, there is one hypothesis that might explain these declines. The greenback 

cutthroat trout, a federally threatened species, have been introduced into alpine lakes in an effort 

to bolster their population. These trout were introduced into some lakes that supported breeding 

populations of toads and could be causing the declines observed in the toad populations. 

 Adult boreal toads are mostly terrestrial and beyond the gape limitation of greenback 

cutthroat trout. As such, trout are not likely to reduce adult toad survival. What is more likely is 

that introduced trout are reducing or eliminating recruitment of individuals to the adult 

population. The life stages where trout could interrupt recruitment are: embryos, tadpoles, and 

postmetamorphic individuals. Among these life stages, trout may reduce recruitment via various 
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direct or indirect effects. The direct effect of predation is unlikely as boreal toads contain 

bufotoxins at all life stages and are, therefore, unpalatable to trout. However, trout may not 

recognize palatable verses unpalatable prey and must taste a prey individual to determine if it is 

palatable. For early developmental stages, this ―tasting‖ process could result in physical damage 

and stress to those individuals and reduce survival. Trout presence may also indirectly affect 

survival, growth, and development of toads.  One indirect effect is a reduction in tadpole activity, 

thereby reducing time spent foraging. Trout presence could also cause tadpoles to shift habitat 

use away from energetically favorable habitat and towards habitat that offers protection but is 

less energetically favorable. Lastly, in the presence of trout, a tadpole might expedite its 

development in an attempt to emerge out of the water and away from the trout pressure. The 

impacts of trout on the growth and development of tadpoles could also result in carry-over 

effects in the postmetamorphic stage and influence subsequent vital rates such as survival and 

growth. 

 I used field and laboratory studies to investigate various direct and indirect effects of 

trout on early life stage survival, growth, and development of toads. In the first chapter, I 

investigated the effect of trout presence on embryo survival in the field. I also analyzed trout 

microhabitat use to determine the probability of trout presence around the toad egg masses. I 

found no effect of trout presence on embryo survival but sample sizes were small. Furthermore, I 

found that trout are unlikely to use the areas around the egg masses. Adult toads select protective 

habitat to deposit their egg masses, and it is likely this careful placement of the egg masses that 

confers protection to the embryos. 

 Chapter two focuses on trout effects on tadpole and postmetamorphic life stages of boreal 

toads. I used laboratory experiments to test impacts of trout presence on tadpole survival, 
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growth, and development as well as postmetamorphic survival and growth. I found that trout 

exposure reduced tadpole survival by 10-20% despite the fact that only one tadpole was 

consumed by the trout. The likely driver behind this reduction in survival is the process of tasting 

by the trout. In a four hour exposure period, which occurred every day throughout the tadpoles‘ 

development, an individual tadpole would be tasted on average 0.84 times during an exposure 

period. I also found that exposure to trout delayed metamorphosis. I saw no carry-over effects of 

trout exposure on postmetamorphic survival or growth. This experiment was conducted on wild-

bred and captive-bred tadpoles. I also found that captive-bred tadpoles suffered higher mortality 

and reduced growth in both the tadpole and postmetamorphic stages than wild-bred tadpoles. 

 Managing imperiled species becomes difficult when the strategies to conserve the two 

species conflict. I have demonstrated that the introduction of greenback cutthroat trout can 

reduce recruitment in boreal toad populations. This new knowledge can be used to inform 

conservation of toads as well as trout. A common strategy of managers for both species is to 

establish new populations through reintroductions. My results can be used to help managers 

select sites for those reintroductions. Furthermore, this better understanding of the intricate 

dynamics between these two species can help inform management in areas where the two 

currently occur together due to previous trout stocking. For example, managers could isolate 

trout from toad breeding habitat during the late spring and summer months 

 Conservation of any species requires detailed knowledge of the vital rates that drive the 

population dynamics of the species. Due to the reproductive biology of many species, it is often 

best to use female-specific parameters to understand the dynamics of a population. However, in 

many imperiled populations, it is difficult to obtain the quantity of data necessary to estimate 

those parameter estimates. This problem is exacerbated in species like the boreal toad when 
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females skip breeding opportunities, thereby reducing their availability for detection. My last 

chapter explores possible survey strategies to improve female parameter estimation. I simulated 

two boreal toad populations, an easily accessible one and an inaccessible population, and 

compared the ability of different survey designs to estimate female survival and breeding 

probability in each simulated population. For the accessible population, I found that any survey 

design that is nonrandom (i.e., surveys are conducted according to a designated schedule) and 

has at least four surveys during the breeding season is able to adequately estimate female 

parameters. However, in the inaccessible population, designs consisting of surveys conducted on 

consecutive days early in the season produced the best parameter estimates when compared with 

other survey designs.  

 Boreal toad conservation will require detailed knowledge about the local drivers of their 

decline as well as accurate and precise estimates to describe the status of the populations. 

Through this thesis, managers will better understand the intricate dynamics between greenback 

cutthroat trout and boreal toads and have a framework to ensure they are able to collect enough 

data to monitor their toad populations successfully.  
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CHAPTER ONE: 

IN SITU EXPLORATION OF THE INTERACTIONS BETWEEN INTRODUCED TROUT 

AND AN ALPINE TOAD 

 

 

 Across the world, introduced trout have negatively impacted amphibian populations. One 

such introduced trout, the greenback cutthroat trout (Oncorhynchus clarkii stomias), may be 

exerting negative effects on boreal toad, Anaxyrus boreas boreas, populations. Here I present 

two studies, one experimental and one observational, that investigate the potential impacts of 

introduced greenback cutthroat trout on boreal toad embryos. I experimentally tested whether 

toad embryo survival is reduced in the presence of trout and I also analyzed trout microhabitat 

use to determine if there is overlap between where toad egg masses are laid and the microhabitat 

that the trout use. I found no evidence that trout presence reduced embryo survival. In addition, 

my analysis revealed that trout do not use areas where toad eggs are laid but may overlap areas 

used by other toad life stages.  

Introduction 

 Amphibian populations are declining worldwide. Some estimates suggest that amphibians 

are facing extinction rates 211 times higher than the background extinction rate (McCallum 

2007) and in the United States, amphibian occupancy is decreasing at a rate of 3.7% each year 

(Adams et al. 2013). Several factors have been implicated in these declines: alien species, over-

exploitation, land use change, global climate change, environmental contaminants, and emerging 

infectious diseases (Collins and Storfer 2003). One group of alien species, introduced salmonids, 

have negatively impacted alpine amphibians in the western United States (Bradford 1989, Knapp 

2005, Pilliod et al. 2010).  
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Trout are often introduced for recreation as well as conservation purposes (Bahls 1992). 

However, trout can severely alter ecosystems into which they are introduced (Epanchin et al. 

2010, Finlay and Vredenburg 2007, Knapp 2005). While trout are unlikely to feed directly on 

adult amphibians, they can reduce embryo and larval survival through direct predation (Bull and 

Marx 2002, Gillespie 2001, Pearson and Goater 2009). Trout presence may also indirectly affect 

early toad life stages by causing reductions in activity, habitat shifts, and alter rates of 

development (Currens et al. 2007, Relyea 2001, Orizaola and Brana 2005). 

 To date, most trout-amphibian interaction studies typically report the common outcome 

of reduced amphibian distribution and abundance (i.e., Bradford et al. 1998, Knapp 2005, Welsh 

et al. 2006). Unfortunately, few studies have attempted to experimentally investigate the 

potential direct or indirect mechanisms by which the trout impact different life stages (but see 

Tyler et al. 1998, Kiesecker et al. 2001, Vredenburg 2004, Pearson and Goater 2009). Given the 

many ways trout impact amphibian populations, knowledge of the mechanisms by which trout 

negatively affect amphibian life stages may assist managers tasked with conserving declining 

populations.  

 Spruce Lake in Rocky Mountain National Park (RMNP) is one of many historically 

fishless alpine lakes that now contain introduced trout (Bahls 1992). It is home to one of the few 

remaining boreal toad (Anaxyrus boreas boreas) breeding populations in the park. Research that 

began in 2001 revealed high annual adult survival (>0.90) but virtually no recruitment, resulting 

in a population decline of 5% annually (Muths and Scherer 2011). In 20 years of monitoring at 

Spruce Lake (1991-2010) only one postmetamorphosis individual was documented (Muths and 

Scherer 2011). Unlike many populations of boreal toads in the Southern Rocky Mountains, 

Spruce Lake has a very low prevalence of the amphibian chytrid fungus, Batrachochytrium 
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dendrobatidis (Muths et al. 2003, Muths and Scherer 2011). Thus, another factor is apparently 

responsible for population decline of boreal toad in Spruce Lake. 

 It is plausible that the introduced trout in Spruce Lake are responsible for the low 

recruitment in the toad population via predation or other indirect effects. Here I use both 

experimental and observational studies to determine if trout are impacting one aspect of toad 

recruitment, embryo survival. I estimated embryo survival in both trout and trout-free habitats 

using a manipulative field experiment. In addition, I conducted a trout microhabitat use study to 

determine the probability of trout occurrence in the areas where the toads deposit their eggs. My 

aim was to determine if trout share microhabitats with toad embryos and test the possible effects 

of trout presence on embryo survival. 

 Methods 

Species Description 

The boreal toad is an alpine species that ranges across Utah, Wyoming, Colorado, Idaho, 

and Nevada, US. Their breeding ponds, summer range, and overwinter refugia, all occur in 

higher elevation lodgepole pine or spruce-fir forests from 2,100 to 3,600 meters (Campbell 

1970). While males occasionally skip breeding opportunities, they usually return to the breeding 

area every year (Muths et al. 2006). In contrast, females of reproductive age subsequently skip 

one or more breeding opportunities (Muths et al. 2010). Breeding occurs in the spring after iceoff 

in shallow margins of wetlands, and eggs and tadpoles develop throughout the summer months 

to metamorphose and emerge before the area freezes again. The Southern Rocky Mountain 

(SRM) population of boreal toads is declining (Carey 1993, Scherer et al. 2005, Muths and 

Scherer 2011) and is currently ―warranted but precluded‖ from listing under the Endangered 
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Species Act. A listing decision by the U.S. Fish and Wildlife Service is slated for 2017 (U.S. 

Fish and Wildlife Service 2012).  

Study Areas 

 We sampled two boreal toad breeding areas in RMNP: Spruce Lake and a wetland 

complex near Fay Lakes (Figure 1.1). In 1991, as part of recovery efforts, greenback cutthroat 

trout, Oncorhynchus clarkii stomias, were introduced to Spruce Lake to bolster populations of 

this federally threatened species (U.S. Fish and Wildlife Service 1998). Due to natural 

downstream barriers, Spruce Lake offered introduced greenback cutthroat trout a habitat free 

from competition and hybridization from other non-native trout species and the cutthroat 

population has thrived. As such, this lake served as my ―trout‖ site.  The breeding area near Fay 

Lakes (Fay Lakes) was recently discovered in 2003 and, like Spruce Lake, is one of the few 

remaining boreal toad breeding areas in the park. It is a shallow, seasonal wetland and is, 

therefore, free from trout. This site served as my ―control‖ site.  

Embryo Survival 

 Embryo survival studies required manipulation of wild egg masses in control and trout 

treatment sites. To accomplish this, arrival of adult toads at the breeding areas was monitored 

closely in late spring, 2013 and 2014. Once egg masses were laid, I divided each into two 

approximately equal halves. Each half was gently placed over a white background board and 

photographed. I used these photographs and the cell counter function in ImageJ to census the 

number of eggs in each half (Rasband 2009).  

One randomly selected egg mass half was caged and the other was left exposed. Mesh 

cages measuring 40x40x15 cm were constructed of polyvinyl chloride pipe (PVC) that were 

filled with sand and sealed with aquarium-safe silicone sealant (Figure 1.2). Screen material was 
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stitched to the frame so that five sides of the cages were enclosed in mesh while the bottom 

remained open to the substrate. If the cage did not contact the substrate such that fish were 

confidently excluded, plastic sheeting was added to create a skirt that was covered with gravel, 

mud, and rocks. The exposed half of the egg mass was not caged and in Spruce Lake remained 

accessible to predation or disturbance by trout. I repeated this experimental set up at the control 

site for all egg masses.  

 The embryos were monitored at least twice per day during embryo development. When 

individuals from an egg mass hatched (Gosner stage 25), a temporary removal method was used 

to estimate the number of hatched tadpoles. I used a dip net (12 x 9.5 cm) to sweep the area 

occupied by recently hatched tadpoles (usually about 1.5 x 1.5 m), being careful to not disturb or 

disperse undetected tadpoles. I counted the number of tadpoles in the net after each sweep and 

placed them in a separate enclosure. I continued removals, maintaining constant effort (i.e. area 

covered in one sweep), until less than ten individuals were captured in successive net sweeps. 

Sampling was similar for the caged halves, but I simply cut the mesh off the top of the cage and 

sampled within the cage. Upon completion of the sampling, tadpoles were returned to the 

original area of the egg mass. This temporary removal sampling design was employed for all egg 

masses in the experiment.  

Trout Microhabitat Use 

 During embryo development, I collected microhabitat use data for greenback cutthroat 

trout near, but not including, the area where the egg masses were deposited. This area was 

divided into four strata of increasing distance from the edge of the shore (0-3, 3-6, 6-9, and 9-12 

m). Sampling plots (2 x 2 m) were randomly chosen within each stratum. A ruler was also placed 

in each plot for reference when estimating the length of trout observed in the plot. Plots were 
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established in the morning or evening and then surveyed the following evening or morning, 

respectively (after a minimum of 8 hours) when the trout are most likely to be active and feeding 

(Cuenca and de la Higuera 1994, Sánchez-Vázquez and Tabata 1998).  I conducted multiple (2-

3) 5-minute surveys from 4-7 m away with at least 15 minutes between surveys to ensure 

independence of the surveys. Eight new plots were surveyed each day, 4 in the morning and 4 in 

the evening until the egg masses hatched. Because smaller trout likely use different microhabitats 

than larger trout, the lengths of the observed trout were estimated using the ruler placed in each 

plot. Once all surveys were completed in a morning or evening, covariates including depth, 

vegetation density (percent of the plot with vascular plant matter), temperature, dissolved 

oxygen, and a qualitative measure of connectivity to the rest of the lake (range: 0 = completely 

isolated by islands, 5 = completely open to the body of the lake) were recorded for the plot 

(Table 1.1). These same covariates were also measured at the egg mass locations so habitat could 

be compared to that used by trout. 

Analysis 

 We used robust design closed capture models to estimate embryo survival probability for 

each egg mass half (Pollock et al. 1990, Kendall and Nichols 1995). I considered each egg mass 

half a ―population‖ with the known number of animals ―released‖ during the first primary period 

based on photograph census counts. The second primary period consisted of the count of 

tadpoles during each removal sweep (for an example of the data, see Appendix 1.). To account 

for the removal design, I set recapture probabilities (c) to zero in the second primary period. 

Embryo survival estimates represent the probability that an egg survived through hatching, i.e., 

the probability that an individual egg ‗released‘ during the first primary period survived to the 
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second primary period. Analysis was conducted using Program MARK (White and Burnham 

1999).  

To control for background heterogeneity in survival between egg masses I calculated the 

proportional difference in survival probability between the caged and exposed halves,  

 

 

  

          
                 

       

  
Eqn ( 1 ) 

 

This allowed us to analyze the proportional reduction in embryo survival that resulted from 

exposure   used the delta method to calculate the variance associated with the proportional 

difference: 

 

 

  

               
              

       
  

                      
 

       
   

Eqn ( 2 ) 

 

We used Program Contrast (Hines and Sauer 1989) to compare the proportional differences from 

the trout site and the control site to determine if the presence of trout influenced embryo survival. 

Program Contrast is useful because it tests specific hypotheses about estimates while accounting 

for their variances and covariances using the methods described by Sauer and Williams (1989). I 

tested and confirmed the assumption that my estimates of proportional differences were normally 

distributed.  

 We used single season occupancy models in Program MARK to model trout microhabitat 

use (White and Burnham 1999, MacKenzie et al. 2005). These models contain two parameters: 

ψ, the probability the plot was used by trout during the survey period and p, the probability of 

detecting a trout in the plot during a 5-minute survey, given the plot was used. I expected that 

microhabitat use might be different for different sized trout, so I grouped the observations by size 

class according to body length. I did not detect any 11-17 cm trout, thus my data had a natural 
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break which I used to split the size classes. I categorized trout <11 cm as ―small‖ and those >17 

cm as ―large‖, with the smallest trout being 5 cm and the largest 23 cm. I hypothesized that the 

effect of depth and vegetation density on the probability of use would be different for large and 

small trout, so I modeled interactions between length class and these covariates. I tested for 

correlation among my microhabitat variables to reduce the number of covariates. 

To create my occupancy models, I first determined the most parsimonious structure for 

detection probability, p. The structures I considered were: constant, trout length dependent, 

vegetation density dependent, and an additive structure with length and vegetation density. Using 

the most parameterized occupancy structure, I constructed models using these four structures for 

p and ranked the models using AICc to determine the best detection structure. Retaining the best 

detection structure, I fit all combinations of covariates for occupancy probability including: 

univariate models for all uncorrelated covariates, additive effects of length and covariates, and 

interactions for length and depth and length and vegetation density (length*depth; 

length*vegetation density; Doherty et al. 2012). Models were ranked using AICc. I set my 

effective sample size as the number of sampling plots to avoid overinflating my sample size. 

Using the best structure for occupancy (ψ) I repeated the selection process for my four detection 

structures to confirm that the best p structure was still supported with my top occupancy 

structure.  

I used the top ranked model and the microhabitat covariates I measured near the egg 

masses to predict the probability of trout habitat use near the egg masses. Water temperature and 

dissolved oxygen were measured twice daily, once in the morning and once in the evening, and 

because these metrics vary, I averaged the measurements for each period and used these averages 

to predict trout use in the morning as well as the evening.  
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Results 

Embryo Survival 

 We discovered ten egg masses from the two sites over the two years: six at the control 

site and four at the trout site. It typically took an egg mass 5-9 days from discovery to hatching 

(Gosner stage 25). Some of the egg masses were discovered as they were being deposited while 

others were discovered after deposition (about 1-3 days after), making it difficult to assess 

development times. Embryo survival for both caged and exposed halves was much higher at the 

trout site (range: 0.13-0.72) than the control site (range: 0.01-0.40; Table 1.2). This was 

primarily due to an outbreak of the water mold Saprolegnia ferax at the control site in 2013. 

Survival probabilities observed for the control site during 2014 were within the range of those 

found at the trout site ( Table 1.2). Despite this, I found no difference in proportional survival 

between the trout and the control site (         df = 1 p-value= 0.19). Therefore exposed eggs 

(not caged) at the trout site did not show a greater decreases in embryo survival than those at the 

control site.  

Trout Microhabitat Use 

 We surveyed 85 plots near the toad breeding area at the trout site. There was a high 

degree of correlation between the covariates of water depth, strata, and connectivity (Pearson‘s 

correlation coefficients: 0.72, depth and strata; 0.77, connectivity and depth; and 0.92 strata and 

connectivity). Based on highly correlated data, strata and connectivity were excluded from the 

analysis leaving just water depth.  

Model selection results suggested that detection probability was constant across plots and 

size classes (w = 0.45). This remained the best structure for detection probability when I 

reiterated the selection process with the most supported model for occupancy. I fit 105 models to 
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the data and, despite considerable model uncertainty, trout use was most influenced by trout 

length class, depth, and vegetation density (Table 1.3). The top ranked model consisted of 

additive effects of these variables and temperature (w = 0.10, Table 1.4). This top model 

suggested trout use increased with increasing depth (Figure 1.3), decreased with increasing 

vegetation density (Figure 1.4), and increased with increasing temperature (Figure 1.5).  

To account for model uncertainty, I model-averaged the estimates of detection probability 

and habitat use in an average plot for both trout length classes. These estimates indicate that 

larger trout were more likely to use the sampled areas than smaller trout (       = 0.15, SE = 

0.065;         = 0.024, SE = 0.016). The model-averaged detection probability was          

(SE = 0.064).   

Predicted Trout Use Around the Egg Mass Habitats 

 We collected microhabitat covariate data for three egg mass locations at Spruce Lake: 

one in 2013 and two in 2014. A third egg mass was deposited at Spruce Lake in 2014 but due to 

its late deposition, I was logistically unable to collect microhabitat covariates for this egg mass. 

Predicted trout microhabitat use was very low for both length classes in the vicinity of the three 

egg masses (range = 0.00011 – 0.015) (Table 1.5).  

Discussion 

 We found little evidence that trout influence survival of toad embryos. Comparisons of 

proportional differences in embryo survival showed no difference between the trout and control 

sites. Furthermore, my microhabitat use study suggested that trout are unlikely to use habitat near 

the egg masses. Predicted use of the areas near the egg masses was an order of magnitude lower 

than the average predicted use of the entire sampled area. The predicted use around the egg 

masses represents only a snapshot in time (15 minutes) and the probability that a trout could be 
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near an egg mass becomes greater if one considers a 14 hour period of daylight. The habitat use 

estimates also represent a snapshot in space, and in order to reach an egg mass, a trout must pass 

through a matrix of shallow water and high vegetation density similar to the habitat at the egg 

mass locations. The microhabitat in this matrix would have low predicted trout use, serving as a 

barrier to trout movement towards the egg masses.  

Embryo survival was much lower at my control site, Fay Lakes, in 2013. The lower 

survival was likely due to a stochastic disease event. During that breeding season, all of the egg 

masses at Fay Lakes became infected with the water mold Saprolegnia ferax, which can reduce 

boreal toad embryo survival (Blaustein et al. 1994). Mold infestations reduced survival of both 

the caged and exposed embryos. I attempted to account for this event by comparing the 

proportional differences in embryo survival rather than the unadjusted differences. Given that 

five of six control egg masses were exposed to the water mold in 2013, this event influenced my 

results. Reduced embryo survival at Fay Lakes in 2013 could have diminished any possible 

effects from the cages independent of trout effects (e.g., warmer water due to the dark mesh of 

the caging structures). As a result, the cage effects at Spruce Lake that resulted in higher survival 

might not have been reflected in the caged embryos at Fay Lakes. In addition, low embryo 

survival at Fay Lakes produced highly variable proportional differences, which is evident by the 

fact that the largest proportional differences (both positive and negative) are from this site in 

2013.  

Though I was limited to few egg masses, my results suggest that embryo survival was 

comparable at the trout and control sites when not affected by water mold. Adjusting for lower 

embryo survival for egg masses affected by the mold, I also found that proportional survival 

differences between caged and exposed eggs were similar between the two study areas. 
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Moreover, trout are unlikely to use areas near the toad egg masses, and, thus, are unlikely to 

influence embryo survival. Any negative impacts of introduced trout on boreal toad recruitment 

are unlikely to occur during the toad‘s embryonic stage. While the toads are unpalatable to trout 

at all life stages (Licht 1968, Brodie and Formanowicz 1987), selection of egg mass placement 

sites by breeding adult toads appears to convey additional protection for the developing embryos 

at Spruce Lake. However, this pattern might not hold at all boreal toad breeding sites. Breeding 

sites with less diversity in microhabitat structure offer fewer options for adult toads to deposit 

fertilized eggs in a protective microhabitat. If these sites also contain introduced trout, the egg 

masses might be subjected to physical disturbance by the trout, direct predation, or exploratory 

gustation of the egg masses to determine palatability. Impacts such as these could have the 

potential to reduce embryo survival.  

Once the embryos hatch, the tadpoles disperse away from egg deposition sites to areas 

with higher trout use (W. Lanier personal observation). In these areas, tadpoles are vulnerable to 

physical disturbance and stress resulting from repeated gustation by the trout (see Chapter 2). 

This repeated gustation can reduce tadpole survival (Chapter 2). Furthermore, trout exposure 

might delay metamorphosis and limit the time that recently metamorphosed individuals have to 

prepare to overwinter (Chapter 2). Both of these effects of trout on the tadpole stage could 

explain the low recruitment at Spruce Lake. 

 While my results from this field study do not explain the low recruitment in the boreal 

toad population at Spruce Lake, they do serve as an example of research aimed at understanding 

the mechanisms by which introduced salmonid species can impact amphibian populations. To 

date, the body of literature focused on the interactions between introduced salmonids and 

amphibians is lacking this kind of research. Furthermore, the research I present here is unique in 
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that it pairs an experimental study of the potential prey with an observational study of the 

potential predator. I quantified the likelihood that trout occurred in areas commonly used for egg 

deposition and examined the potential impact of trout on embryo survival. While I found no 

evidence that introduced trout negatively impact toad embryos, my study did suggest that 

interactions between trout and subsequent aquatic life stages of the toads are possible. Thus, my 

study revealed a better understanding of the system and should focus future studies to inform 

management for both boreal toads and greenback cutthroat trout.   
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Table 1.1. Abbreviations, descriptions, and the observed ranged for each microhabitat covariate 

collected at plots (2 x 2 m) sampled to estimate greenback cutthroat trout microhabitat use 

around a boreal toad breeding area in Rocky Mountain National Park. 

 
Microhabitat 

Covariate Abbreviation 

Variable 

Type 

Range or 

Categories Description 

Water depth Depth Continuous 0.15-0.55 m Water depth 

Vegetation 

Density 

Veg Continuous 0-0.95 Percent of plot vegetation 

Temperature Temp Continuous 7.6-20.7°C Water temperature taken at the center 

of the plot in the middle of the water 

column 

Dissolved 

Oxygen 

DO Continuous 2.42-9.21 

mg/L 

Dissolved oxygen concentration taken 

in the center of the plot in the middle 

of the water column 

Connectivity Conn Continuous 0-5 Qualitative measure of how 

connected the plot was to the main 

body of the lake 

Strata Strata Continuous 1-4 Predefined strata of increasing 

distance from shore in which the 

sampling plots were placed.  

Time of Day Time Categorical morning or 

evening 

Crepuscular period in which the 

surveys took place. 1 = AM, 0 = PM 
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Table 1.2. Estimates of boreal toad embryo survival and standard errors (in parentheses) for egg 

mass halves that were caged and those that were exposed to greenback cutthroat trout presence. 

There were ten egg masses found at the control and trout sites in Rocky Mountain National Park 

in 2013 and 2014. The proportional difference, defined as the difference in survival probability 

between the caged and exposed halves divided by the caged survival probability, and associated 

variance are also given.  

 

Site and Year 

Egg 

Mass Caged Exposed 

Proportional 

Difference 

Proportional 

Difference 

Variance 

C
o

n
tr

o
l 

S
it

e 

2013 

1 0.01 (0.0021) 0.02 (0.0024) -0.47 0.083 

2 0.12 (0.0050) 0.14 (0.0069) -0.17 0.0052 

3 0.08 (0.016) 0.04 (0.0041) 0.44 0.016 

4 0.05 (0.0038) 0.02 (0.0023) 0.58 0.0030 

5 0.08 (0.0058) 0.01 (0.0020) 0.86 0.00072 

2014 6 0.40 (0.0060) 0.16 (0.0038) 0.61 0.00010 

T
ro

u
t 

S
it

e 

2013 7 0.34 (0.012) 0.29 (0.012) 0.13 0.0020 

2014 

8 0.38 (0.017) 0.13 (0.011) 0.66 0.0012 

9 0.72 (0.038) 0.52 (0.036) 0.28 0.0039 

10 0.32 (0.0077) 0.17 (0.0061) 0.47 0.00054 
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Table 1.3. Cumulative weights for the covariates used in the analysis of trout microhabitat use 

around a boreal toad breeding area in Rocky Mountain National Park. The cumulative weight is 

the sum of the weights of all the models that contain a given covariate.  

 

Covariate 
Cumulative 

w 

Length 1.00 

Depth 0.99 

Veg 1.00 

Temp 0.50 

DO 0.28 

Time 0.31 
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Table 1.4. Model selection results for the analysis of greenback cutthroat trout microhabitat use 

around a boreal toad breeding area in Rocky Mountain National Park. I only present the top 

models (w > 0.01) of the 105 models that were fit to the trout microhabitat use data. Interactions 

between trout length classes (large and small) and vegetation density or depth are indicated with 

a star (*) and separated within parentheses, additive effects are indicated with a plus sign (+). 

Detection probability was constant for all these models, p(.). The columns present the model 

notation, Akaike‘s information criterion values adjusted for sample size (AICc), the difference 

between the model‘s AICc value and that of the top model (ΔAICc), AICc weights (w), number 

of parameters (K), and the deviance of the model.  

 

Model AICc ΔAICc w K Deviance 

Length+Depth+Veg+Temp 314.41 0.00 0.10 6 301.33 

Length+Depth+Veg 314.44 0.03 0.09 5 303.68 

(Length*Veg)+Depth+Temp 315.10 0.69 0.07 7 299.64 

(Length*Depth)+Veg+Temp 315.13 0.72 0.07 7 299.68 

Length+Depth+Veg+Time 315.37 0.96 0.06 6 302.29 

(Length*Veg)+Depth 315.63 1.22 0.05 6 302.55 

Length+Depth+Veg+DO 315.75 1.34 0.05 6 302.67 

(Length*Depth)+Veg 315.96 1.55 0.04 6 302.88 

(Length*Veg)+(Length*Depth)+Temp 316.51 2.10 0.03 8 298.61 

(Length*Veg)+Depth+Time 316.51 2.10 0.03 7 301.06 

Length+Depth+Veg+Time+Temp 316.56 2.15 0.03 7 301.11 

Length+Depth+Veg+DO+Temp 316.65 2.24 0.03 7 301.19 

(Length*Depth)+Veg+Time 316.75 2.34 0.03 7 301.30 

(Length*Depth)+Veg+Time+Temp 316.91 2.50 0.03 8 299.01 

(Length*Veg)+Depth+Time+Temp 316.98 2.57 0.03 8 299.08 

(Length*Veg)+Depth+DO 317.10 2.69 0.02 7 301.64 

(Length*Depth)+Veg+DO 317.39 2.98 0.02 7 301.94 

(Length*Veg)+Depth+DO+Temp 317.50 3.09 0.02 8 299.61 

Length+Depth+Veg+Time+DO 317.51 3.09 0.02 7 302.05 

(Length*Depth)+Veg+DO+Temp 317.52 3.11 0.02 8 299.63 

(Length*Veg)+(Length*Depth) 317.64 3.23 0.02 7 302.19 

(Length*Veg)+(Length*Depth)+Time+Temp 318.00 3.59 0.02 9 297.60 
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Table 1.5. The predicted microhabitat use for the large and small greenback cutthroat trout and 

the associated standard errors in parentheses for the areas where boreal toad egg masses were 

laid. These predictions were calculated by plugging in microhabitat covariate values measured at 

each egg mass into the model:                                         
        , assuming constant detection probability.  The morning and evening estimates differed 

only in the temperature covariate used in their estimation.  

 
 Microhabitat Use 

 Small Large 

2013 Egg Mass 1 
morning 0.00011 (0.00019) 0.0011 (0.0015) 

evening 0.00049 (0.00068) 0.0049 (0.0052) 

2014 Egg Mass 1 
morning 0.00076 (0.0010) 0.0076 (0.0072) 

evening 0.0015 (0.0016) 0.015 (0.011) 

2014 Egg Mass 2 
morning 0.00030 (0.00052) 0.0030 (0.0039) 

evening 0.0012 (0.0015) 0.012 (0.011) 
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Figure 1.1. Map of Rocky Mountain National Park and its major water bodies. The two study 

sites, Spruce Lake and Fay Lakes, are denoted by black triangles. 

Denver
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Figure 1.2. Photograph of two caged boreal toad egg mass halves at the trout site, Spruce Lake. 

The paired exposed egg mass halves are not visible but located directly adjacent to each cage.  
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Figure 1.3. Relationship of estimated greenback cutthroat trout microhabitat use as a function of 

depth using the highest weighted occupancy model, ψ(size+depth+veg+temp), p(.), and the 

average values of vegetation density and temperature. The predicted use of the small length class 

of trout is designated by the dashed line and the solid line represents the predicted use of the 

large length class. Shaded areas represent 95% confidence intervals for the respective fitted lines. 

The circles indicate the depth and predicted use at the three egg mass locations.  
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Figure 1.4. Relationship of estimated greenback cutthroat trout microhabitat use as a function of 

vegetation density using the highest weighted occupancy model, ψ(size+depth+veg+temp), p(.), 

and the average values of vegetation density and temperature. The predicted use of the small 

length class of trout is designated by the dashed line and the solid line represents the predicted 

use of the large length class. Shaded areas represent 95% confidence intervals for the respective 

fitted lines. The circles indicate the vegetation density and predicted use at the three egg mass 

locations.  
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Figure 1.5. Relationship of estimated greenback cutthroat trout microhabitat use as a function of 

temperature using the highest weighted occupancy model, ψ(size+depth+veg+temp), p(.), and 

the average values of vegetation density and temperature. The predicted use of the small length 

class of trout is designated by the dashed line and the solid line represents the predicted use of 

the large length class. Shaded areas represent 95% confidence intervals for the respective fitted 

lines. The squares indicate the average morning temperatures and predicted use at the three egg 

mass locations. The triangles represent the same for the average evening temperatures.   
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CHAPTER TWO: 

 

NEGATIVE IMPACTS OF TROUT EXPOSURE ON AN UNPALATABLE TOAD 

 

Here, I present experimental research investigating the direct and indirect effects of 

hatchery reared greenback cutthroat trout on boreal toad tadpole survival, growth, and 

development as well as post metamorphosis survival and growth. I also explored differences 

among individuals hatched from captive-bred or wild eggs. I found that exposure to trout 

reduced tadpole survival by 10-20%, despite the fact that only one tadpole was consumed. Trout 

exposure also delayed metamorphosis by 1-2.5 days. Additionally, I found that captive-bred 

individuals had lower tadpole survival, reduced tadpole growth, and greater loss in body 

condition following metamorphosis regardless of whether they were exposed to trout or not.   

Boreal toads, like many bufonids, are unpalatable during all life stages. However, my 

results suggest that hatchery reared trout do not innately avoid boreal toads; instead they must 

taste the tadpoles to determine prey palatability. This repeated gustation likely caused the low 

survival probabilities that I observed. My results shift the current understanding of the 

interactions between introduced trout and unpalatable amphibian species by illustrating the non-

consumptive negative impacts of these fish, indicating that effective conservation of boreal toads 

requires habitat free from introduced trout.  

Introduction 

  Amphibian populations are experiencing declines worldwide (Stuart et al. 2004, Bishop 

et al. 2012, Adams et al. 2013) with some estimates indicating that amphibians are currently 

facing extinction rates 211 times the background rate (McCallum 2007). Collins and Storfer 

(2003) detail six hypotheses explaining global amphibian declines: over-exploitation, land use 
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change, global climate change, environmental contaminants, emerging infectious diseases, and 

alien species. Introduced trout are one such alien species that are commonly released into alpine 

ecosystems across the United States (Bahls 1992) and are known to negatively impact palatable 

amphibian species (Knapp 2005, Welsh et al. 2006, Pilliod et al. 2010). However, bufonid eggs 

and tadpoles contain bufotoxins, making them unpalatable to many vertebrate predators, 

including trout (Licht 1968, Kats et al. 1988, Crossland and Alford 2006). Still, bufonids are 

declining more rapidly than other amphibian families (Stuart et al. 2004), and while their 

declines are primarily caused by disease (Muths et al. 2003), there are cases where disease 

prevalence is low yet toad populations continue to decline (Muths and Scherer 2011). These 

cases prompt a more detailed investigation into the direct and indirect effects of introduced fish 

on this important group of amphibians.  

Trout can severely alter ecosystems into which they are introduced (Epanchin et al. 2010; 

Finlay and Vredenburg 2007; Knapp 2005). While trout are unlikely to feed directly on adult 

amphibians, they can reduce embryo and larval survival through direct predation (Bull and Marx 

2002; Gillespie 2001; Pearson and Goater 2009). Trout presence may also indirectly affect 

tadpole growth, development, and survival probability (Currens et al. 2007). For example, 

predator presence has been shown to reduce the activity of anuran tadpoles, causing them to 

spend more time hiding and less time foraging, thereby hindering development, growth, and 

survival (Lawler 1989, Relyea 2001). Predator presence can also impact the rate of development 

in larval amphibians (Orizaola and Brana 2005). These indirect effects could impact tadpole 

survival but also size and time to metamorphosis, which are thought to influence post-

metamorphic vital rates (Smith 1987, Semlitsch et al. 1988, Goater 1994).   
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Often the toxicity of a species when consumed or engulfed by a predator is assumed to 

offer immunity from predators (Welsh et al. 2006). Bufonids have been found to be largely 

immune to the effects of predatory fish due to their bufotoxins (Bull and Marx 2002; Knapp 

2005; Welsh et al. 2006), but some fish, including trout, must taste prey to determine if it is 

palatable (Lawler and Hero 1997, Grasso et al. 2010). Tadpoles can be engulfed and rejected by 

trout many times during their development, for example, Grasso et al. (2010) wrote ―During one 

[one hour] observational trail, five tadpoles of [Anaxyrus] canorus were engulfed and rejected 

over 111 times‖. This gustation has the potential to directly reduce tadpole survival.  

In this chapter I present work that explores the potential direct and indirect effects of 

introduced greenback cutthroat trout (Oncorhynchus clarkii stomias) on wild boreal toad 

(Anaxyrus boreas boreas) tadpoles as well as for tadpoles from egg masses produced by captive-

bred toads. I performed a laboratory experiment to test the effects of trout exposure on the 

survival, growth and development of the tadpoles, as well as residual effects of trout presence on 

the survival and growth of post-metamorphic individuals. I present evidence for non-

consumptive negative effects of these trout on boreal toad recruitment. This new evidence has 

management implications for both boreal toads and greenback cutthroat trout and suggests that 

effective conservation of boreal toads requires isolation from introduced trout.  

Methods 

Study Species 

The Southern Rocky Mountain population of boreal toads once ranged through the 

mountains of Wyoming, Colorado, and New Mexico but is now in decline (Carey 1993, Scherer 

et al. 2005, Muths and Scherer 2011). Much of the decline can be attributed to the chytrid fungus 

Batrachochytrium dendrobatidis (Muths et al. 2003, Carey et al. 2005); however, this pathogen 
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cannot explain declines for all populations of boreal toads. For example, Spruce Lake in Rocky 

Mountain National Park supports one of the few remaining breeding populations in the park and 

has a very low prevalence of the fungus. Yet this population declined ~ 5% annually during the 

period 2001-2010 (Muths and Scherer 2011) despite high annual adult survival probabilities 

(>0.90 in all years). Per capita recruitment rates were extremely low (<0.05), substantially lower 

than values reported for other boreal toad populations (Muths et al. 2011). While lack of 

recruitment is believed to be the major contributor to continued boreal toad population decline at 

Spruce Lake (Muths and Scherer 2011), the reason for such low recruitment is unknown. 

 Spruce Lake is one of many historically fishless alpine lakes of the western United States 

that have been stocked with nonnative salmonids (Bahls 1992, Knapp et al. 2001). In 1991, as 

part of recovery efforts, greenback cutthroat trout were introduced to Spruce Lake to bolster 

populations of this federally listed species (threatened status). Due to natural downstream 

barriers, Spruce Lake offered the introduced greenback cutthroat trout a habitat free from 

competition and hybridization from other non-native trout species and the cutthroat population 

has thrived. 

Tadpole-Trout Experiment  

 We obtained three hundred boreal toad tadpoles (Gosner stages 26-30, 18-29 mm) from 

the Colorado Parks and Wildlife Fish Research Hatchery (Bellvue, CO). These individuals were 

from egg masses collected from wild breeding populations. The wild-bred egg masses were 

brought into a captive rearing facility to develop until the time I received them. I randomly 

selected 108 individuals and assigned six to each of 18 tanks (9.5 L, Figure 2.1a). An additional 

one hundred and fifty boreal toad tadpoles (Gosner stages 19-20, 7-9 mm) were obtained from 

the Colorado Parks and Wildlife Native Aquatic Species Restoration Facility (Alamosa, CO). 
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These individuals were from egg masses produced by breeding captive adults and were 

considered captive-bred in my experiment. Similarly, I randomly selected 108 of these 

individuals and assigned them in groups of six to 18 tanks. I randomly assigned each tank as a 

treatment (trout exposure) or control, with twice as many treatment groups as controls yielding 

24 groups assigned to the trout exposure treatment (12 with captive-bred tadpoles and 12 with 

wild-bred tadpoles) and 12 groups assigned as controls (6 with captive-bred tadpoles and 6 with 

wild-bred tadpoles). The tanks containing the groups were randomly placed within one of four 

troughs that allowed water to continuously flow around the tanks to regulate temperature 

(average temperature 17.7
o 

C). Tadpoles were fed a combination of Hakari Algae Wafers and 

frozen vegetable cubes ad libitum (Scherff-Norris et al. 2002).   

 Hatchery reared greenback cutthroat trout (87-177 mm) were obtained from Colorado 

Parks and Wildlife Fish Research Hatchery (Bellvue, CO). The genetics of cutthroat trout 

subspecies in Colorado are currently under question (Metcalf et al. 2007, Metcalf et al. 2012). To 

maintain as much realism as possible, I used the ―greenback  strain‖ trout that have been stocked 

into alpine lakes in Colorado. Trout were obtained several weeks prior to the experiment and 

held in large circular holding tanks (900 L) with a continuous flow of water.  During this 

acclimation period, the trout were fed #2-4 Trout Diet (manufacturer Rangen) at ~4% of their 

body weight via automatic feeders; water temperature was 16.4
o
 C and flow though tanks (~ 5 

L/min) maintained high water quality. Trout were also introduced to live prey by feeding 

earthworms and boreal chorus frog (Pseudacris maculata) tadpoles ad libitum. The boreal chorus 

frog is a palatable amphibian species that is often found in the same habitats as boreal toads and 

was readily consumed by trout. Once the experiment began, the total amount of pelletized food 
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offered to the trout remained the same, however, it was delivered in two discrete feedings every 

evening.  

  In a separate laboratory area, 36 experimental tanks (19 L) were placed in two 

rectangular troughs, these also were flow-through tanks (water replaced >8 times per day), where 

the trout exposures (treatments) took place (Figure 2.1b). I wrapped each tank in white plastic 

sheeting to eliminate visual cues between control and treatment groups.  Every day, before the 

trout were fed, 24 were randomly selected from the main holding tank and one was transferred to 

each of the experimental tanks for the trout exposure treatment. No trout were placed in the 

control tanks. Experimental trout were allowed 16 hours to acclimate to the smaller tanks, during 

which time they were not fed. This ensured that the trout recovered from any stress related to 

transfer and were hungry prior to the daily exposure period. Following the 16-hour trout fasting 

period, the tadpoles groups were transferred from their holding tanks into the corresponding 

experimental tanks. Tadpoles were introduced into experimental tanks by submerging the lip of a 

plastic cup into the tank to allow it to gradually fill with water and then gently tipping the cup to 

release the tadpoles into the tank. This gentle introduction of tadpoles eliminated the risk of the 

trout striking due to feeding reflex and minimized stress to the tadpoles. Six of the trout-exposed 

tadpole groups, three captive-bred and three wild-bred tadpole groups, were randomly selected 

for video recording of the daily trout exposures via GoPro cameras. These cameras were 

submerged in the experimental tanks to record any interactions that occurred between trout and 

tadpoles. 

 Tadpoles remained in experimental tanks for four hours and then were removed and 

placed back into their holding tanks. Next, I introduced a palatable prey item into the trout 

exposure tanks to gauge their willingness to feed in these smaller tanks. At the beginning of the 
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experiment, I used wild-caught boreal chorus frog tadpoles, but switched to earthworms after all 

frog tadpoles had metamorphosed. These feeding trials lasted two hours and any uneaten prey 

items were collected and the number recorded. The trout were then removed from the exposure 

tanks and transferred to a temporary holding tank. Experimental tanks were cleaned, and a new 

set of 24 trout were randomly chosen and transferred to begin their 16-hour acclimation before 

the following day‘s exposure. Only then were previously used trout transferred from the 

temporary holding tank to the main holding tank, which ensured that no trout would be used in 

exposure trials in two consecutive days. This daily cycle repeated until all the tadpoles began 

metamorphosis, which I defined as the appearance of a forelimb (Gosner stage 42). Every four 

days I measured the total length of all surviving tadpoles.  

The experiment and all culture activities were conducted in the Aquatic Research Lab at 

Colorado State University. Untreated well water (16-18
°
C) was used in all holding and 

experimental tanks. All protocols for animal care and use in this experiment were approved by 

the Animal Care and Use Committee at Colorado State University. 

Post-metamorphosis monitoring 

Once an individual‘s forelimbs emerged (Gosner stage 42), I clipped a single toe and 

placed the individual into a transitional container (22.0 x 22.0 x 9.8 cm) with a few centimeters 

of water and a stone for toads to emerge from the water (Figure 2.1c). Tadpoles maintained their 

original group assignments in these transitional containers and no more than three individuals 

were place in each of these containers. Thus, groups with more than three surviving tadpoles 

were split into two containers. The combination of container number and toe-clip position gave 

each individual a unique identifier. Once an individual emerged (Gosner stage 45-46), it was 

weighed, measured (snout-vent length), and transferred to a terrestrial habitat container (22.0 x 
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22.0 x 9.8 cm) with Eco Earth substrate (manufacturer Zoo Med), autoclaved moss for cover, 

and a small petri dish with water (Figure 2.1d). The moss and the substrate were kept moist by 

misting with well water and the metamorphs were fed wingless fruit flies ad libitum. I monitored 

the survival and growth of individuals for four weeks following metamorphosis to assess if there 

were any lingering effects of trout exposure. After four weeks I recorded a final weight and 

snout-vent length. 

Video Processing 

 We randomly selected 20 days of footage (~34% of total days) to view and score from 

each of the six tadpole groups. Specifically, I recorded the number of gustation events when a 

trout struck a tadpole and the total footage time (battery life typically permitted three hours of 

footage). I defined the strike rate per tadpole as the number of strikes observed in one video 

session per hour, divided by the number of tadpoles in the group on the day the video was 

recorded. I calculated an average strike rate per tadpole for each of the six groups over the course 

of the entire experiment.  

Analysis 

We tested the effect of trout exposure and tadpole source (captive-bred or wild-bred) on 

five tadpole and three post-metamorphic stage response variables. With the exception of tadpole 

growth rate (see below), for each analysis I created models with all possible combinations of the 

fixed effects of Treatment (control and trout exposure) and Source, including additive and 

interactive models. Models were fit to the described response variables and ranked using an 

information theoretic approach (Burnham and Anderson 2002). I then added a random effect to 

the best fitting fixed-effects model in each analysis to account for random variation among tanks 

or containers and interpreted the resulting mixed model. I chose this method over model 
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averaging because I felt it was important to include the random effect of tank or container. 

Furthermore, the methods for model averaging mixed models are complicated and disputed.   

The captive-bred tadpoles were obtained at a younger age (3 days post hatching) than the 

wild-bred tadpoles (24 days post-hatching) and thus, were exposed to trout for a longer period of 

time. To account for different lengths of exposure, I split tadpole survival into two survival 

periods: survival from age 3-24 days (ST1) and from age 24 days to metamorphosis (ST2) . In both 

periods, tadpole survival probability was defined as the probability that an individual tadpole 

survived through that period. The experimental units were the individual tadpoles and the 

random effect of their housing was tadpole tank nested with trough. For example, the interactive 

model with all possible fixed effects and the random effect for survival in the second period 

(from 24 days to metamorphosis) is:  

 

 

  

                                     

                                

Eqn ( 1 ) 

 

where tadpole survival,    , is a function of an intercept,  , the coefficient for Source, α, 

(Source: 0 = captive, 1 = wild), the coefficient for Treatment, β, (Treatment: 0 = control, 1 = 

trout exposed), the coefficient for the interaction,   , and the random effect of tadpole tank 

nested in trough,        . The model for tadpole survival during the first period,    , is identical 

except that Source and the interaction of Source and Treatment is not included because the only 

source were captive-bred tadpoles.  

A third tadpole survival analysis was performed for the six tadpole groups that were 

filmed. Similar to other analyses, I estimated tadpole survival using a logistic regression model 

with the added continuous predictor variable of average strike rate (r) as a fixed effect. 
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Treatment was dropped from this model since all six tadpole groups were trout-exposed. The 

resulting interactive model is:  

 

 

  

                                                 , 
Eqn ( 2 ) 

 

with a new coefficient for average strike rate,  . 

Tadpole growth was measured with two metrics: daily growth rate and body condition at 

emergence. Because the tadpoles were not individually marked until Gosner stage 42, I 

calculated the average length of the tadpoles in each group during each measurement occasion 

(every four days). I calculated the change in this average length variable between two 

measurement occasions and divided by four to obtain a daily growth rate for each group. If any 

tadpole died during a four day period, the growth rate for that group was discarded for that 

period as the mortality would skew the length averages. Growth rate was not calculated after the 

tadpoles reached the age of 50 days, when most individuals in my experiment began to shrink as 

they absorbed their tails as part of metamorphosis. 

We used a repeated measures analysis for these growth rate data. First, I used AIC to 

select the best of four different covariance structures: unstructured covariances, compound 

symmetry, autoregressive covariances, and autoregressive covariances with heterogeneous 

variances. I fit a quadratic regression model using the selected covariance structure to analyze 

the additive effects of Source and Treatment on tadpole growth rate. The additive model, 

 

 

  

                       
             

            , 

Eqn ( 3 ) 
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included an intercept, a quadratic age effect (   and   ) and terms for Source and Treatment 

similar to the previous models. I did not perform model selection but rather interpreted the 

estimated coefficients from this model. 

We also explored whether trout exposure influenced time to metamorphosis 

(development rate) or body condition at emergence (Gosner stage 46). Time to metamorphosis 

was defined as the number of days between when the tadpole hatched and when it developed a 

forelimb (Gosner stage 42). Body condition is calculated by dividing tadpole weight (g) by its 

snout-vent length (mm). After tadpoles metamorphosed, individual identification was possible, 

so in these analyses, and all subsequent analyses, each individual is considered a sample unit. I 

analyzed these continuous response variables using ANOVA models with the fixed effects of 

Treatment and Source. Following metamorphosis, an individual was housed in a transition 

container; therefore, the random effect in the body condition analysis is container, nested within 

tank, nested within trough.  

 Survival following metamorphosis was also divided into two periods: survival from 

metamorphosis to emergence (SM1) and survival from emergence to four weeks post 

metamorphosis (SM2). I estimated both of these post metamorphosis survival probabilities using 

logistic regression models with the fixed effects of Treatment and Source and a random effect of 

container, nested within tank, nested within trough. 

 We used the change in body condition in the first four weeks following metamorphosis as 

the metric for post-metamorphic growth. I calculated this by subtracting the body condition at 

emergence from the final body condition. I analyzed this change in body condition with ANOVA 

models using the fixed effects of Treatment and Source and a random effect of container, nested 

within tank, nested within trough. 
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 We used the lme4 package in Program R to fit all the fixed effect models and mixed 

models (Bates et al. 2014). I also confirmed that models used in these analyses met their 

appropriate assumptions (e.g., homoscedasticity and normality of errors in the ANOVA and 

quadratic regression models). 

Results 

Interaction Videography 

 We collected over 1000 video hours of interactions between the trout and the six tadpole 

groups. The 20 randomly selected video events (349 hours) showed strike rates of 0 to 1.73 

strikes per hour per tadpole. The average strike rate was 0.21/hr/tadpole (SD = 0.33), meaning 

that during the course of a daily four hour exposure period, a tadpole would be engulfed an 

average of 0.84 times.   

Tadpole Survival 

 The top ranked fixed-effect model for tadpole survival in both periods included only 

Treatment (Appendix 2.i. and 2.ii., Table 2.1). The top model for the first period, age 3-24 days, 

produced imprecise estimates and when I attempted to add the random effect of tank the model 

was unidentifiable, so I report estimates based on the best fixed effects model only (Appendix 

2.i). Survival probabilities were high for the control individuals (            = 1.0, SE = 0.00) and 

lower for the trout-exposed individuals (          = 0.88, SE = 302.77). The standard errors of 

these estimates suggest poor fit of the model to the data. The top model for the second time 

period, age 24 days to metamorphosis, performed much better. Again, survival probabilities were 

higher for the control tadpoles (            = 0.98, SE = 0.02) compared to the trout-exposed 

individuals (          = 0.89, SE = 0.13). Both the second and third most supported models for 

survival in this second period contained the factor of Source and had high weights (w = 0.33, w = 



41 
 

0.29, respectively). In these fixed-effect models, the coefficients for Source were both positive 

indicating that wild-bred tadpole had a higher survival probability than captive-bred tadpoles 

(   = 15.93, SE = 1087.11;    = 0.59, SE = 0.46, respectively). The overall survival for both 

periods for the control individuals was 0.98 versus 0.78 for trout-exposed tadpoles. Despite the 

lower survival among the tadpoles exposed to trout, only one of the 138 tadpoles in the trout 

treatment groups was consumed by a trout (the trout showed no ill effects from the 

consumption). The other tadpoles died during or following the four hour exposure periods as a 

result of stress or injury from trout gustation. Visible injuries were observed frequently and 

included hematomas (n = 2), broken tails (n > 25), and eviscerations (n = 16).  

 The analysis of survival as a function of strike rate per tadpole showed little evidence of a 

relationship between the two variables. The top model contained only the Source factor (w = 

0.53) and was about 3 times more likely than any other competing model (Appendix 2.iii.). This 

model indicated that captive-bred tadpoles had lower survival probability than wild-bred 

tadpoles (         = 0.60, SE = 0.13;       = 0.94, SE = 0.07). The next highest ranked model (w 

= 0.18) did include strike rate, and the estimated effect of strike rate was negative (   = -2.41, 

SE(  ) = 4.53) as one would expect survival probability to decrease as strike rate increased. Still, 

this estimate was imprecise, likely due to small sample size (6 groups of tadpoles, 3 for each 

source type).  

Tadpole Growth 

 The covariance structure that best fit the data had autoregressive covariances and 

heterogeneous variances. Using this covariance structure with the additive model, I found that 

both Treatment and Source influenced daily growth rate (Table 2.2). Trout exposure reduced 

daily growth rate as expected; however, Source had a stronger influence on daily growth rate 
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based on the magnitude of the coefficients. Wild-bred control groups had the highest daily 

growth rates and captive-bred trout-exposed groups showed the smallest daily growth rates 

(Table 2.2, Figure 2.2).  

 Body condition at emergence was influenced more by the source of the tadpoles than by 

trout exposure (Appendix 2.iv). The top model only contained the Source factor (w = 0.59) and 

was twice as likely as any other model. Captive-bred individuals had a slightly higher body 

condition than the wild-bred individuals (           = 0.052 g/mm, SE = 0.00091;         = 0.049 

g/mm, SE = 0.0015, Table 2.1).  

Tadpole Development 

 The top model explaining time to metamorphosis contained an interaction of Source and 

Treatment (w = 0.66, Appendix 2.v.). Trout exposure delayed time to metamorphosis by 0.86 

and 2.55 days for wild-bred and captive-bred tadpoles, respectively (Table 2.1, Figure 2.3). In 

addition, tadpoles that were wild-bred showed slower development than those that were captive-

bred (Table 2.1, Figure 2.3).  

Post Metamorphic Survival 

 Both Source and Treatment influenced survival during the post-metamorphosis periods 

(Appendix 2.vi. and 2.vii.). During the period from metamorphosis to emergence, which 

typically lasted four days, estimates of survival were high for the wild-bred individuals 

(                 = 0.97, SE = 0.03;                = 0.98, SE = 0.01), but markedly lower for 

captive-bred individuals (                    = 0.62, SE = 0.12;                   = 0.79, SE = 0.17). 

Only one individual died during the time from emergence to four weeks post-metamorphosis 

(captive-bred, control treatment), yielding a survival probability of                     = 0.94, SE 
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= 0.06. Survival probabilities for all other groups were 1.0.  There was no evidence that trout 

exposure negatively influenced post-metamorphic survival probabilities.  

Post Metamorphic Growth  

 The top model for the change in body condition data contained only Source (w = 0.68, 

Appendix 2.viii.). Individuals from both sources experienced reduction in body condition over 

the four weeks following metamorphosis, but the loss was greater for captive-bred individuals 

(    
        = -0.015 g/mm, SE = 8.21 x 10

-4
 ;     

     = -0.0071 g/mm, SE = 1.33 x 10
-3

) 

(Table 2.1).  

Discussion 

In my study, trout-exposure decreased the survival probability of the tadpoles despite the 

fact that only one tadpole was consumed. While previous literature suggests that bufotoxins 

should protect early life stages of toad tadpoles from direct predation (Knapp 2005, Welsh et al. 

2006, Hartman et al. 2014), my video footage showed tadpoles being repeatedly engulfed and 

estimates of tadpole survival were clearly lower in trout-exposed groups. It is likely that the non-

consumptive gustation of tadpoles resulted in lower survival probabilities that I observed.  

Reduced tadpole survival in this experiment is contrary to effects of nonnative trout on 

western toads in other studies (Knapp 2005, Welsh et al. 2006, Hartman et al. 2014). These 

authors concluded that toad occupancy was not negatively impacted by trout presence because 

the toad tadpoles are unpalatable. This apparent disagreement between my work and these 

studies may be because the physical complexity of the natural aquatic systems could offer the 

toad tadpoles refuges whereas in my experimental setting tadpoles had no cover. Another 

explanation is that these studies examined a different state variable, occupancy, which requires 

the detection of only one individual, while my study investigated factors that influence fitness, 
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namely survival, growth, and development. For long-lived species, like the boreal toad, 

populations (e.g., Spruce Lake) may persist for a long time with reduced recruitment. Lastly, 

none of the previous studies involved greenback cutthroat trout.  

Trout exposure also led to slower development and increased time to metamorphosis of 

boreal toad tadpoles. While trout exposure delayed time to metamorphosis in both wild-bred and 

captive-bred tadpoles, the effect of trout exposure was greater in the captive-bred tadpoles. This 

may be because captive-bred individuals entered the experiment at a younger age and, therefore, 

were exposed to trout for a longer time period. My results are contrary to previous literature that 

found expedited metamorphosis in the presence of a predator (Devito et al. 1998, Chivers et al. 

1999). The delay in metamorphosis I observed in both captive-bred and wild-bred tadpoles may 

be detrimental to both wild and reintroduced populations of boreal toads. Boreal toads are an 

alpine species that must complete their aquatic life stages in only a few months. Tadpoles must 

grow, develop, metamorphose, and gain condition during this time. If stochastic weather events 

further shorten the breeding season, a delay in metamorphosis due to trout presence might result 

in individuals that have insufficient time to prepare for their first winter. Thus, trout exposure in 

the larval stage has the potential to decrease first winter survival. 

 We did not observe any lingering effects of trout exposure post-metamorphosis. In the 

analysis of survival from metamorphosis to emergence, the top model predicted higher survival 

in the trout-exposed individuals, but the magnitude of this effect was small and was dismissed as 

unimportant. Survival from emergence to four weeks was high for all individuals of both 

treatment groups. I also did not see any impact of trout exposure on change in body condition 

following metamorphosis. my results suggest that the impacts of trout presence in the larval 

stage do not carry over to the early terrestrial stage, which is consistent with recent literature that 
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suggests that carry-over effects among anurans is slight and early life history traits (i.e. size at 

metamorphosis) have little impact on juvenile survival (Schmidt et al. 2012, Green and Bailey in 

press).   

Additional studies are needed to refine the understanding of the effects of greenback 

cutthroat trout on boreal toad recruitment. Experiments such as this one can be replicated in field 

enclosures to see if trout have the same effect on toad tadpoles when the habitat is complex. 

Secondly, I did not observe any evidence of learning among the trout (multiple tadpole gustation 

events within a short time period by the same individuals). Research should be done to determine 

if trout are able to learn to recognize unpalatable prey in a long-term setting, which could result 

in an attenuation of the negative effects of introduced trout. Research could also be conducted to 

investigate potential competition for the food resource of emerging aquatic insects between 

introduced greenback cutthroat trout and post-metamorphosis boreal toads. Lastly, more mark-

recapture studies could be conducted to compare recruitment at boreal toad breeding populations 

with and without introduced trout.  

 The source of the tadpoles had a greater impact than I expected. Survival from 

metamorphosis to emergence was much lower in the captive-bred individuals. Many captive-

bred individuals had reduced limb development, and when they did appear, limbs often appeared 

small and weak. I surmised that limb weakness made it difficult for these individuals to emerge, 

causing them to drown after their lungs developed. Captive-bred tadpoles also experienced 

reduced daily growth rates and following metamorphosis, surviving captive-bred individuals 

experienced a greater loss in body condition than their wild-bred counterparts.  

Slow or incomplete development in toad early life stages may be the result of captive 

breeding (Araki et al. 2007). In the wild, processes such as natural selection and mate choice 
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work to increase the vitality and fitness of individuals. However, it is difficult in a captive 

breeding facility to replicate the natural processes that might otherwise remove an unfit breeder 

from a wild population (Lynch and O'Hely 2001). Furthermore, captive facilities might promote 

fixation of alleles that benefit individuals in captivity but are detrimental in the wild (Lynch and 

O'Hely 2001, Ford 2002). Thus, progeny produced via captive breeding may be less robust and 

fit than their wild bred counterparts (de Mestral and Herbinger 2013, Milot et al. 2013, Rollinson 

et al. 2014). Captive breeding has been successful in bolstering some imperiled populations, but 

my data suggest there are still some unresolved issues with breeding boreal toads in captivity. 

More research needs to be done to understand the cause of these issues and then breeding 

facilities should work to fix them if captive breeding of boreal toads is to continue. The current 

issues with captive-bred boreal toads further highlight the need to preserve existing breeding 

boreal toad populations, both for their own persistence but also as a source of eggs for 

reintroductions.  

The only response variable that seemed to favor captive-bred individuals was time to 

metamorphosis and body condition at emergence. However, this was likely because these 

individuals entered the experiment at a younger age. Captive-bred individuals were exposed to 

the environmental conditions in the lab for about three weeks longer than wild-bred tadpoles that 

spent their first three weeks in the hatchery. I followed many of the same husbandry methods 

(i.e. type, amount, and timing of food) as the hatchery, but the temperature of the water is 

different between the lab and the hatchery. Temperature influences the rate of development for 

many larval amphibians and could explain the observed differences in development (Newman 

1998, Mitchell and Seymour 2000, O'Regan et al. 2014). Further, higher body condition at 

emergence for captive-bred tadpoles may be an artifact of the high mortality of poorly developed 
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captive-bred individuals prior to emergence. In this scenario, only robust individuals emerge and 

would bias high their apparent condition at emergence. There was no difference in survival 

probabilities post-emergence for individuals of either source. 

We have demonstrated that hatchery-reared greenback cutthroat trout have the ability to 

substantially reduce larval survival which could impact recruitment to the breeding adult stage in 

boreal toad populations. Since both of these species are imperiled throughout their range, my 

results have implications for the future conservation of both greenback cutthroat trout and boreal 

toads.  Most of the historic range of greenback cutthroat trout is now inhabited by nonnative 

brook, brown, and rainbow trout which can outcompete, or in the case of rainbow trout, 

hybridize with the native cutthroat trout (Behnke 2002, Dunham et al. 2002, Metcalf et al. 2008). 

As such, it is no longer feasible to conserve the greenback cutthroat trout in much of its native 

range. An effective strategy for cutthroat trout conservation has been to introduce them into 

water bodies free of the nonnative trout, often alpine reservoirs and lakes (US Fish and Wildlife 

Service 1998). Currently, researchers are similarly implementing and optimizing methods for 

reintroducing boreal toads into suitable breeding ponds within their range (Muths et al. 2001, 

Muths et al. 2014). My results suggest that toad conservation efforts are likely compromised by 

the presence of trout. Given this new knowledge, toad conservation areas and trout conservation 

areas should be isolated from one another. In areas where the two species exist together, such as 

Spruce Lake, my results indicate that the presence of the trout could negatively influence 

recruitment in the boreal toad population. Managing this difficult situation requires detailed 

knowledge of the particular dynamics of the system and careful application of that knowledge. In 

such situations, managers could employ a structured decision making framework to determine 

their conservation objectives and evaluate the effectiveness of various potential management 
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actions (Gregory et al. 2012). Such a process would yield a management strategy grounded in the 

best available science and balanced among the values of various stakeholders regarding each 

species.  

Conservation of two species is difficult when the current conservation strategies of one 

species contribute to the decline of the other. Interactions between two species can often be more 

complex than simple predator-prey relationships. Previous understanding led managers to expect 

little interactions between boreal toads and greenback cutthroat trout due to the toxicity of the 

toads at all life stages. However, I have demonstrated that greenback cutthroat trout do have the 

ability to exert negative direct and indirect effects on boreal toad tadpoles. While both greenback 

cutthroat trout and boreal toads are important native species that deserve conservation attention, 

future management decisions should recognize the negative effects that greenback cutthroat trout 

can exert on this unpalatable toad.    
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Table 2.1. The most parsimonious model with appropriate random effects structure for different response variables of boreal toads. 

Source refers to whether the toads were wild- or captive-bred and Treatment refers to whether the toads were exposed to greenback 

cutthroat trout or not. Estimates and standard errors (in parentheses) are provided for each fixed-effect parameter in the given model.  

Parameters include: µ, the intercept that represents captive-bred individuals in the control (no trout exposure) treatment; α, the tadpole 

source (wild); β, the trout treatment; αβ, the interaction term for the combination of Source and Treatment; and  , the random effect of 

container or tank (see text). 

 

Response Variable Top Model 

Intercept 

 

   

Source 

(wild) 

   

Treatment 

(trout exp.) 

   

Interaction 

 

    

Tadpole Survival 

(3 days to 24 days) 
                           

19.57 

(1963.41) 
-- 

-17.62 

(1963.41) 
-- 

Tadpole Survival 

(24 days to 

Metamorphosis) 

                                     
4.09 

(0.94) 
-- 

-1.98 

(0.94) 
-- 

Tadpole Survival (Strike 

Rate Analysis) 
                                

0.41 

(0.53) 

2.43 

(1.16) 
-- -- 

Body Condition at 

Emergence 
                             

0.052 

(0.001) 

-0.003 

(0.001) 
-- -- 

Time to Metamorphosis 
                               

                               
63.75 

(0.54) 

7.05 

(0.73) 
2.55 (0.68) 

-1.69 

(0.91) 

Post Metamorphosis 

Survival (Metamorphosis 

to Emergence) 

                                      
              

0.48 

(0.50) 

2.84 

(0.75) 
0.85 (0.60) -- 

Post Metamorphosis 

Survival (Emergence to 4 

Weeks) 
                                       

2.77 

(1.03) 

19.55 

(7426.27) 

19.65 

(7292.40) 
-- 

Change in Body Condition                               
-0.015 

(0.001) 

0.008 

(0.001) 
-- -- 
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Table 2.2. Parameter estimates and standard errors (in parentheses) for the quadratic regression 

model for daily boreal toad tadpole growth rate. Parameters include:   , the intercept;   , the 

coefficient for age (in days);   , the coefficient for age squared; α, the fixed effect for tadpole 

source (wild-bred); and β, the fixed effect for trout exposure treatment.  

 
Model Fixed Effects 

                 
                       

  
          
              

0.18 

(0.04) 

0.09 

(0.003) 

-0.002 

(0.0001) 

0.25 

(0.03) 

-0.06 

(0.02) 
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Figure 2.1. Photographs of the tanks and containers used in the boreal toad tadpole-greenback 

cutthroat trout experiment. Photo ―a‖ shows the tadpole holding tanks within the troughs. Photo 

―b‖ shows the experimental tanks where the trout exposure treatments occurred. Photo ―c‖ shows 

the transition tanks where the tadpoles were place once they reached Gosner stage 42. Photo ―d‖ 

shows terrestrial tanks where the individuals were housed for the post-metamorphosis 

monitoring phase.  

 

 

 

 

a.  b.  

c.  d. 
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Figure 2.2. Quadratic relationship between daily boreal toad tadpole growth rate (mm) and age 

(days) Lines represent predicted values for the four combinations of fixed effects: trout-exposed, 

captive-bred groups (solid); control, captive-bred groups (dashed); trout-exposed, wild-bred 

groups (dot-dashed); and control, wild-bred groups (dotted). No data points or predicted values 

are given for the wild-bred groups before age 28 because these individuals were obtained when 

they were 24 days old. Each dot represents a group measurement of daily growth rate.  
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Figure 2.3. Mean estimates and 95% confidence intervals of time to metamorphosis of boreal 

toads tadpoles of different sources (wild- or captive-bred) and treatments (exposed to greenback 

cutthroat trout or not). Time to metamorphosis is defined as the number of days between when 

the tadpole hatched and when it developed a forelimb (Gosner stage 42). Estimates are from the 

top ranking model,                                           
                   . These estimates represent the mean time to metamorphosis of the 

tadpoles in each treatment-source combination, thus the random effect of tadpole tank is not 

represented in these estimates and confidence intervals.   

 

 

  



 
 

54 
 

REFERENCES 

 

 

 

Adams, M. J., D. A. Miller, E. Muths, P. S. Corn, E. H. C. Grant, L. L. Bailey, G. M. Fellers, R. 

N. Fisher, W. J. Sadinski, and H. Waddle. 2013. Trends in amphibian occupancy in the 

United States. PloS One 8:e64347. 

Araki, H., B. Cooper, and M. S. Blouin. 2007. Genetic effects of captive breeding cause a rapid, 

cumulative fitness decline in the wild. Science 318:100-103. 

Bahls, P. 1992. The status of fish populations and management of high mountain lakes in the 

western United States. Northwest Science 66:183-193. 

Bates, D., M. Maechler, B. Bolker, and S. Walker. 2014. lme4: Linear mixed-effects models 

using Eigen and S4. R package version 1.1-7, http://CRAN.R-project.org/package=lme4. 

Behnke, R. 2002. Trout and salmon of North America. Free Press, New York. 

Bishop, P., A. Angulo, J. Lewis, R. Moore, G. Rabb, and J. G. Moreno. 2012. The Amphibian 

Extinction Crisis-what will it take to put the action into the Amphibian Conservation 

Action Plan? Surveys and Perspectives Integrating Environment and Society 5:97-111. 

Bull, E. L. and D. B. Marx. 2002. Influence of fish and habitat on amphibian communities in 

high elevation lakes in northeastern Oregon. Northwest Science 76:240-248. 

Burnham, K. P. and D. R. Anderson. 2002. Model selection and multimodel inference: a 

practical information-theoretic approach. Springer, New York. 

Carey, C., P. S. Corn, M. S. Jones, L. J. Livo, E. Muths, and C. W. Loeffler. 2005. Factors 

limiting the recovery of boreal toads (Bufo b. boreas). Amphibian declines: the 

conservation status of United States species:222-236. 

http://cran.r-project.org/package=lme4


 
 

55 
 

Chivers, D. P., J. M. Kiesecker, A. Marco, E. L. Wildy, and A. R. Blaustein. 1999. Shifts in life 

history as a response to predation in western toads (Bufo boreas). Journal of Chemical 

Ecology 25:2455-2463. 

Collins, J. P. and A. Storfer. 2003. Global amphibian declines: sorting the hypotheses. Diversity 

and Distributions 9:89-98. 

Crossland, M. R. and R. A. Alford. 2006. Evaluation of the toxicity of eggs, hatchlings and 

tadpoles of the introduced toad Bufo marinus (Anura: Bufonidae) to native Australian 

aquatic predators. Australian Journal of Ecology 23:129-137. 

Currens, C. R., W. J. Liss, and R. L. Hoffman. 2007. Impacts of a gape limited brook trout, 

Salvelinus fontinalis, on larval northwestern salamander, Ambystoma gracile, growth: A 

field enclosure experiment. Journal of Herpetology 41:321-324. 

de Mestral, L. G. and C. M. Herbinger. 2013. Reduction in antipredator response detected 

between first and second generations of endangered juvenile Atlantic salmon Salmo salar 

in a captive breeding and rearing programme. Journal of Fish Biology 83:1268-1286. 

Devito, J., D. P. Chivers, J. M. Kiesecker, A. Marco, E. L. Wildy, and A. R. Blaustein. 1998. The 

effects of snake predation on metamorphosis of western toads, Bufo boreas (Amphibia, 

Bufonidae). Ethology 104:185-193. 

Dunham, J. B., S. B. Adams, R. E. Schroeter, and D. C. Novinger. 2002. Alien invasions in 

aquatic ecosystems: toward an understanding of brook trout invasions and potential 

impacts on inland cutthroat trout in western North America. Reviews in Fish Biology and 

Fisheries 12:373-391. 

Epanchin, P. N., R. A. Knapp, and S. P. Lawler. 2010. Nonnative trout impact an alpine-nesting 

bird by altering aquatic-insect subsidies. Ecology 91:2406-2415. 



 
 

56 
 

Finlay, J. C. and V. T. Vredenburg. 2007. Introduced trout sever trophic connections in 

watersheds: Consequences for a declining amphibian. Ecology 88:2187-2198. 

Ford, M. J. 2002. Selection in captivity during supportive breeding may reduce fitness in the 

wild. Conservation Biology 16:815-825. 

Gillespie, G. R. 2001. The role of introduced trout in the decline of the spotted tree frog (Litoria 

Spenceri) in south-eastern Australia. Biological Conservation 100:187-198. 

Goater, C. P. 1994. Growth and survival of postmetamorphic toads – interactions among larval 

history, density, and parasitism. Ecology 75:2264-2274. 

Grasso, R. L., R. M. Coleman, and C. Davidson. 2010. Palatability and antipredator response of 

Yosemite toads (Anaxyrus canorus) to nonnative brook trout (Salvelinus fontinalis) in the 

Sierra Nevada Mountains of California. Copeia 2010:457-462. 

Green, A.W. and L. L. Bailey. In press. Reproductive strategy and carry-over effects for species 

with complex life histories. Population Ecology. 

Gregory, R., L. Failing, M. Harstone, G. Long, T. McDaniels, and D. Ohlson. 2012. Structured 

decision making: a practical guide to environmental management choices. John Wiley & 

Sons, Hoboken, NJ. 

Hartman, R., K. Pope, and S. Lawler. 2014. Factors Mediating Co‐Occurrence of an 

Economically Valuable Introduced Fish and Its Native Frog Prey. Conservation Biology 

28:763-772. 

Kats, L. B., J. W. Petranka, and A. Sih. 1988. Antipredator defenses and the persistence of 

amphibian larvae with fishes. Ecology:1865-1870. 

Knapp, R. A. 2005. Effects of nonnative fish and habitat characteristics on lentic herpetofauna in 

Yosemite National Park, USA. Biological Conservation 121:265-279. 



 
 

57 
 

Knapp, R. A., P. S. Corn, and D. E. Schindler. 2001. The introduction of nonnative fish into 

wilderness lakes: good intentions, conflicting mandates, and unintended consequences. 

Ecosystems 4:275-278. 

Lawler, K. L. and J. M. Hero. 1997. Palatability of Bufo marinus tadpoles to a predatory fish 

decreases with development. Wildlife Research 24:327-334. 

Lawler, S. 1989. Behavioural responses to predators and predation risk in four species of larval 

anurans. Animal Behaviour 38:1039-1047. 

Licht, L. E. 1968. Unpalatability and toxicity of toad eggs. Herpetologica 24:93-98. 

Lynch, M. and M. O'Hely. 2001. Captive breeding and the genetic fitness of natural populations. 

Conservation Genetics 2:363-378. 

McCallum, M. L. 2007. Amphibian Decline or Extinction? Current Declines Dwarf Background 

Extinction Rate. Journal of Herpetology 41:483-491. 

Metcalf, J. L., S. Love Stowell, C. M. Kennedy, K. Rogers, D. McDonald, J. Epp, K. Keepers, A. 

Cooper, J. J. Austin, and A. Martin. 2012. Historical stocking data and 19th century DNA 

reveal human‐induced changes to native diversity and distribution of cutthroat trout. 

Molecular Ecology 21:5194-5207. 

Metcalf, J. L., V. L. Pritchard, S. M. Silvestri, J. B. Jenkins, J. S. Wood, D. E. Cowley, R. Evans, 

D. K. Shiozawa, and A. P. Martin. 2007. Across the great divide: genetic forensics 

reveals misidentification of endangered cutthroat trout populations. Molecular Ecology 

16:4445-4454. 

Metcalf, J. L., M. R. Siegle, and A. P. Martin. 2008. Hybridization dynamics between Colorado's 

native cutthroat trout and introduced rainbow trout. Journal of Heredity 99:149-156. 



 
 

58 
 

Milot, E., C. Perrier, L. Papillon, J. J. Dodson, and L. Bernatchez. 2013. Reduced fitness of 

Atlantic salmon released in the wild after one generation of captive breeding. 

Evolutionary Applications 6:472-485. 

Mitchell, N. J. and R. S. Seymour. 2000. Effects of Temperature on Energy Cost and Timing of 

Embryonic and Larval Development of the Terrestrially Breeding Moss Frog, 

Bryobatrachus nimbus. Physiological and Biochemical Zoology 73:829-840. 

Muths, E., L. L. Bailey, and M. K. Watry. 2014. Animal reintroductions: An innovative 

assessment of survival. Biological Conservation 172:200-208. 

Muths, E., T. L. Johnson, and P. S. Corn. 2001. Experimental repatriation of boreal toad (Bufo 

boreas) eggs, metamorphs, and adults in Rocky Mountain National Park. Southwestern 

Naturalist 46:106-113. 

Muths, E., D. Pilliod, and R. Scherer. 2011. Compensatory effects of recruitment and survival on 

population persistence. Journal of Applied Ecology 48:873-879. 

Muths, E. and R. D. Scherer. 2011. Portrait of a Small Population of Boreal Toads (Anaxyrus 

boreas). Herpetologica 67:369-377. 

Muths, E., P. Stephen Corn, A. P. Pessier, and D. Earl Green. 2003. Evidence for disease-related 

amphibian decline in Colorado. Biological Conservation 110:357-365. 

Newman, R. 1998. Ecological constraints on amphibian metamorphosis: interactions of 

temperature and larval density with responses to changing food level. Oecologia 115:9-

16. 

O'Regan, S., W. Palen, and S. Anderson. 2014. Climate warming mediates negative impacts of 

rapid pond drying for three amphibian species. Ecology 95:845-855. 



 
 

59 
 

Orizaola, G. and F. Brana. 2005. Plasticity in newt metamorphosis: the effect of predation at 

embryonic and larval stages. Freshwater Biology 50:438-446. 

Pearson, K. J. and C. P. Goater. 2009. Effects of predaceous and nonpredaceous introduced fish 

on the survival, growth, and antipredation behaviours of long-toed salamanders. 

Canadian Journal of Zoology 87:948-955. 

Pilliod, D. S., B. R. Hossack, P. F. Bahls, E. L. Bull, P. S. Corn, G. Hokit, B. A. Maxell, J. C. 

Munger, and A. Wyrick. 2010. Non-native salmonids affect amphibian occupancy at 

multiple spatial scales. Diversity and Distributions 16:959-974. 

Relyea, R. 2001. Morphological and behavioral plasticity of larval anurans in response to 

different predators. Ecology 82:523-540. 

Rollinson, N., D. M. Keith, A. L. S. Houde, P. V. Debes, M. C. McBride, and J. A. Hutchings. 

2014. Risk Assessment of Inbreeding and Outbreeding Depression in a Captive-Breeding 

Program. Conservation Biology 28:529-540. 

Scherer, R. D., E. Muths, B. R. Noon, and P. S. Corn. 2005. An evaluation of weather and 

disease as causes of decline in two populations of boreal toads. Ecological Applications 

15:2150-2160. 

Scherff-Norris, K. L., L. J. Livo, A. Pessier, C. Fetkavich, M. Jones, M. Kombert, A. Goebel, 

and B. Spencer. 2002. Boreal Toad Husbandry Manual. Colorado Division of Wildlife. 

Schmidt, B. R., W. Hödl, and M. Schaub. 2012. From metamorphosis to maturity in complex life 

cycles: equal performance of different juvenile life history pathways. Ecology 93:657-

667. 

Semlitsch, R. D., D. E. Scott, and J. H. K. Pechmann. 1988. Time and Size at Metamorphosis 

Related to Adult Fitness in Ambystoma Talpoideum. Ecology 69:184-192. 



 
 

60 
 

US Fish and Wildlife Service. 1998. Greenback cutthroat trout recovery plan. US Fish and 

Wildlife Service, Denver, Colorado. 

Smith, D. 1987. Adult Recruitment in Chorus Frogs: Effects of Size and Date at Metamorphosis. 

Ecology 68:344-350. 

Stuart, S. N., J. S. Chanson, N. A. Cox, B. E. Young, A. S. L. Rodrigues, D. L. Fischman, and R. 

W. Waller. 2004. Status and trends of amphibian declines and extinctions worldwide. 

Science 306:1783-1786. 

Welsh, H. H., K. L. Pope, and D. Boiano. 2006. Sub-alpine amphibian distributions related to 

species palatability to non-native salmonids in the Klamath mountains of northern 

California. Diversity and Distributions 12:298-309.



 
 

61 
 

CHAPTER THREE: 

 

INTEGRATING BIOLOGY AND FIELD LOGISTICS TO OPTIMIZE PARAMETER 

ESTIMATION FOR IMPERILED SPECIES 

 

 

Conservation of imperiled species often requires knowledge of vital rates and population 

dynamics. However, these can be difficult to estimate for rare species and small populations. 

This problem is further exacerbated when sites are difficult to access and individuals are not 

available for detection during some surveys. Here I explore this issue with a simulation study of 

two separate boreal toad (Anaxyrus boreas boreas) populations, one easily accessible and one 

not. I examine the bias and precision of survival and breeding probability estimates generated by 

survey designs that differ in effort and timing of surveys for these populations. My findings 

indicate that the logistics of accessing a site can greatly limit the ability to estimate survival and 

breeding probabilities. Simulations similar to what I have performed can be useful for 

researchers to determine the optimal survey designs for their system before initiating their 

sampling efforts.   

Introduction 

 Conservation of imperiled populations often requires knowledge of the vital rates that 

drive population dynamics (Biek et al. 2002, Oostermeijer et al. 2003). Well-designed studies 

and appropriate analysis of mark-recapture data can be useful to estimate these vital rates and 

explore relative changes in population dynamics under various environmental and management 

scenarios (White and Burnham 1999, Caswell 2000). Projection matrix models, parameterized 

with these vital rates, can be used to identify vulnerable life stages, determine vital rates whose 

changes pose the greatest threat to the population, and prioritize conservation and monitoring 
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programs that target these critical life stages and the associated vital rates (Wisdom and Mills 

1997, Heppell et al. 2000, Biek et al. 2002).  

 Projection matrix models usually require female-specific parameter estimates, such as 

breeding probability and fecundity (Caswell 2000). However, in some species, females are only 

detectable during the breeding season and are cryptic for the rest of the year, making it difficult 

to obtain reliable parameter estimates. This problem is exacerbated when females skip breeding 

opportunities and are only available for detection every few years. Skipping breeding 

opportunities and the associated non-detection issues are common in taxa such as albatross 

(Kendall et al. 2009), sea turtles (Kendall and Bjorkland 2001, Dutton et al. 2005, Rivalan et al. 

2005), marine mammals (Fujiwara and Caswell 2002), and some amphibians (Bailey et al. 2004, 

Muths et al. 2010). This can result in datasets that are too sparse to estimate the parameters 

necessary to model the female component of the population. The problem is further exacerbated 

for species of conservation concern, because populations are often small, such that the low 

abundance of females is compounded by their inconsistent availability for capture due to skipped 

breeding. Thus, conservation managers are often forced to make decisions without the benefit of 

accurate female vital rates in population models, which is troubling given that conservation can 

often benefit from matrix-models (Boor 2014).   

In addition, the process of skipped breeding opportunities is considered temporary 

emigration, which violates the assumptions of many mark-recapture models. Failing to address 

temporary emigration can bias estimates of survival and abundance, especially if the temporary 

emigration is nonrandom (i.e. Markovian; Kendall et al. 1997).  

 Researchers can combat these issues with model-based solutions as well as design 

solutions. Open robust design models allow for the incorporation of temporary emigration which 
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can improve estimates of other parameters (Schwarz and Stobo 1997, Kendall and Bjorkland 

2001). Improvements to survey designs may also maximize the opportunity to detect females by 

conducting surveys when females are present, though this is sometimes difficult. It is also 

difficult to predict when females will be present and logistics and funding can limit the number 

and duration of surveys during the predicted window of opportunity. In addition, excessive 

numbers of surveys might disturb sensitive habitats or disrupt the natural behaviors (Altwegg et 

al. 2014). Therefore, it is important to determine the optimal number and timing of surveys 

needed to collect enough data to estimate parameters adequately for the female portion of the 

population (Legg and Nagy 2006).  

To address this issue, I conducted a simulation study aimed at optimizing female 

parameter estimation in two scenarios that researchers might encounter: easily accessible 

populations where surveys are relatively unrestricted and populations where access is difficult 

and survey opportunities are restricted. I based the simulations on two such boreal toad 

(Anaxyrus boreas boreas) populations, and evaluate the ability of different survey designs to 

estimate female parameters using a multi-state open robust design framework. My objective was 

to determine the study design that minimizes bias and maximizes precision of estimates for 

survival and breeding probabilities.  

Methods 

Boreal Toads 

 The boreal toad is an alpine species that ranges across Utah, Wyoming, Colorado, Idaho, 

and Nevada, US. Their breeding ponds, summer range, and overwinter refugia, all occur in 

higher elevation lodgepole pine or spruce-fir forests from 2,100 to 3,600 meters (Campbell 

1970). While males occasionally skip breeding opportunities, they usually return to the breeding 
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area every year (Muths et al 2006). In contrast, females almost always skip one or more breeding 

opportunities after breeding (Muths et al. 2010). Non-breeding females do not migrate to 

breeding areas, making their detection difficult with current mark-recapture methods. 

This species is also a relevant example because the Southern Rocky Mountain (SRM) 

population of boreal toads is declining (Carey 1993, Scherer et al. 2005, Muths and Scherer 

2011). The population is currently ―warranted but precluded‖ from listing under the Endangered 

Species Act (U.S. Fish and Wildlife Service 2012) and a listing decision by the Fish and Wildlife 

Service is slated for 2017. While much as been learned about the ecology of SRM boreal toads 

(Goebel 1996, Carey et al. 2006) most of that knowledge derives from male-only data (Muths et 

al. 2003, Scherer et al. 2005, Muths et al. 2011). Detailed assessments of female demographics 

have been precluded by aforementioned issues of female availability and detection. The 

challenge is thus to gather data sufficient to create accurate and precise models that use female 

parameter estimates. 

Multi-State Open Robust Design Mark-Recapture Model 

 Our simulations were conducted using a multi-state open robust design (MSORD) mark-

recapture model (Schwarz and Stobo 1997, Kendall and Bjorkland 2001). The MSORD model is 

particularly useful for several reasons. First, it allows for multiple states including breeders and 

non-breeders. In addition, MSORD relaxes the assumption that the population is closed, which 

allows individuals to enter and leave the breeding (or study) area at different times. Parameters in 

the MSORD model that describe these dynamics can be classified into two categories: within-

season and between-season parameters.  

Within-season Parameters 
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 The robust design aspect of MSORD divides the breeding season into individual survey 

occasions. The parameter       
  is the probability that an individual in state s (i.e. breeder or 

non-breeder) enters the breeding area before survey j and is therefore available for detection in 

the season i. Once an individual is in the breeding area,    
  describes the probability that the 

individual in state s during season i will remain in the survey area between surveys j and j + 1. 

This model allows for one entry and exit for each individual during the course of the breeding 

season. The probability of detection,    
 , describes the probability that an individual in state s, in 

season i, is detected during survey j (Kendall and Bjorkland 2001). In my example, detection 

probability is zero for individuals that are not in the breeding area (e.g., non-breeders, and 

breeders that have not yet arrived or those that have already left the breeding area).  

Between-season Parameters 

 In addition to incorporating multiple states, the MSORD model allows for transitions 

between those states. These transitions are assumed to occur between seasons, thus an 

individual‘s state does not change during a season. Female boreal toads are obligate non-breeders 

following a season in which they breed (Muths et al. 2010). Thus, the transition probability 

between breeding and non-breeding states,   
    

, is fixed at one, or conversely the probability 

of remaining in the breeding state for two successive seasons,   
   

, is zero (1-   
    

). The 

probability of transitioning from the non-breeding state to the breeding state,   
    

, is 

considered the breeding probability. Similarly, the probability of staying in the non-breeding 

state   
     

, is one minus the breeding probability. The other between-season dynamic 

parameter is survival.   
  describes the probability that an individual in state s will survive 

between seasons i and i + 1. Like the state transitions, survival or mortality (1-   
 ) only occurs 

between seasons.   
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Simulated Populations 

 We simulated the female portion of two different boreal toad populations, one 

inaccessible population and one easily accessible (Table 3.1). I based the inaccessible population 

on parameters from a boreal toad population at Denny Creek, Colorado (Muths et al. 2010). 

Denny Creek is a high elevation, remote site that is difficult to access prior to breeding due to 

deep snowpack and safety concerns. The first survey of the breeding area occurs later in the 

breeding season, often after the first eggs are laid. Accordingly, many females have already 

arrived in the breeding area, suggesting that the probability of entry prior to the first survey, 

     
 , is high (i.e., near or equal to 1, Table 3.1). In contrast, my accessible population 

parameters are based on a population in Wyoming (E. Muths, B.R. Hossack, P.S. Corn, and D.S. 

Pilliod, unpublished data). Here, first surveys are often conducted early in the breeding season 

before most females arrive. Surveys can be conducted multiple times during the breeding season 

enabling females to be captured as they arrive, resulting in a more constant probability of entry 

across the sampling occasions within each season (Table 3.1).    

A first requirement of simulation models is to define the duration of a breeding season. 

Muths et al. (2010) did not report survey-specific estimates of within-season parameters, but the 

time period between surveys varied between 1-21 days. I based my simulations on daily surveys 

and assumed that the breeding season lasted 21 days (j = 21), a realistic length of a boreal toad 

breeding season and is long enough to account for late breeders (Muths et al. 2006, Muths and 

Scherer 2011). The within-season parameters,      
  and   

 , were different between the 

simulated populations to represent the access logistics of the two different breeding sites. The 

within-season parameters used to simulate data for the inaccessible population were obtained 

from Muths et al. (2010). They did not report survey-specific estimates of      
 

, but instead 
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reported most females (88%) were already present at the first survey. I used this estimate as the 

first probability of entry,      
   and then gradually reduced the values for subsequent 

probabilities of entry until the total summed to one. All other values for probability of entry after 

that were zero. My simulations were based upon daily surveys, therefore I needed to convert the 

estimate of probability of remaining,   
 , from Muths et al. (2010) to reflect the shortened 

interval. To calculate the new estimate of   
  I used the average number of days between the 

surveys from the Muths et al. (2010) data, d, and took the d
th

 root of their estimate. I then treated 

  
 as constant for all surveys in all years.  

 The within season parameters used to simulate the accessible population were estimated 

directly from data collected at the Wyoming site from 2003-2012. Due to the sparseness of these 

data, I pooled the years so that capture histories for individuals across different years were 

treated as though they were all captured during the same survey season. Since varying climatic 

conditions might delay or expedite the start of the breeding season each year, I standardized the 

survey dates by the date of the first survey. With these data, I fit a model with survey-specific 

     
  and constant   

 . The estimates were used to simulate the accessible population.  

 The between season parameters,   
  and   

    
, and    

  were the same for both simulated 

populations and were obtained from Muths et al. (2010; Table 3.1). These parameters were 

assumed to be constant for all years and surveys, for detection probabilities     
 ). Since non-

breeding females are not detectable in this system,    
  and all other within season parameters for 

the non-breeding state were fixed to zero for both simulated populations. Survival probability 

was assumed the same for breeding and non-breeding individuals in both populations.  

All simulations were run with a total population size of 20 individuals, which is realistic 

for populations of conservation concern, over the course of 10 years. Since survival is < 1in these 
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simulations, additional individuals were recruited to the simulated population to maintain a 

constant population size of 20 for each year.   

Simulated Survey Designs 

 We considered sampling designs that varied in the number of surveys conducted during 

the breeding season as well as the timing of those surveys (Table 3.2). I attempted to create 

survey designs that were representative of what is feasible for boreal toad researchers. The first 

set of designs assumed that sampling was concentrated in the first 3-5 days of the 21-day 

breeding season (Table 3.2). I also considered ―random‖ survey designs in which the surveys 

were conducted on 3-5 days distributed randomly throughout the breeding season. The next set 

of designs represented surveys that were conducted at weekly intervals. These simulations all 

contained four surveys but due to the constraint of having a 21-day season, one of the intervals 

between surveys was forced to be six days instead of seven. I simulated all three possible 

placements of this six day interval (a, b, and c). The final set of designs simulated four surveys 

with weekly spacing but with an added element of coupling. In these designs, two of the four 

surveys were conducted on consecutive days. The three possible couplings were simulated 

(Table 3.2). For comparison, I included a survey design with surveys on all 21 days. This is 

impractical in practice but for this exercise it serves as a useful reference to compare the other 

simulations. I fixed p to zero for days when a survey was not conducted.  

All 13 survey designs were simulated with the inaccessible and accessible population 

parameter values and 500 iterations were performed for each survey design (13,000 total 

simulations: 2 populations x 13 survey designs x 500 iterations). The simulated data from each 

iteration were fit to models with constant survival and breeding probabilities across the ten years. 

I calculated bias and precision for resulting survival and breeding probability estimates for each 
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survey design. Bias was calculated by subtracting the true value of the parameter used in the 

simulation from the mean of the parameter estimates. Precision was determined by examining 

the variance of the estimates from the 500 iterations. All simulations were run in Program 

MARK (White and Burnham 1999). 

Results 

Survival 

The survival estimates from the simulated inaccessible population were all negatively 

biased (proportional bias range: -32% to -15%) and imprecise (variance range: 0.088-0.15) 

regardless of the survey design (Figure 3.1). However, designs that clustered the surveys at the 

beginning of the season (―First 3‖, ―4‖, and ―5‖) were the least biased and most precise 

estimates, especially the designs with four or five surveys (Figure 3.1). In contrast, the survival 

estimates from the accessible population simulations were all relatively unbiased (proportional 

bias range: -2.3% to 4.6%), with only the random surveys showing a slight positive bias (Figure 

3.1). These estimates were also all fairly precise (variance range: 0.0069-0.014; Figure 3.1).  

Breeding Probability 

 The estimates of breeding probability from the inaccessible population simulations 

showed similar, positive bias among survey designs with four or more surveys (proportional bias 

range: 25% to 72%; Figure 3.2). The ―First 3‖ design was extremely biased (proportional bias = 

125%; Figure 3.2). All survey designs had relatively imprecise estimates of breeding probability 

(variance range: 0.13-0.16), except the ―First 3‖ design (variance = 0.050; Figure 3.2). The ‗First 

3‘ design produced highly biased, but relatively precise estimates, which could be misleading if 

used in projection models. Aside from this survey design, the estimates from the ―random‖ 



 
 

70 
 

survey designs had the most precise estimates of all the survey designs using the simulated 

inaccessible population parameters (variance range: 0.12-0.13; Figure 3.2).  

 The breeding probability estimates from the accessible population simulation were also 

positively biased (proportional bias range: 21% to 58%), with the ―random‖ survey designs 

showing the most bias (Figure 3.2). Similar to the inaccessible population simulations, the 

―random‖ survey designs, were also the most precise of all the survey designs in the accessible 

population simulations (Figure 3.2). In general, the variances in breeding probability estimates 

were much lower for the accessible population simulations compared to the inaccessible 

population simulations, for all survey designs (variance range: 0.035-0.077; Figure 3.2).  

Discussion 

 The disparate results for the two breeding populations demonstrate the importance of 

considering not only the breeding biology and behavior of the species, but also the logistics of 

accessing the survey area. The ability to access the survey area can affect the number of females 

available for detection, thereby affecting the quality and quantity of data collected. As these 

results show, the difference in bias and precision between the accessible and inaccessible 

populations was greater than the difference between the survey designs employed on a given 

population. The underlying difference between these two simulated populations is that in the 

accessible population, surveys began before many of the females arrived. In contrast, in the 

inaccessible population, surveys began after most of the females had already arrived. Thus, the 

female availability (sample size) was greater in the accessible populations, thereby reducing bias 

and increasing precision.  

 If researchers are fortunate enough to control the timing of their surveys with respect to 

the arrival of animals in the area, my simulations suggest that it is beneficial to begin surveys as 
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individuals are beginning to arrive. In these situations any survey design that is nonrandom (i.e. 

the ―first‖ and ―weekly‖ survey designs) with at least four surveys performed well in my 

simulations. The coupling aspect of the second set of ―weekly‖ designs did not improve 

estimation.  

We acknowledge that accessing the study site at the beginning of the season is not always 

possible. In such cases, researchers should be careful in selecting their survey design. My 

simulations showed that the different survey designs under the inaccessible population scenario 

performed very differently. Survey designs that clustered the surveys at the beginning (as soon as 

researchers are able to access the site) performed the best. This makes intuitive sense because the 

individuals that have already entered the breeding area prior to the first survey have a limited 

time that they will remain in the breeding area. Concentrating the survey effort once researchers 

are able to access the site will maximize the probability of finding these individuals before they 

leave. Similar to the accessible population, estimates for inaccessible populations were greatly 

improved by survey designs that included at least four surveys.  

 As stated before, MSORD models are particularly useful in systems like the one I have 

simulated here. If the model assumptions are met, parameter estimates are generally unbiased for 

large sample sizes (Kendall and Nichols 2002). However, when sample sizes are small, as is the 

case for my simulations (only 20 females), even unrealistic designs where surveys were 

conducted every day still showed bias. This should not deter researchers from using this model in 

systems where it is applicable as simpler models will yield similar or greater bias (Kendall and 

Nichols 2002). However, researchers should be aware of data limitations if their populations of 

interest are small.  
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Our simulation exercise focused on the female portion of the population because 

information is often lacking for females. Although females may be the most important subset of 

the population for modeling future population dynamics, researchers may not want to ignore the 

male portion of the population entirely. While not specifically addressed in this paper, I believe 

that designs that are optimal for obtaining female vital rates will also perform well for obtaining 

estimates for males that are relatively unbiased with good precision. This is because males 

remain in breeding areas for longer periods in an attempt to find females, thus males are likely to 

be present during surveys targeted at detecting females.  

Detection probability was modeled as constant within and between the survey seasons in 

my simulations, which is a fair assumption for boreal toads (Muths et al. 2010, Muths and 

Scherer 2011). However, this might not be true in all populations. The optimal survey design in 

populations where detection probability is lower or changes throughout the season will likely be 

different from what I have presented here. This issue along with other differences between my 

simulated populations and other populations illustrate the need for researchers to conduct their 

own simulations specific to their population of interest.  

 We recommend researchers employ simulations similar to those I demonstrate to 

determine optimal sample designs for their system before initiating major sampling effort 

(Devineau et al. 2006, Reynolds et al. 2011). Simulations can be set up easily in programs such 

as MARK and then used to explore the efficacy of different survey designs while targeting 

parameters that researchers deem the most important for monitoring. The most difficult hurdle is 

often obtaining realistic parameter information to set up the simulations. Initial parameter 

estimates can come from existing data, estimates reported in the literature for the same or similar 

species, or, if necessary, via experience and intuition. This practice can then be repeated in an 



 
 

73 
 

adaptive or iterative framework as data become more abundant (Lindenmayer and Likens 2009, 

Guillera‐Arroita and Lahoz‐Monfort 2012). One caveat to this adaptive and iterative design 

paradigm is that it is necessary to consider how changes to the study design might affect the 

analysis. Too much disparity in design over the course of data collection may preclude the use of 

models with constant parameters across seasons and this may be especially important for long-

term ecological datasets.  

 Knowledge of population dynamics is critical in the conservation of imperiled 

populations and adult survival and breeding probability play a large role in driving vertebrate 

dynamics. Populations most in need of conservation are often small, rare, or difficult to access 

such that gathering data to estimate vital rate is challenging. Careful and deliberate planning, 

such as simulating different survey designs, can help to maximize the opportunities to collect 

enough data to estimate important vital rates.  
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Table 3.1. Initial parameter estimates used to simulate boreal toad populations with different 

accessibility logistics. Survival, transition, and detection probabilities were the same for both 

simulated populations.      
 , the probability of entering the breeding area before survey 1, for 

the inaccessible population simulations is very large, indicating that 88% of breeding females 

had arrived at the breeding area prior to the first survey. Comparatively, the probabilities of entry 

for the accessible population are more evenly distributed. The probability of survival, S, was 

constant for both states: breeders (B) and non-breeders (NB). The probability of remaining in the 

breeding area between consecutive surveys,   , is constant but the probability of remaining for 

multiple surveys decreases as the number of surveys in which the individual remains increase. 

For example, the probability of staying in the breeding area of the inaccessible population for 

two surveys is 0.906 but the probability of staying for three surveys is 0.906
2
 = 0.821. 

 

 Inaccessible Accessible 

S 0.87 

ψ
B, NB

                  1.00 (fixed) 

ψ
NB, B

 0.36 

p
B
 0.22 

p
NB

                  0.00 (fixed) 

     
  0.88 0.12 

     
  0.03 0.10 

     
  0.02 0.09 

     
  0.01 0.08 

     
  0.01 0.07 

     
  0.01 0.06 

     
  0.01 0.06 

     
  0.01 0.05 

     
  0.01 0.05 

      
  0.01 0.04 

      
  0 0.04 

      
  0 0.03 

      
  0 0.03 

      
  0 0.03 

      
  0 0.03 

      
  0 0.02 

      
  0 0.02 

      
  0 0.02 

      
  0 0.02 

      
  0 0.02 

      
  0 0.02 

   0.906 0.909 
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Table 3.2. Graphical representation of the simulated boreal toad survey designs, where ―X‖ indicates a day in which a survey is 

conducted within the simulated 21-day breeding season. The days represented in the random designs are not indicative of the actual 

days used in the simulations; they merely demonstrate that the random survey designs had no consistent pattern. 

 

Survey 

Scenario 
Day within the Breeding Season 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 

First 3 X X X                   

First 4 X X X X                  

First 5 X X X X X                 

Random 3   X       X    X        

Random 4 X    X  X            X   

Random 5    X    X X     X   X     

Weekly 4, no 

coupling A 

X      X       X       X 

Weekly 4, no 

coupling B 

X       X      X       X 

Weekly 4, no 

coupling C 

X       X       X      X 

Weekly 4, first 

coupled 

X X       X       X      

Weekly 4, 

second coupled 

X       X X       X      

Weekly 4, last 

coupled 

X       X       X X      

Full 21 X X X X X X X X X X X X X X X X X X X X X 
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Figure 3.1. Bias and precision of boreal toad survival probability, Si, estimates under 13 different 

survey designs (described in the text) for two different simulated populations: easily accessible 

and inaccessible. Simulations using the inaccessible population parameters are indicated with the 

opaque circles and accessible population simulations are indicated with the open squares. The 

true value for survival used in these simulations was 0.87. 
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Figure 3.2. Bias and precision of boreal toad breeding probability,   

    
, estimates under 13 

different survey designs (described in the text) for two different simulated populations: easily 

accessible and inaccessible. Simulations using the inaccessible population parameters are 

indicated with the opaque circles and accessible population simulations are indicated with the 

open squares. The true value for breeding probability used in these simulations was 0.36  
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APPENDIX 1  

 

 

 

An example of the data input file for the closed robust design model for one boreal toad egg mass half. Each row represents a possible 

encounter history. The dummy variable column is necessary because Program MARK requires at least two secondary periods for each 

primary period. The dummy variable overrides this and does not change the analysis if the recapture probability (c) for that associated 

secondary period is fixed to 1. Because the egg count was a census, the initial capture probability for the first period (p) is also fixed to 

1. The second primary period consists of each removal sweep (secondary period). A ―1‖ in these columns indicates that an individual 

was caught during that sweep. The counts column is the number of individuals with the encounter history described in the associated 

row. For example, row 2 shows that 241 tadpoles caught on the second removal sweep. The last row describes the encounter history 

for individuals that were counted as eggs but never recaptured as tadpoles.  

 

Primary Period 1 Primary Period 2  

Egg 

Stage 

Dummy 

Variable 

Sweep 

1 

Sweep 

2 

Sweep 

3 

Sweep 

4 

Sweep 

5 

Sweep 

6 

Sweep 

7 

Sweep 

8 

Sweep 

9 

Sweep 

10 

Sweep 

11 
Counts 

1 1 1 0 0 0 0 0 0 0 0 0 0 382 

1 1 0 1 0 0 0 0 0 0 0 0 0 241 

1 1 0 0 1 0 0 0 0 0 0 0 0 291 

1 1 0 0 0 1 0 0 0 0 0 0 0 110 

1 1 0 0 0 0 1 0 0 0 0 0 0 62 

1 1 0 0 0 0 0 1 0 0 0 0 0 33 

1 1 0 0 0 0 0 0 1 0 0 0 0 34 

1 1 0 0 0 0 0 0 0 1 0 0 0 12 

1 1 0 0 0 0 0 0 0 0 1 0 0 16 

1 1 0 0 0 0 0 0 0 0 0 1 0 7 

1 1 0 0 0 0 0 0 0 0 0 0 1 5 

1 1 0 0 0 0 0 0 0 0 0 0 0 2523 



 
 

83 
 

APPENDIX 2 

 

 

 

 Model selection results for models with fixed effects only. ―Treatment‖ refers to the trout 

exposure treatment: exposed or control. ―Source‖ refers to the source of the tadpoles: captive-

bred or wild-bred. Akaike‘s information criterion adjusted for sample size, AICc, is a model 

selection tool which is calculated as: AICc = -2 log (L) + 2 K * (n / ( n - K - 1)), where L is the 

likelihood of the model, K is the number of parameters in the model,  and n is the sample size. 

ΔAICc is the difference between a given model AICc and that of the best model (the model with 

the lowest AICc). Model weight, w, can be considered as the probability that the model is the 

best of the candidate models, given the data.     

 

i. Tadpole Survival 3-24 Days 

 

Model AICc ΔAICc -2log(L) K w 

Treatment 58.30 0.00 54.26 2 0.91 

Intercept Only 62.88 4.59 60.88 1 0.09 

 

ii. Tadpole Survival 24 Days to Metamorphosis 

 

Model  AICc ΔAICc -2log(L) K w 

Treatment 136.57 0.00 132.55 2 0.36 

Source * Treatment 136.75 0.18 128.62 4 0.33 

Source + Treatment 136.95 0.38 130.89 3 0.29 

Intercept Only 143.50 6.93 141.50 1 0.01 

Source 143.70 7.13 139.68 2 0.01 

 

iii. Tadpole Survival vs. Per Tadpole Strike Rate 

 

Model AICc ΔAICc -2log(L) K w 

Source 32.31 0.00 27.91 2 0.53 

Source + Strike Rate 34.45 2.14 27.62 3 0.18 

Source * Strike Rate 34.95 2.63 25.52 4 0.14 

Intercept Only 36.24 3.92 34.11 1 0.07 

Strike Rate 36.39 4.07 31.99 2 0.07 

 

iv. Body Condition at Emergence 

 

Model AICc ΔAICc -2log(L) K w 

Source -1436.19 0.00 -1440.28 2 0.59 

Source + Treatment -1434.51 1.68 -1440.68 3 0.26 

Source * Treatment -1432.96 3.23 -1441.25 4 0.12 
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Intercept Only -1429.53 6.66 -1431.56 1 0.02 

Treatment -1428.11 8.08 -1432.20 2 0.01 

 

v. Time to Metamorphosis 

 

Model AICc ΔAICc -2log(L) K w 

Source * Treatment 366.07 0.00 357.83 4 0.66 

Source + Treatment 367.36 1.29 361.22 3 0.34 

Source 377.60 11.54 373.53 2 0.00 

Treatment 490.26 124.19 486.19 2 0.00 

Intercept Only 493.10 127.03 491.08 1 0.00 

 

vi. Survival from Metamorphosis to Emergence 

 

Model AICc ΔAICc -2log(L) K w 

Source + Treatment 127.16 0.00 121.02 3 0.45 

Source 127.53 0.37 123.46 2 0.37 

Source * Treatment 129.06 1.90 120.82 4 0.17 

Intercept Only 151.19 24.03 149.17 1 0.00 

Treatment 151.52 24.36 147.45 2 0.00 

 

vii. Survival from Emergence to 4 Weeks 

 

Model AICc ΔAICc -2log(L) K w 

Source + Treatment 13.78 0.00 7.61 3 0.25 

Treatment 13.89 0.11 9.80 2 0.23 

Intercept Only 13.96 0.18 11.93 1 0.22 

Source 14.08 0.30 10.00 2 0.21 

Source * Treatment 15.89 2.12 7.61 4 0.09 

 

viii. Change in Body Condition Post Metamorphosis 

 

Model AICc ΔAICc -2log(L) K w 

Source -1457.71 0.00 -1461.79 2 0.68 

Source + Treatment -1455.64 2.07 -1461.81 3 0.24 

Source * Treatment -1453.52 4.18 -1461.81 4 0.08 

Intercept Only -1412.60 45.10 -1414.63 1 0.00 

Treatment -1410.90 46.80 -1414.99 2 0.00 
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