Earth Science 303N: Weather & Climate
Spring 2021 Syllabus

Instructor:  Dr. Anna Klene
Office: Stone Hall 216
Email: anna.klene@umontana.edu
Office hours: on Zoom, Wed 1-3 pm & by appt.

Teaching Assistant:  Lila Osborn
Office: Stone Hall 304C
Email: elizabethanne.osborn@umconnect.umt.edu
Office hours: on Zoom, Wed 10-12 pm & by appt

Course objectives:
By the end of this course, you should be able to describe why we have seasons, understand and evaluate the nightly TV forecast for normal and severe weather, and able to explain basic climate change principles to your friends. Optional extensions are provided for those in the Fire Minor.

Technology:
A good internet connection, basic computer skills, and access to a printer are required. The course is available at: moodle.umt.edu/. For technical assistance, callUMOnline (243-4999, M-F, 8-5) or email umonline-help@umontana.edu Firefox and Chrome are the recommended browsers as others may not save answers on quizzes, homeworks, and exams. Keep Java updated.

Textbooks:
Recommended: The Atmosphere: An Introduction to Meteorology, by Lutgens Tarbuck, & Herman 14th Ed., Prentice Hall, NY. 2019.) The UM Bookstore and online vendors sell this for ~$170+; a digital interactive e-book of the 14th Ed. is also available for a semester rental through the Bookstore for $40. The 13th Ed. is similar but less expensive with few changes. Three copies of the 13th Ed. are on reserve at the library. See Moodle for several alternative texts to consider as well.

Weekly Deadlines:
There are weekly assignments and quizzes due each Friday.

<table>
<thead>
<tr>
<th>Schedule</th>
<th>Topic</th>
<th>Reading</th>
<th>Homework</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 1-4:</td>
<td>The Science of Meteorology</td>
<td>Ch.1&amp;12 &amp; Appendices</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Atmospheric Composition &amp; Structure</td>
<td>Ch. 1</td>
<td>Wk. 1</td>
</tr>
<tr>
<td></td>
<td>Radiation &amp; Temperature</td>
<td>Ch. 2 &amp; 3</td>
<td>Wk. 2 &amp; 3</td>
</tr>
<tr>
<td></td>
<td>Temperature Patterns</td>
<td>Ch. 3</td>
<td>Wk. 3</td>
</tr>
<tr>
<td></td>
<td>Air Pollution</td>
<td>Ch. 13</td>
<td>Wk. 4</td>
</tr>
<tr>
<td></td>
<td>Midterm Exam 1</td>
<td>Feb. 14, noon to Feb. 16, noon</td>
<td></td>
</tr>
</tbody>
</table>

| Week 5-9: | Water in the Atmosphere | Ch. 4 | Wk. 6 |
|          | Cloud Development & Precipitation | Ch. 5 | Wk. 6 |
|          | Pressure & Winds | Ch. 6 | Wk. 7 |
|          | Atmospheric Motion | Ch. 7 & 8 | Wk. 8 |
|          | Air Masses, Fronts, & Cyclones | Ch. 9 & 12 | Wk. 9 |
|          | Midterm 2 | Mar. 21, 5 noon to Mar. 23, noon |

| Week 10-15: | Severe Weather: Thunderstorms & Tornadoes | Ch. 10 | Wk. 11 & 12 |
|            | Hurricanes | Ch. 11 | Wk. 12 |
|            | Climatology & Climate Change | Ch. 14 | Wk. 13 & 14 |
|            | Exam 3 | Apr. 28, noon to Apr. 29, midnight |

Grading Calculation:
Weekly Quizzes 80pts. 5 pts/week, lowest 1 dropped
Weekly Homework 220 pts. 20 pts each, lowest 1 dropped
3 Midterm Exams 300 pts.
Total 600 pts.

*** This syllabus may be modified as necessary during the course. Any changes will be posted in Moodle and distributed by e-mail.**
Earth Science 303N: Weather & Climate  
Spring 2021 Syllabus  

Important Dates:  
Feb. 1:  Last day to drop/add in Cyberbear with partial refund or change to “Audit”.
Mar. 18:  Last day to drop w/ drop/add link in Cyberbear (w/ prof & advisor sigs), $10 fee, & “W” grade.
Apr 23:  Last day to drop w/ link (w/ prof, advisor, & dean sigs), $10 fee, & “WP” or “WF” grade.

Required assignments and exams:  
Reading Assignments – The required reading assignments are listed in the syllabus and online. The text is intended (a) to provide further explanation of concepts covered in lecture videos and (b) to present additional information. You are responsible for material in these readings for all exams.

Homework – Are a vital component of this class. They account for 30% of the final grade. The lowest score will be dropped. Those received late will be penalized 5% off for each calendar day they are not submitted. Those more than 20 days late will NOT be accepted without documented family or medical emergencies.

Quizzes – Weekly to assess material from the reading and videos. These will allow you to get used to the format used for the exams but they also provide an opportunity for feedback. Same policies for late completion apply to quizzes as homework.

Exams – All exams will be comprehensive. Meteorology is a science that builds one concept upon another and therefore all tests refer to what you’ve learned previously. However, the exams will be oriented toward the section of the course most recently presented. The exam format will be mainly objective (multiple choice and definitions) and will consist of (a) concepts covered in lecture and (b) concepts covered in the required course readings. A few questions may appear on each exam involve calculations or mapping. There is no provision for make-up exams. Exceptions will be made only for documented family or medical emergencies.

Course guidelines and policies:  
Course Syllabus & Communication – Refer to this syllabus and to the Moodle website throughout the course. Any changes to the syllabus will be posted on Moodle and distributed by e-mail. Please note that I will only use your official UM email or Moodle to communicate with you. This is required to comply with FERPA (the Federal Educational Rights and Privacy Act).

Time Expectations – Online classes do not require classroom attendance, but the amount of time needed to successfully complete the course will be generally the same or more. You are responsible for completing assignments by prescribed deadlines. With this class expect 3-4 hours/week/credit hour, so plan to spend 9-12 hours/week for this course, including reading, videos, assignments, and exams. Incompletes may be given for emergencies, and must be completed within 1 year (http://www.umt.edu/catalog/academics/academic-policy-procedure.php).

Student Conduct Code – UM’s student conduct code is clearly addressed at: https://www.umt.edu/student-affairs/community-standards/default.php. Students failing to follow the code will be reported to the proper offices and receive a failing grade for the course.

Disability modifications – UM assures equal access to instruction through collaboration between students with disabilities, instructors, and Disability Services for Students. If you think you may have a disability adversely affecting your academic performance, and you have not already registered with Disability Services, please contact DSS in Lommasson Center 154 or call 406.243.2243. I will work with you and DSS to provide appropriate modification.

Grading: – At the end of the course, the distribution will be examined and letter grades assigned at approximately: A=>90%, B=80-90%, C=70-80%, D=60-70%, etc. The “+/-” grading system will be used. There will be no extra credit of any kind.
Earth Science 303N: Weather & Climate  
Spring 2021 Syllabus

Assignments (quizzes & homework) are **DUE by Friday at 5 pm each week.** Open work will submit itself automatically at 5 pm. Submit early to have time for questions and technical issues.

It is recommended you complete all homeworks & quizzes for the week **before** taking exam. Exams 1 and 2 are open from noon Thursday to noon Saturday. Exam 3 is open from noon Sunday to noon Tuesday. They will automatically close at that time. All exams **MUST** be completed within 75 minutes of the time you begin, **UNLESS** you take it during one of the Zoom sessions without a time limit.

**Class Calendar:**

<table>
<thead>
<tr>
<th>Date</th>
<th>Reading</th>
<th>Assignments</th>
</tr>
</thead>
</table>
| Week 1:  
Monday, Jan. 11 – Friday, Jan. 15 | Course Overview Page & Syllabus  
Ch. 1 (skip ozone depletion)  
& skim Ch. 12 | Syllabus Quiz  
Week 1 Quiz  
Week 1 Homework – Atm Characteristics |
| Week 2:  
Jan. 18 – Jan. 22  
Jan. 18 = MLK Day | Ch. 2: The Sun & Seasons | Week 2 Quiz  
Week 2 Homework – Solar Declination |
| Week 3:  
Jan. 25 – Jan. 29 | Ch. 3: Temperature Patterns  
& Applications | Week 3 Quiz  
Week 3 Homework – Energy & Heat |
| Week 4:  
Feb. 1 – Feb. 5 | Ch. 13: Air Pollution  
& Ch. 1 section on ozone | Week 4 Quiz  
Week 4 Homework – Applications |
| Week 5:  
Feb. 8 – Feb. 12 | Ch. 4: Atmos. Moisture  
(This material is on Exam 2.) | Quiz but NO Homework ☹️ - start on Wk 6’s  
**Exam 1:** noon Thurs – noon Sat |
| Week 6:  
Feb. 15 – Feb. 19  
Feb. 15 = Pres. Day | Ch. 5: Atmos. Moisture continued | Week 6 Quiz  
Week 6 Homework – Humidity & Stability |
| Week 7:  
Feb. 22 – Feb. 26 | Ch. 6: Wind & 4 Forces | Week 7 Quiz  
Week 7 Homework – Atm. Forces |
| Week 8:  
Mar. 1 – Mar. 5  
Mar. 3 = Spr. Br. #1 | Ch. 7: Global Circulation  
Ch. 8: Air Masses & El Niño | Week 8 Quiz  
Week 8 Homework – Circulation |
| Week 9:  
Mar. 8 – Mar. 12 | Ch. 9: Mid-latitude Cyclones | Week 9 Quiz  
Week 9 Homework – WX Maps |
| Week 10:  
Mar. 15 – Mar. 19  
Mar. 16 = Spr.Br. #2 | Ch. 10: Thunderstorm & Severe WX  
(This material is on Exam 3.) | Week 10 Hmwk – Cycl & T-storms; NO Quiz  
**Exam 2:** noon Thurs – noon Sat |
| Week 11:  
Mar. 22 – Mar. 26 | *Take Spring Break or have 2 weeks to do the work due by April 2nd.* | |
| Week 12:  
Mar. 29 – Apr. 2  
Apr. 2 = Spr. Br. #3 | Ch. 10: Tornadoes  
& Ch. 11: Hurricanes | Week 12 Quiz  
Week 12 Homework – Tornadoes & Hurricane |
| Week 13:  
Apr. 5 – Apr. 9 | Ch. 14: Paleoclimate | Week 13 Quiz  
Week 13 Homework – Paleo |
| Week 14:  
Apr. 12 – Apr. 16 | Ch. 14: Climate Models | Week 14 Quiz  
Week 14 Homework – Modeling |
| Week 15:  
Apr. 19 – Apr. 23 | Climate Change Wrap-up | Week 15 Quiz  
Feedback Quiz |
| Exam Week | No New Reading | **Exam 3** – available from Sunday noon (April 28th) to Tuesday noon (April 30th) |
Reference Sheet:

<table>
<thead>
<tr>
<th>Greek Letter</th>
<th>English capital</th>
<th>lower</th>
<th>name</th>
<th>equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>α</td>
<td>a</td>
<td>alpha</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>β</td>
<td>b</td>
<td>beta</td>
<td></td>
</tr>
<tr>
<td>Γ</td>
<td>γ</td>
<td>g</td>
<td>gamma</td>
<td></td>
</tr>
<tr>
<td>Δ</td>
<td>δ</td>
<td>d</td>
<td>delta</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>ε</td>
<td>e</td>
<td>epsilon</td>
<td></td>
</tr>
<tr>
<td>Z</td>
<td>ζ</td>
<td>z</td>
<td>zeta</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>η</td>
<td>ê</td>
<td>eta</td>
<td></td>
</tr>
<tr>
<td>Θ</td>
<td>θ</td>
<td>th</td>
<td>theta</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>ι</td>
<td>i</td>
<td>iota</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>κ</td>
<td>k</td>
<td>kappa</td>
<td></td>
</tr>
<tr>
<td>Λ</td>
<td>λ</td>
<td>l</td>
<td>lambda</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>μ</td>
<td>m</td>
<td>mu</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>ν</td>
<td>n</td>
<td>nu</td>
<td></td>
</tr>
<tr>
<td>Ξ</td>
<td>ξ</td>
<td>ks</td>
<td>xi</td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>ο</td>
<td>o</td>
<td>omicron</td>
<td></td>
</tr>
<tr>
<td>Π</td>
<td>π</td>
<td>p</td>
<td>pi</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>ρ</td>
<td>r</td>
<td>rho</td>
<td></td>
</tr>
<tr>
<td>Σ</td>
<td>σ</td>
<td>s</td>
<td>sigma</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>τ</td>
<td>t</td>
<td>tau</td>
<td></td>
</tr>
<tr>
<td>Υ</td>
<td>υ</td>
<td>u</td>
<td>upsilon</td>
<td></td>
</tr>
<tr>
<td>Φ</td>
<td>ϕ</td>
<td>f</td>
<td>phi</td>
<td></td>
</tr>
<tr>
<td>Χ</td>
<td>χ</td>
<td>ch</td>
<td>chi</td>
<td></td>
</tr>
<tr>
<td>Ψ</td>
<td>ψ</td>
<td>ps</td>
<td>psi</td>
<td></td>
</tr>
<tr>
<td>Ω</td>
<td>ω</td>
<td>ô</td>
<td>omega</td>
<td></td>
</tr>
</tbody>
</table>

** Δ is often used to refer to the change in something. For instance, ΔP means the change in pressure, so Pa – Pb, where a is the first pressure and b is the second.

Refer to Appendix A in your textbook for SI or metric units and conversions.

Order of Operations

1. Simplify any enclosure symbols: parentheses ( ), brackets [ ], or braces { }.
   • Work the enclosure symbols from the innermost and work outward.
   • Work separately above and below any fraction bars since the entire top of a fraction bar is treated as though it has its own invisible enclosure symbols around it and the entire bottom is treated the same way.

2. Simplify an exponents and roots working from left to right.

3. Do any multiplication and division in the order in which they occur, working from left to right; Note: If division comes before multiplication then it is done first, if multiplication comes first then it is done first.

4. Do any addition and subtraction in the order in which they occur, working from left to right; Note: If subtraction comes before addition in the problem then it is done first, if addition comes first then it is done first.

Common Symbols...

- √ Square root
- \(x^2\) the 2 is an exponent – this means we should multiply the x by itself (or multiply 2 x’s together). An exponent of 3 would mean x times x times x, and so forth. Multiplying like this is also called “raising x to a power.”
- \(\pi\) the ratio of circumference to diameter of a circle or about 3.141592653589
- \(e\) the natural logarithm base or about 2.718281828459. This is usually used with an exponent (e.g. \(e^x\)).

Chemical Notation

H₂O – means 2 hydrogen atoms & 1 oxygen

CH₄ – means 1 carbon atoms & 4 hydrogen